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Abstract: Rice is a vital crop for global food security, and remote monitoring and mapping are crucial for detecting crop
stress and estimating cultivated areas and outputs. This study employed Normalized Difference Vegetation Index (NDVI)
and supervised image classification to assess crop health and map rice-growing areas in three Nigerian states (Kano, Kaduna
and Katsina). The research analyzed satellite imagery from Sentinel and Landsat missions during the 2022 growing season.
NDVI values revealed variations in vegetation health, ranging from 0.044 to 0.148 in May and peaking at 0.110 to 0.450 in
August. Supervised image classification identified an average rice cultivation area of 0.227 hectares. The actual rice yield
was measured at 1512.624 kg/ha, while the model predicted a higher output of 4218.21 kg/ha. The prediction model exhibited
an average root mean square error (RMSE) of 0.419, corresponding to an accuracy of 82%. This study highlights the
potential of remote sensing technologies in tracking rice crop performance and mapping cultivated areas. These tools provide
critical insights for data-driven decisions, enhancing rice sector development planning. By integrating remote sensing
technologies, this research underscores their value in minimizing human involvement in estimating rice area and
productivity indices. The study's findings have significant implications for rice production and food security in Nigeria and
globally. The use of remote sensing technologies can help optimize rice production, reduce losses, and improve food
availability and affordability. By leveraging these technologies, stakeholders can make informed decisions to enhance rice
sector development, ultimately contributing to global food security.
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L INTRODUCTION including the Normalized Difference Vegetation Index
(NDVI). NDVI measures vegetation greenness and density,
Rice is a vital crop that feeds nearly 50% of the global providing insights into crop health (Singha, 2020).
population and plays a crucial role in ensuring food security
(FAO, 2020). However, extreme weather conditions like
drought and flood, exacerbated by climate change, impact rice

Zang et al., (2022) discovered that NDVI is essential for
field management, yield estimation, optimal water resource

crops. To mitigate this, developing a suitable crop monitoring
system for land management and spatial planning is essential.
This involves extracting and assessing pre- and post-event
information about paddy fields using remote sensing
technologies like Sentinel-2A (Dar et al., 2020; Singha, 2020;
Onyibe et al., 2024).

According to Mkhabela ef al., (2011), understanding the
physiological stages of rice growth is crucial for monitoring,
with four distinct stages: nursery, vegetative phase,
reproductive phase, and harvesting. Optical remote sensing
offers an attractive option for evaluating vegetation indices,
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utilization, and greenhouse gas emission monitoring. A
sudden drop in NDVI values may indicate crop health
deterioration, but it's crucial to counter-check with other data
to avoid false alarms. Accurate NDVI interpretation can help
agronomists raise healthier yields, reduce fertilizer costs, and
promote environmental sustainability.

In Nigeria, the National Space Research and
Development Agency (NASRDA) is responsible for wide-
area satellite imagery, while small-area imagery can be
obtained from Unmanned Aerial Vehicles (UAVs). The
Convolutional Neural Network (CNN) algorithm can filter
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and classify images, estimating the area covered by each
object. Time series NDVI data have been used for crop yield
predictions since the 1980s, with most studies focusing on
staple crops like wheat and rice (Adebayo and Olusola, 2020).

» Statement of Research Problem

Significant rice yield losses in Nigeria's Sudan
Ecological Zone are caused by pests, diseases, and climate-
related factors, exacerbated by inadequate and delayed crop
condition information. Traditional manual surveys are
impractical for large-scale monitoring due to their labor-
intensive and time-consuming nature. This study explores the
potential of Remote Sensing technology, specifically the
Normalized Difference Vegetation Index (NDVI) model, to
provide timely and accurate crop monitoring. This study aims
to estimate NDVI values for rice crop monitoring, develop a
reliable method for crop health assessment and yield
prediction, and enhance decision-making for stakeholders
through data-driven insights in the Sudan Ecological
Zone of Nigeria.By leveraging satellite imagery and NDVI,
this study seeks to improve crop monitoring and management
practices, ultimately contributing to optimized rice yields and
food security in the region.
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» The Objectives of the Study are to:
Map the rice cropland area for the study area.

Generate the NDVI to monitor the performance of rice
crops using the Satellite Imagery.

Estimate the rice yield and output using the NDVI
generated.

This research aims to advance crop monitoring
technologies and deliver actionable insights to optimize rice
production in Nigeria’s Sudan Ecological Zone.

II. METHODOLOGY

» Study Area

The study was conducted in 2022 in the areas between
latitude 11° 08' 04.034" N to 11° 53' 16.372" N and longitude
7°21'51.831" E to 8° 10'48.902" E. This area is spread across
three states: Kano, Kaduna, and Katsina encompassing six
Local Government Area (LGA) councils that interface
between the three states, sharing common boundaries. The
LGAs (Figure 1) are Kudan, Makarfi, Danja, Rogo, Kafur, and
Karaye. The study area covers approximately 3828.49 km?.
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» Data Types and Sources

e Primary and secondary data were used for the study.
o Satellite Data Acquisition: Landsat and Sentinel Imagery

Given the challenges posed by cloud cover in optical
remote sensing, Landsat satellite images were used to
complement Sentinel data. Landsat 8 and Landsat 9 images,
each with a 30-meter spatial resolution, were acquired for this
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study. These images correspond to path 189 and row 52,
ensuring proximity to the desired observation dates of Sentinel
imagery. Additionally, Sentinel-2A and Sentinel-2B satellite
images, with upper-right coordinates of 12°N, 7°E, and lower-
left coordinates of 11°30°18.84” N, 7°48°19.64” E, were
sourced. Both datasets were collected for the entire rice-
growing season, from planting (May 2022) to harvesting
(September 2022). A detailed summary of the Sentinel and
Landsat satellite images used is presented in Table 1.

Table 1 Satellite Data Acquisition for the Study with Dates

S/N Satellite Image Date Satellite Image Type Revisit Period
1 02/05/2022 Sentinel 2A 5 days with 2B
2 07/05/2022 Sentinel 2B 5 days with 2A
3 22/05/2022 Sentinel 2A 5 days with 2B
4 27/05/2022 sentinel 2B 5 days with 2A
5 03/05/2022 Landsat 8 (OLI) 8 days with landsat 9
6 11/05/2022 Landsat 9 (OLI) 8 days with landsat 8
7 19/05/2022 Landsat 8 (OLI) 8 days with landsat 9
8 27/05/2022 Landsat 9 (OLI) 8 days with landsat 8
9 01/06/2022 Sentinel 2A 5 days with 2B
10 04/06/2022 Landsat 8 (OLI) 8 days with landsat 9
11 12/06/2022 Landsat 9 (OLI) 8 days with landsat 8
12 20/06/2022 Landsat 8 (OLI) 8 days with landsat 9
13 28/06/2022 Landsat 9 (OLI) 8 days with landsat 8
14 06/07/2022 Landsat 8 (OLI) 8 days with landsat 9
15 14/07/2022 Landsat 9 (OLI) 8 days with landsat 8
16 22/07/2022 Landsat 8 (OLI) 8 days with landsat 9
17 07/08/2022 Landsat 8 (OLI) 8 days with landsat 9
18 05/08/2022 sentinel 2A 5 days with 2B
19 10/08/2022 Sentinel 2B 5 days with 2A
20 30/08/2022 sentinel 2A 5 days with 2B
21 08/09/2022 Landsat 8 (OLI) 8 days with landsat 9
22 24/09/2022 Landsat 8 (OLI) 8 days with landsat 9

» Primary Data Collection

Primary data were collected through structured
questionnaires administered to rice farmers using the Open
Data Kit (ODK) app. This allowed for the collection of key
information on agronomic practices, farm conditions, and
farmer demographics. Additionally, the geographical
boundaries of the farm plots were recorded using a Garmin
GPS receiver. The perimeter coordinates of 1,080 rice farms
across six local government areas—Rogo, Kudan, Makarfi,
Danja, Karaye, and Kafur—were collected. These areas are
situated at the intersection of the three selected Nigerian
states: Kano, Kaduna, and Katsina. The name of each farmer,
the type of crop planted, and their contact information were
documented for subsequent follow-up during the yield
harvesting phase. These data were crucial for the development
of the yield estimation model.

» Secondary Data Collection

Secondary data involved the acquisition of satellite
images for Normalized Difference Vegetation Index (NDVI)
analysis. Sentinel-2A and Sentinel-2B imagery were utilized
due to their high spatial resolution, ranging from 10 meters to
60 meters, and their ability to systematically capture optical
images of terrestrial and coastal environments. The Sentinel-2
constellation, part of the Copernicus Programme, features a 5-
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day revisit period (when both satellites are operational) and
supports a broad spectrum of applications, including
agricultural monitoring, emergency response, land cover
classification, and water quality assessment.

To account for cloud cover that might obscure optical
data, Landsat 8 and Landsat 9 satellite images with 30-meter
spatial resolution were also included in the analysis. These
images, along with the Sentinel data, provided a continuous
and comprehensive temporal dataset spanning the rice-
growing season from May to September 2022. By integrating
Sentinel and Landsat data, the study ensured both spatial and
temporal coverage, facilitating robust NDVTI analysis for crop
health assessment and yield prediction.

» Sentinel Satellite Imagery

Sentinel-2A and Sentinel-2B satellite images were
integral to this study due to their high spatial resolution and
regular acquisition schedule. Sentinel-2 is a multi-spectral
imaging mission for land and coastal monitoring, with spatial
resolutions ranging from 10 meters to 60 meters, depending
on the spectral band. The constellation provides a revisit
period of 5 to 10 days, which allows for frequent and up-to-
date monitoring of vegetation conditions. This characteristic
is particularly important for agricultural monitoring, where
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timely data are needed to assess crop health and detect
potential stress factors such as drought or pest infestations.
Sentinel data was collected during the rice growing cycle,
from planting to harvesting, to generate time-series NDVI
maps.

» Landsat Satellite Imagery

To mitigate the limitations of cloud cover associated with
optical remote sensing, Landsat 8 and Landsat 9 images were
incorporated into the dataset. With a spatial resolution of 30
meters, these images provide complementary data to the
higher-resolution Sentinel-2 imagery. The Landsat data,
corresponding to path 189 and row 52, were acquired on dates
as close as possible to those of the Sentinel data to ensure
consistency in temporal analysis. This integration of both
Sentinel and Landsat datasets enhanced the robustness of
NDVI analysis, allowing for more accurate and
comprehensive monitoring of rice crop health and yield
predictions throughout the growing season.

By combining these datasets, the study leverages the
strengths of both high-resolution and cloud-robust satellite
platforms, facilitating a more reliable and complete analysis
of rice crop dynamics in the study area.

» Data Analysis

The perimeter coordinates of all the farm plots were
plotted as points and these were used to digitize all the farm
plots as polygons using the Geographic Information System
platform. For accuracy purposes, the GPS coordinates of the
perimeters of each plot taken on the field were labeled
differently.

» NDVI Analysis

Since one of the objectives of the study is to generate the
indices that simplify Ag-statistics estimation, time series
NDVI was, therefore, analyzed and the value per farm plot
from the planting period to the harvest period was obtained.

The Normalized Difference Vegetation Index for the
entire study area was calculated using the NDVI algorithm.

The following equation was used.
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NDVI = NIR — RED
" NIR + RED

NIR = Near-infrared band of the satellite image
RED = RED band of the satellite image

In Sentinel Satellite Image, band 8 represents Near
Infrared (NIR) while band 4 represents RED. Therefore,
NDVI calculation for sentinel data = band 8 - band 4/ band 8
- band 4, and for Landsat data, NDVI = (band 5 - band
4)/(band 5 - band 4). This implies that NIR for Landsat
corresponds to band 5 while RED corresponds to band 4. For
the generation of average NDVI for farm plots, all the
digitized farm plot polygons were overlaid on the NDVI layer
for the selected LGAs and the average NDVI was generated
for each plot for rice, using the zonal statistics tool within the
Geographic Information System Platform.

III. RESULTS AND DISCUSSION

The study showed the time series NDVI for the length of
the growing season for the selected crop (rice) and the
geometrically calculated area of the farm plot size. The study
showed the NDVI statistics for rice from May 2022 (planting
period) to September 2022 (harvesting period). These
statistics include the mean, standard deviation, range,
minimum, and maximum NDVI values for all the farm plots
over the growing season from planting to harvesting period for
the selected crop. The average NDVI value in May, which
marks the onset of the growing season for rice in the study
area, ranges from 0.044 to 0.148. In July, which represents the
grain filling stage, ranges from 0.136 to 0.348, and in August,
which was the maturity stage for harvest, ranges from 0.110 to
0.450. These approaches assume that measures of
photosynthetic capacity from spectral-vegetation indices are
directly related to crop yield.

Figure 2 presents the landcover area showing cropland
area (July 2022) while Figure 3 and 4 shows NDVI Maps for
May, July and September. Table 2 also shows the land cover
for mapping for cropland area and other land cover
estimations.

Table 2 Land Use, Landcover for Mapping for Cropland Area and Other Land Cover Estimation

Land use Landcover classes Area in Square Kilometer
Cropland Area 194.973269

Vegetation Area 901.76134

Grassland Area 200.8880
waterbody coverage 48.1059

Bareland Area 2417.4291
Settlement Area 64.8444

Total 3828.0021
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Fig 2 Landcover Area Showing Cropland Area Covered (July, 2022)
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» Predicted Model

In the training phase for Kafur, the model correctly
identified 1741 non-rice samples but misclassified 427 rice
samples as non-rice. The results predicted a high accuracy for
non-rice predictions at 100.0% but a very low accuracy for
rice predictions at 4.5%. The overall accuracy for Kafur
during training was 80.5%.

The results for Danja showed the model correctly
predicted 1598 non-rice samples but incorrectly labeled 403
rice samples as non-rice. The non-rice prediction accuracy
was 100.0%. The overall training accuracy for Danja was
80.2%. For Rogo, the model successfully predicted 1139 out
of 1286 non-rice samples but mis-classified 276 rice samples
as non-rice. The non-rice prediction accuracy was 88.6%, and
the rice prediction accuracy was 50.3%. The overall accuracy
for Rogo was 77.0%.

Karaye's results showed the model correctly predicted all
1456 non-rice samples but misclassified 159 rice samples as
non-rice. It accurately identified only 7 out of 166 rice
samples. The non-rice prediction accuracy was 100.0%. The
overall accuracy for Karaye was 90.2%. However, in Makarfi,
the model correctly identified 1421 out of 1421 non-rice
samples but misclassified 383 rice samples as non-rice. The
non-rice prediction accuracy was 100.0%. The overall training
accuracy for Makarfi was 79.7%.

In Kudan, the model correctly predicted all 1652 non-
rice samples but misclassified 327 rice samples as non-rice.
The non-rice prediction accuracy was 100.0%. The overall
accuracy for Kudan was 83.6%.

» Estimation of Rice Output Across LGAs

In Kafur, the correlation between plot harvest and
NDVI_mean was exceptionally strong for rice (0.900). This
indicates that higher NDVI values, which reflect better
vegetation health, are strongly associated with higher crop
yield. The correlation between plot harvest and plot
Size.area_m?2 was moderately strong at 0.652.

Similar patterns emerged in Danja, with strong
correlations between plot_harvest and NDVI mean for rice
(0.9212). The correlations between plot harvest and plot
Size.area_m?2 were lower, with values of 0.5268 for rice.Rogo
displayed strong correlations between plot harvest and
NDVI_mean for rice (0.906). The plot_harvest and plot size
correlations were moderate, with a value of 0.300 for rice.

In Karaye, the correlation between plot harvest and
NDVI_mean was robust for the crop at 0.904. Makarfi showed
strong correlations between plot_harvest and NDVI_mean for
the crop at 0.911. The correlations between plot_harvest and
plot size were low, indicating that plot size had a minimal
direct impact on yield. In Kudan, the correlations between
plot harvest and NDVI mean were significant: rice (0.918).
Across all LGAs, the correlation between plot harvest and
NDVI_mean was consistently strong, indicating that NDVI is
a reliable predictor of crop yield.
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This strong positive relationship suggests that healthier
vegetation, as indicated by higher NDVI values, leads to
higher yields for the crop. The correlation between
plot_harvest and plot size was generally weaker and more
variable, suggesting that while plot size does have some
impact on yield, it is less influential compared to vegetation
health. Similarly, the correlation between NDVI mean and
plot size varied, showing that plot size can influence
vegetation health but not as consistently across different crops
and regions.

Overall, these results highlight the critical role of NDVI
in predicting crop yields and suggest that while plot size has
some effect, it is not as strong or consistent a predictor as
vegetation health. This information is valuable for agricultural
planning and management, helping to focus efforts on
improving vegetation health to boost crop yields.

IV. CONCLUSION

This study demonstrates the critical role of remote
sensing technologies, particularly the Normalized Difference
Vegetation Index (NDVI) and supervised image classification
techniques, in monitoring rice crop health and mapping
cultivation areas. Conducted across three Nigerian states
(Kano, Kaduna, and Katsina), the study utilized satellite
imagery from Sentinel and Landsat missions to assess rice
fields over the 2022 growing season. The NDVI analysis
captured the progression of rice growth, with values
increasing from 0.044-0.148 in May (planting) to 0.110—
0.450 in August (maturity), effectively reflecting the crop’s
health across various growth stages.

Supervised image classification identified a mean
cultivated area of 0.227 hectares, with notable variability in
plot sizes. The model predicted an average rice yield of
4218.21 kg/ha, although the actual measured yield was lower
at 1512.624 kg/ha, with a root mean square error (RMSE) of
0.419 and a model accuracy of 82%. These results underscore
the model's potential for estimating rice yield and detecting
discrepancies that warrant further refinement.

Overall, the study highlights the effectiveness of NDVI
and remote sensing in providing timely, data-driven insights
for rice monitoring, yield estimation, and agricultural
planning. These findings offer valuable contributions to
national food security efforts by improving decision-making
for farmers, policymakers, and agricultural managers. The
integration of remote sensing technologies promises to
enhance the efficiency and accuracy of crop monitoring and
resource allocation in the rice sector.

RECOMMENDATIONS

e Adoption and Upscaling of Remote Sensing Technologies:
Encourage the adoption of remote sensing technologies,
such as NDVI and supervised image classification, for rice
crop monitoring and yield estimation.

e Integration with Agricultural Planning: Integrate remote
sensing data into agricultural planning and decision-

WWW.ijisrt.com 1169


https://doi.org/10.38124/ijisrt/25nov595
http://www.ijisrt.com/

Volume 10, Issue 11, November — 2025
ISSN No:-2456-2165

making processes to improve resource allocation and crop
management.

Capacity Building and Training: Provide training and
capacity-building programs for farmers, policymakers,
and agricultural managers on the use and interpretation of
remote sensing data.

Data-Driven Decision Making: Promote data-driven
decision-making in the rice sector by using remote sensing
data to inform policy and management decisions.
Refinement of Yield Estimation Models: Refine yield
estimation models to reduce errors and improve accuracy,
using ground-truth data and other relevant factors.
Collaboration and Knowledge Sharing: Foster
collaboration and knowledge sharing among stakeholders,
including researchers, policymakers, and farmers, to
promote the adoption and effective use of remote sensing
technologies in agriculture.
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