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Abstract: Rice is a vital crop for global food security, and remote monitoring and mapping are crucial for detecting crop 

stress and estimating cultivated areas and outputs. This study employed Normalized Difference Vegetation Index (NDVI) 

and supervised image classification to assess crop health and map rice-growing areas in three Nigerian states (Kano, Kaduna 

and Katsina). The research analyzed satellite imagery from Sentinel and Landsat missions during the 2022 growing season. 

NDVI values revealed variations in vegetation health, ranging from 0.044 to 0.148 in May and peaking at 0.110 to 0.450 in 

August. Supervised image classification identified an average rice cultivation area of 0.227 hectares. The actual rice yield 

was measured at 1512.624 kg/ha, while the model predicted a higher output of 4218.21 kg/ha. The prediction model exhibited 

an average root mean square error (RMSE) of 0.419, corresponding to an accuracy of 82%. This study highlights the 

potential of remote sensing technologies in tracking rice crop performance and mapping cultivated areas. These tools provide 

critical insights for data-driven decisions, enhancing rice sector development planning. By integrating remote sensing 

technologies, this research underscores their value in minimizing human involvement in estimating rice area and 

productivity indices. The study's findings have significant implications for rice production and food security in Nigeria and 

globally. The use of remote sensing technologies can help optimize rice production, reduce losses, and improve food 

availability and affordability. By leveraging these technologies, stakeholders can make informed decisions to enhance rice 

sector development, ultimately contributing to global food security. 
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I. INTRODUCTION 

 

Rice is a vital crop that feeds nearly 50% of the global 

population and plays a crucial role in ensuring food security 

(FAO, 2020). However, extreme weather conditions like 

drought and flood, exacerbated by climate change, impact rice 

crops. To mitigate this, developing a suitable crop monitoring 

system for land management and spatial planning is essential. 

This involves extracting and assessing pre- and post-event 

information about paddy fields using remote sensing 

technologies like Sentinel-2A (Dar et al., 2020; Singha, 2020; 
Onyibe et al., 2024). 

 

According to Mkhabela et al., (2011), understanding the 

physiological stages of rice growth is crucial for monitoring, 

with four distinct stages: nursery, vegetative phase, 

reproductive phase, and harvesting. Optical remote sensing 

offers an attractive option for evaluating vegetation indices, 

including the Normalized Difference Vegetation Index 

(NDVI). NDVI measures vegetation greenness and density, 

providing insights into crop health (Singha, 2020). 

 

Zang et al., (2022) discovered that NDVI is essential for 

field management, yield estimation, optimal water resource 

utilization, and greenhouse gas emission monitoring. A 

sudden drop in NDVI values may indicate crop health 

deterioration, but it's crucial to counter-check with other data 

to avoid false alarms. Accurate NDVI interpretation can help 

agronomists raise healthier yields, reduce fertilizer costs, and 
promote environmental sustainability. 

 

In Nigeria, the National Space Research and 

Development Agency (NASRDA) is responsible for wide-

area satellite imagery, while small-area imagery can be 

obtained from Unmanned Aerial Vehicles (UAVs). The 

Convolutional Neural Network (CNN) algorithm can filter 
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and classify images, estimating the area covered by each 

object. Time series NDVI data have been used for crop yield 

predictions since the 1980s, with most studies focusing on 

staple crops like wheat and rice (Adebayo and Olusola, 2020). 

 

 Statement of Research Problem 

Significant rice yield losses in Nigeria's Sudan 

Ecological Zone are caused by pests, diseases, and climate-
related factors, exacerbated by inadequate and delayed crop 

condition information. Traditional manual surveys are 

impractical for large-scale monitoring due to their labor-

intensive and time-consuming nature. This study explores the 

potential of Remote Sensing technology, specifically the 

Normalized Difference Vegetation Index (NDVI) model, to 

provide timely and accurate crop monitoring. This study aims 

to estimate NDVI values for rice crop monitoring, develop a 

reliable method for crop health assessment and yield 

prediction, and enhance decision-making for stakeholders 

through data-driven insights in the Sudan Ecological 
Zone of Nigeria.By leveraging satellite imagery and NDVI, 

this study seeks to improve crop monitoring and management 

practices, ultimately contributing to optimized rice yields and 

food security in the region. 

 

 

 The Objectives of the Study are to: 

 

Map the rice cropland area for the study area. 

 

Generate the NDVI to monitor the performance of rice 

crops using the Satellite Imagery. 

 

Estimate the rice yield and output using the NDVI 
generated. 

 

This research aims to advance crop monitoring 

technologies and deliver actionable insights to optimize rice 

production in Nigeria’s Sudan Ecological Zone. 

 

II. METHODOLOGY 

 

 Study Area 

The study was conducted in 2022 in the areas between 

latitude 11° 08' 04.034" N to 11° 53' 16.372" N and longitude 
7° 21' 51.831" E to 8° 10' 48.902" E. This area is spread across 

three states: Kano, Kaduna, and Katsina encompassing six 

Local Government Area (LGA) councils that interface 

between the three states, sharing common boundaries. The  

LGAs (Figure 1) are Kudan, Makarfi, Danja, Rogo, Kafur, and 

Karaye. The study area covers approximately 3828.49 km². 

 

 
Fig 1 Study Area Map 
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 Data Types and Sources 

 

 Primary and secondary data were used for the study. 

 Satellite Data Acquisition: Landsat and Sentinel Imagery 

 

Given the challenges posed by cloud cover in optical 

remote sensing, Landsat satellite images were used to 

complement Sentinel data. Landsat 8 and Landsat 9 images, 
each with a 30-meter spatial resolution, were acquired for this 

study. These images correspond to path 189 and row 52, 

ensuring proximity to the desired observation dates of Sentinel 

imagery. Additionally, Sentinel-2A and Sentinel-2B satellite 

images, with upper-right coordinates of 12°N, 7°E, and lower-

left coordinates of 11°30’18.84” N, 7°48’19.64” E, were 

sourced. Both datasets were collected for the entire rice-

growing season, from planting (May 2022) to harvesting 

(September 2022). A detailed summary of the Sentinel and 
Landsat satellite images used is presented in Table 1. 

 

Table 1 Satellite Data Acquisition for the Study with Dates 

S/N Satellite Image Date Satellite Image Type Revisit Period 

1 02/05/2022 Sentinel 2A 5 days with 2B 

2 07/05/2022 Sentinel 2B 5 days with 2A 

3 22/05/2022 Sentinel 2A 5 days with 2B 

4 27/05/2022 sentinel 2B 5 days with 2A 

5 03/05/2022 Landsat 8 (OLI) 8 days with landsat 9 

6 11/05/2022 Landsat 9 (OLI) 8 days with landsat 8 

7 19/05/2022 Landsat 8 (OLI) 8 days with landsat 9 

8 27/05/2022 Landsat 9 (OLI) 8 days with landsat 8 

9 01/06/2022 Sentinel 2A 5 days with 2B 

10 04/06/2022 Landsat 8 (OLI) 8 days with landsat 9 

11 12/06/2022 Landsat 9 (OLI) 8 days with landsat 8 

12 20/06/2022 Landsat 8 (OLI) 8 days with landsat 9 

13 28/06/2022 Landsat 9 (OLI) 8 days with landsat 8 

14 06/07/2022 Landsat 8 (OLI) 8 days with landsat 9 

15 14/07/2022 Landsat 9 (OLI) 8 days with landsat 8 

16 22/07/2022 Landsat 8 (OLI) 8 days with landsat 9 

17 07/08/2022 Landsat 8 (OLI) 8 days with landsat 9 

18 05/08/2022 sentinel 2A 5 days with 2B 

19 10/08/2022 Sentinel 2B 5 days with 2A 

20 30/08/2022 sentinel 2A 5 days with 2B 

21 08/09/2022 Landsat 8 (OLI) 8 days with landsat 9 

22 24/09/2022 Landsat 8 (OLI) 8 days with landsat 9 

 

 Primary Data Collection 

Primary data were collected through structured 

questionnaires administered to rice farmers using the Open 

Data Kit (ODK) app. This allowed for the collection of key 

information on agronomic practices, farm conditions, and 

farmer demographics. Additionally, the geographical 

boundaries of the farm plots were recorded using a Garmin 
GPS receiver. The perimeter coordinates of 1,080 rice farms 

across six local government areas—Rogo, Kudan, Makarfi, 

Danja, Karaye, and Kafur—were collected. These areas are 

situated at the intersection of the three selected Nigerian 

states: Kano, Kaduna, and Katsina. The name of each farmer, 

the type of crop planted, and their contact information were 

documented for subsequent follow-up during the yield 

harvesting phase. These data were crucial for the development 

of the yield estimation model. 

 

 Secondary Data Collection 
Secondary data involved the acquisition of satellite 

images for Normalized Difference Vegetation Index (NDVI) 

analysis. Sentinel-2A and Sentinel-2B imagery were utilized 

due to their high spatial resolution, ranging from 10 meters to 

60 meters, and their ability to systematically capture optical 

images of terrestrial and coastal environments. The Sentinel-2 

constellation, part of the Copernicus Programme, features a 5-

day revisit period (when both satellites are operational) and 

supports a broad spectrum of applications, including 

agricultural monitoring, emergency response, land cover 

classification, and water quality assessment. 

 

To account for cloud cover that might obscure optical 

data, Landsat 8 and Landsat 9 satellite images with 30-meter 
spatial resolution were also included in the analysis. These 

images, along with the Sentinel data, provided a continuous 

and comprehensive temporal dataset spanning the rice-

growing season from May to September 2022. By integrating 

Sentinel and Landsat data, the study ensured both spatial and 

temporal coverage, facilitating robust NDVI analysis for crop 

health assessment and yield prediction. 

 

 Sentinel Satellite Imagery 

Sentinel-2A and Sentinel-2B satellite images were 

integral to this study due to their high spatial resolution and 
regular acquisition schedule. Sentinel-2 is a multi-spectral 

imaging mission for land and coastal monitoring, with spatial 

resolutions ranging from 10 meters to 60 meters, depending 

on the spectral band. The constellation provides a revisit 

period of 5 to 10 days, which allows for frequent and up-to-

date monitoring of vegetation conditions. This characteristic 

is particularly important for agricultural monitoring, where 
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timely data are needed to assess crop health and detect 

potential stress factors such as drought or pest infestations. 

Sentinel data was collected during the rice growing cycle, 

from planting to harvesting, to generate time-series NDVI 

maps. 

 

 Landsat Satellite Imagery 

To mitigate the limitations of cloud cover associated with 
optical remote sensing, Landsat 8 and Landsat 9 images were 

incorporated into the dataset. With a spatial resolution of 30 

meters, these images provide complementary data to the 

higher-resolution Sentinel-2 imagery. The Landsat data, 

corresponding to path 189 and row 52, were acquired on dates 

as close as possible to those of the Sentinel data to ensure 

consistency in temporal analysis. This integration of both 

Sentinel and Landsat datasets enhanced the robustness of 

NDVI analysis, allowing for more accurate and 

comprehensive monitoring of rice crop health and yield 

predictions throughout the growing season. 
 

By combining these datasets, the study leverages the 

strengths of both high-resolution and cloud-robust satellite 

platforms, facilitating a more reliable and complete analysis 

of rice crop dynamics in the study area. 

 

 Data Analysis 

The perimeter coordinates of all the farm plots were 

plotted as points and these were used to digitize all the farm 

plots as polygons using the Geographic Information System 

platform. For accuracy purposes, the GPS coordinates of the 

perimeters of each plot taken on the field were labeled 
differently. 

 

 NDVI Analysis 

Since one of the objectives of the study is to generate the 

indices that simplify Ag-statistics estimation, time series 

NDVI was, therefore, analyzed and the value per farm plot 

from the planting period to the harvest period was obtained. 

 

The Normalized Difference Vegetation Index for the 

entire study area was calculated using the NDVI algorithm. 

 
The following equation was used. 

 

NDVI =
NIR− RED

NIR+ RED
 

 

NIR = Near-infrared band of the satellite image 
 

RED = RED band of the satellite image 

 

In Sentinel Satellite Image, band 8 represents Near 

Infrared (NIR) while band 4 represents RED. Therefore, 

NDVI calculation for sentinel data = band 8 - band 4/ band 8 

- band 4, and for Landsat data, NDVI = (band 5 - band 

4)/(band 5 - band 4). This implies that NIR for Landsat 

corresponds to band 5 while RED corresponds to band 4. For 

the generation of average NDVI for farm plots, all the 

digitized farm plot polygons were overlaid on the NDVI layer 
for the selected LGAs and the average NDVI was generated 

for each plot for rice, using the zonal statistics tool within the 

Geographic Information System Platform. 

 

III. RESULTS AND DISCUSSION 

 

The study showed the time series NDVI for the length of 

the growing season for the selected crop (rice) and the 

geometrically calculated area of the farm plot size. The study 

showed the NDVI statistics for rice from May 2022 (planting 

period) to September 2022 (harvesting period). These 
statistics include the mean, standard deviation, range, 

minimum, and maximum NDVI values for all the farm plots 

over the growing season from planting to harvesting period for 

the selected crop. The average NDVI value in May, which 

marks the onset of the growing season for rice in the study 

area, ranges from 0.044 to 0.148. In July, which represents the 

grain filling stage, ranges from 0.136 to 0.348, and in August, 

which was the maturity stage for harvest, ranges from 0.110 to 

0.450. These approaches assume that measures of 

photosynthetic capacity from spectral-vegetation indices are 

directly related to crop yield. 

 
Figure 2 presents the landcover area showing cropland 

area (July 2022) while Figure 3 and 4 shows NDVI Maps for 

May, July and September. Table 2 also shows the land cover 

for mapping for cropland area and other land cover 

estimations. 

Table 2 Land Use, Landcover for Mapping for Cropland Area and Other Land Cover Estimation 

Land use Landcover classes Area in Square Kilometer 

Cropland Area 194.973269 

Vegetation Area 901.76134 

Grassland Area 200.8880 

waterbody coverage 48.1059 

Bareland Area 2417.4291 

Settlement Area 64.8444 

Total 3828.0021 
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Fig 2 Landcover Area Showing Cropland Area Covered (July, 2022) 
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Fig 3 NDVI Maps for May 

 

 
Fig 4 NDVI Maps for July – September 

https://doi.org/10.38124/ijisrt/25nov595
http://www.ijisrt.com/


Volume 10, Issue 11, November – 2025                                 International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                                 https://doi.org/10.38124/ijisrt/25nov595 

 

 

IJISRT25NOV595                                                                www.ijisrt.com                                                                              1169 

 Predicted Model 

In the training phase for Kafur, the model correctly 

identified 1741 non-rice samples but misclassified 427 rice 

samples as non-rice. The results predicted a high accuracy for 

non-rice predictions at 100.0% but a very low accuracy for 

rice predictions at 4.5%. The overall accuracy for Kafur 

during training was 80.5%. 

 
The results for Danja showed the model correctly 

predicted 1598 non-rice samples but incorrectly labeled 403 

rice samples as non-rice. The non-rice prediction accuracy 

was 100.0%. The overall training accuracy for Danja was 

80.2%. For Rogo, the model successfully predicted 1139 out 

of 1286 non-rice samples but mis-classified 276 rice samples 

as non-rice. The non-rice prediction accuracy was 88.6%, and 

the rice prediction accuracy was 50.3%. The overall accuracy 

for Rogo was 77.0%. 

 

Karaye's results showed the model correctly predicted all 
1456 non-rice samples but misclassified 159 rice samples as 

non-rice. It accurately identified only 7 out of 166 rice 

samples. The non-rice prediction accuracy was 100.0%. The 

overall accuracy for Karaye was 90.2%. However, in Makarfi, 

the model correctly identified 1421 out of 1421 non-rice 

samples but misclassified 383 rice samples as non-rice. The 

non-rice prediction accuracy was 100.0%. The overall training 

accuracy for Makarfi was 79.7%. 

 

In Kudan, the model correctly predicted all 1652 non-

rice samples but misclassified 327 rice samples as non-rice. 

The non-rice prediction accuracy was 100.0%. The overall 
accuracy for Kudan was 83.6%. 

 

 Estimation of Rice Output Across LGAs 

In Kafur, the correlation between plot_harvest and 

NDVI_mean was exceptionally strong for rice (0.900). This 

indicates that higher NDVI values, which reflect better 

vegetation health, are strongly associated with higher crop 

yield. The correlation between plot_harvest and plot 

Size.area_m2 was moderately strong at 0.652. 

 

Similar patterns emerged in Danja, with strong 
correlations between plot_harvest and NDVI_mean for rice 

(0.9212). The correlations between plot_harvest and plot 

Size.area_m2 were lower, with values of 0.5268 for rice.Rogo 

displayed strong correlations between plot_harvest and 

NDVI_mean for rice (0.906). The plot_harvest and plot size 

correlations were moderate, with a value of 0.300 for rice. 

 

In Karaye, the correlation between plot_harvest and 

NDVI_mean was robust for the crop at 0.904. Makarfi showed 

strong correlations between plot_harvest and NDVI_mean for 

the crop at 0.911. The correlations between plot_harvest and 

plot size were low, indicating that plot size had a minimal 
direct impact on yield. In Kudan, the correlations between 

plot_harvest and NDVI_mean were significant: rice (0.918). 

Across all LGAs, the correlation between plot_harvest and 

NDVI_mean was consistently strong, indicating that NDVI is 

a reliable predictor of crop yield. 

 

This strong positive relationship suggests that healthier 

vegetation, as indicated by higher NDVI values, leads to 

higher yields for the crop. The correlation between 

plot_harvest and plot size was generally weaker and more 

variable, suggesting that while plot size does have some 

impact on yield, it is less influential compared to vegetation 

health. Similarly, the correlation between NDVI_mean and 

plot size varied, showing that plot size can influence 
vegetation health but not as consistently across different crops 

and regions. 

 

Overall, these results highlight the critical role of NDVI 

in predicting crop yields and suggest that while plot size has 

some effect, it is not as strong or consistent a predictor as 

vegetation health. This information is valuable for agricultural 

planning and management, helping to focus efforts on 

improving vegetation health to boost crop yields. 

 

IV. CONCLUSION 
 

This study demonstrates the critical role of remote 

sensing technologies, particularly the Normalized Difference 

Vegetation Index (NDVI) and supervised image classification 

techniques, in monitoring rice crop health and mapping 

cultivation areas. Conducted across three Nigerian states 

(Kano, Kaduna, and Katsina), the study utilized satellite 

imagery from Sentinel and Landsat missions to assess rice 

fields over the 2022 growing season. The NDVI analysis 

captured the progression of rice growth, with values 

increasing from 0.044–0.148 in May (planting) to 0.110–

0.450 in August (maturity), effectively reflecting the crop’s 
health across various growth stages. 

 

Supervised image classification identified a mean 

cultivated area of 0.227 hectares, with notable variability in 

plot sizes. The model predicted an average rice yield of 

4218.21 kg/ha, although the actual measured yield was lower 

at 1512.624 kg/ha, with a root mean square error (RMSE) of 

0.419 and a model accuracy of 82%. These results underscore 

the model's potential for estimating rice yield and detecting 

discrepancies that warrant further refinement. 

 
Overall, the study highlights the effectiveness of NDVI 

and remote sensing in providing timely, data-driven insights 

for rice monitoring, yield estimation, and agricultural 

planning. These findings offer valuable contributions to 

national food security efforts by improving decision-making 

for farmers, policymakers, and agricultural managers. The 

integration of remote sensing technologies promises to 

enhance the efficiency and accuracy of crop monitoring and 

resource allocation in the rice sector. 

 

RECOMMENDATIONS 

 

 Adoption and Upscaling of Remote Sensing Technologies: 

Encourage the adoption of remote sensing technologies, 

such as NDVI and supervised image classification, for rice 

crop monitoring and yield estimation. 

 Integration with Agricultural Planning: Integrate remote 

sensing data into agricultural planning and decision-
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making processes to improve resource allocation and crop 

management. 

 Capacity Building and Training: Provide training and 

capacity-building programs for farmers, policymakers, 

and agricultural managers on the use and interpretation of 

remote sensing data. 

 Data-Driven Decision Making: Promote data-driven 

decision-making in the rice sector by using remote sensing 
data to inform policy and management decisions. 

 Refinement of Yield Estimation Models: Refine yield 

estimation models to reduce errors and improve accuracy, 

using ground-truth data and other relevant factors. 

 Collaboration and Knowledge Sharing: Foster 

collaboration and knowledge sharing among stakeholders, 

including researchers, policymakers, and farmers, to 

promote the adoption and effective use of remote sensing 

technologies in agriculture. 
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