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Abstract— Crowd Behavior analysis has become a crucial component of modern video surveillance systems, enabling automatic 

detection of abnormal events such as panic, congestion, and violence. Traditional approaches often fail to generalize under 

complex environmental conditions, while deep learning methods alone require large datasets and extensive computation. This 

paper proposes a hybrid ensemble learning framework that integrates optical flow–based motion features with deep motion 

representations extracted from convolutional neural networks (CNNs) to achieve real-time and robust crowd behavior 

recognition. The ensemble model combines Random Forests (RFs), Gradient Boosting (GB), and a lightweight CNN classifier 

via weighted voting. Experiments conducted on benchmark datasets, such as the UCSD Anomaly Detection Dataset and Violent 

Flows (VF), demonstrate that the proposed framework outperforms individual classifiers and state-of-the-art deep models in 

terms of accuracy, F1-score, and processing speed. The results confirm that ensemble learning effectively bridges the gap 

between handcrafted motion cues and deep spatio-temporal representations for practical surveillance applications. 
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I. INTRODUCTION 

 

In recent years, the growing demand for intelligent 

surveillance systems has led to significant advances in crowd 

behavior analysis. Automated understanding of crowd dynamics 

helps in early detection of abnormal events such as panic, 

stampedes, and violence, thereby improving public safety and 
emergency response. However, analyzing crowd motion 

remains challenging due to occlusions, density variations, 

perspective distortions, and changes in illumination in 

surveillance footage. Traditional computer vision methods rely 

on handcrafted motion features such as optical flow, histograms 

of oriented gradients (HOG), or trajectory clustering, which 

often fail to capture the complex spatio-temporal dependencies 

of crowd motion. In contrast, deep learning approaches, 

especially 3D convolutional neural networks and recurrent 
models, have shown promise but require massive, labeled 

datasets and high computational resources. To overcome these 
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limitations, this paper introduces a hybrid ensemble framework 

that fuses optical flow–based motion features with deep motion 
embeddings learned from CNNs. The ensemble model 

integrates multiple weak and strong classifiers to improve 

generalization and reduce overfitting. By combining traditional 

motion estimation with data-driven feature learning, the 

proposed approach achieves high recognition accuracy while 

maintaining real-time performance. Violence detection, 

shopping behavior analysis, and medical and educational 

applications, as well as behavior analysis (with several types 

such as Person, Group, and Crowd), are concentrated on natural 

events, including fall detection, lava flow, and fire detection. 

Social-related applications include sports analysis, music 
recognition, and smart home applications. Finally, Object-

Tracking and Detection applications will consist of traffic 

analysis, road safety, tracking, anomaly detection, and vehicle 

identification. This taxonomy provides a broad view of the 

domains in which video analytics can be effectively utilized and 

demonstrates the potential to address a wide range of challenges 

and opportunities. 

 

The main contributions of this paper are: 

 A novel hybrid ensembles learning framework combining 

optical flow motion descriptors and deep CNN-based 
features. 

 A multi-stage motion analysis pipeline capable of handling 

dense crowd scenes in real-time. 

 An extensive experimental evaluation demonstrating 

superior accuracy and speed over baseline models. 

 

The rest of the paper is structured as follows: Section II 

discusses related work. Section III presents the proposed 

framework. Section IV describes the methodology. Section V 

presents the Dataset. Section VI represents the discussion and 

results. Section VII concludes the paper, highlighting future 

research directions. 
 

II. RELATED WORK 

 

Crowd behavior analysis has been extensively studied 

across three major categories: motion-based, appearance-based, 

and hybrid methods [1], [2]. Each category captures distinct 

aspects of crowd dynamics and presents unique advantages and 

limitations. Motion-based approaches analyze crowd movement 

patterns by exploiting temporal variations in optical flow or 

particle dynamics. 

 
One of the earliest and most influential works in this 

category introduced a Lagrangian particle dynamics framework 

for crowd flow segmentation and stability analysis [3]. Their 

method treated the optical-flow field as a motion vector field 

through which virtual particles were advected, enabling the 

automatic detection of coherent motion segments and 

bottlenecks. Although this approach effectively revealed motion 

coherence in dense scenes, it was sensitive to noise, occlusion, 

and perspective distortion, particularly in unconstrained outdoor 

environments. Building upon this concept, an integrated Social 

Force Model (SFM) with optical flow to quantify interaction 
forces among individuals in a crowd [4]. Their model estimated 

the "repulsive" and "attractive" forces between motion particles, 

enabling the detection of abnormal behaviors such as panic and 

congestion. This fusion of physical and visual modeling marked 

a milestone in physics-informed computer vision for crowd 

analysis. However, the handcrafted feature representations and 

reliance on accurate flow estimation limited robustness to 

varying lighting and camera angles.  The Social Force Model 

(SFM) itself was initially proposed in the field of pedestrian 

dynamics [5]. It is driven by internal motivations (the desired 

direction) and by social interactions (repulsion from others or 
obstacles). While physically interpretable, SFM-based crowd 

behavior models are computationally intensive and tricky to 

generalize with large-scale, real-world video data. 

 

Appearance-based methods employ visual and spatio-

temporal features extracted from raw video frames. Early 

examples used Histograms of Oriented Gradients (HOG) and 

Local Binary Patterns (LBP) for motion-region description. 

With the rise of deep learning, Convolutional Neural Networks 

(CNNs) and 3D CNNs have become dominant due to their 

ability to learn discriminative representations directly from data 

[6]. In [7], an introduced spatio-temporal residual network was 
used to detect violent crowd behavior, achieving high accuracy 

on the Violent Flows dataset. Similarly, [8] it used object-centric 

autoencoders for unsupervised anomaly detection, learning 

latent representations of normal motion patterns without labeled 

anomalies. While these deep approaches outperform classical 

models in accuracy, they require large-scale labeled datasets and 

high computational resources and often lack interpretability in 

real-time surveillance applications. 

 

Recent studies have explored hybrid frameworks that 

combine the complementary strengths of motion-based and 
appearance-based techniques. Optical flow descriptors provide 

interpretable motion cues, while CNN embeddings capture 

higher-level spatial semantics. Ensemble learning has emerged 

as an effective strategy to integrate multiple weak classifiers or 

modalities to improve generalization [9]. For example,[1] a 

comprehensive survey highlighting the advantages of hybrid 

fusion and ensemble techniques for achieving robustness under 

occlusion and perspective distortion. Similarly, modern reviews 

on optical flow [10] emphasize that integrating deep features 

with motion fields can reduce noise sensitivity and enhance 

anomaly localization. In summary, motion-based approaches 
such as optical flow and SFM provide interpretable and efficient 

representations, but they are vulnerable to visual noise and scale 

variations. Deep learning–based models offer powerful 

representation learning, but they are resource-intensive. The 

emerging hybrid ensemble paradigm, as proposed in this work, 

leverages both—combining the speed and structure of motion 

models with the discriminative power of deep neural networks 

—achieving a practical balance among interpretability, 

accuracy, and computational efficiency. 
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Crowd behavior analysis has evolved from classical 

motion estimation methods to sophisticated deep learning 
frameworks that integrate spatial and temporal cues. Traditional 

models relied on handcrafted motion features such as optical 

flow and social force models (SFM), which, while effective for 

simple motion patterns, often failed under occlusion, 

illumination changes, or perspective distortion. Recent advances 

in convolutional and recurrent neural architecture have 

significantly enhanced the understanding of crowd dynamics in 

surveillance videos. In recent years, 3D convolutional neural 

networks (3D CNNs) have emerged as powerful tools for 

modeling spatio-temporal dependencies in dense scenes. For 

example, Analyzing Crowd Behavior in Highly Dense Crowd 
Videos Using 3D ConvNet and Multi-SVM [11] employed a 3D 

ConvNet to extract motion–appearance features from dense 

crowd videos, followed by a Multi-SVM classifier for crowd 

behavior classification. Although the hybrid approach improved 

feature discriminability, the two-stage pipeline limited its 

adaptability for online real-time deployment. 

 

To address temporal dependencies and real-time 

constraints, Deep Learning Based Anomaly Detection in Real-

Time Video [12] integrated an Inflated 3D CNN (I3D-

ResNet50) with Multiple Instance Learning (MIL). This 

framework achieved strong performance on benchmark datasets 
while maintaining near real-time inference. However, the model 

required high computational resources, highlighting the trade-

off between detection accuracy and latency in deep 

architectures.  Another notable contribution, Crowd Scene 

Anomaly Detection in Online Videos [13], combined CNN-

based feature extraction with geometric rectification to 

compensate for perspective distortions in dense and cluttered 

crowd scenes. This hybrid strategy demonstrated improved 

robustness against camera angle variations and occlusions, 

suggesting that a combination of motion and appearance cues is 

vital for accurate crowd analysis. More recently, An Enhanced 
Framework for Real-Time Dense Crowd Abnormal Behavior 

Detection Using YOLOv8 [14]leveraged an object detection 

backbone to identify individuals and groups in crowded scenes, 

enhancing detection performance through Soft-NMS post-

processing. The system achieved real-time performance on 

high-density datasets such as the Hajj Pilgrimage video corpus. 

Although it is primarily an object-detection framework, it 

emphasizes how modern architecture can be adapted to motion-

driven behavioral understanding. Finally, Weakly-Supervised 

Anomaly Detection in Surveillance Videos Based on Two-

Stream I3D Convolution Network [15] proposed a dual-stream 
network that integrates spatial and temporal cues using weak 

supervision. The model reduces reliance on large, annotated 

datasets by employing Multiple Instance Learning and soft-label 

propagation. This approach aligns closely with the goal of 

achieving high recognition accuracy without requiring extensive 

manual labeling. Overall, recent research trends indicate a shift 

toward hybrid deep architectures that combine motion features, 

spatial appearance, and contextual information. While 3D 

CNNs, I3D models, and YOLOv8 demonstrate significant 

improvements in anomaly detection accuracy, they often remain 

constrained by computational cost. These limitations motivate 

the development of ensemble frameworks that integrate 
lightweight motion representations—such as optical flow—with 

deep learned embeddings to achieve both efficiency and 

robustness in real-time crowd behavior analysis. 

 

Recent research has increasingly focused on ensemble 

learning to enhance the robustness and adaptability of crowd 

behavior analysis systems. Ensemble frameworks integrate 

multiple classifiers or feature representations to capture 

complementary aspects of crowd motion and appearance, 

thereby improving generalization under varying environmental 

conditions. An essential contribution in this direction is the 
Ensemble-Based Knowledge Distillation for Video Anomaly 

Detection proposed in [16]. The authors employed multiple 

teacher networks, whose knowledge was transferred to a 

lightweight student model, thereby improving anomaly 

detection accuracy while maintaining computational efficiency. 

Although this ensemble strategy enhances robustness, it relies 

primarily on deep representations and omits explicit motion 

modeling. A similar trend can be observed in the Multi-View 

Crowd Congestion Monitoring System Based on an Ensemble 

of CNN Classifiers [17]. This framework employs an ensemble 

of CNN models trained across multiple camera perspectives to 

address view-dependent and occlusion challenges in dense 
crowds. The system demonstrates strong detection accuracy 

under varying viewpoints; however, it remains limited to visual 

feature fusion and lacks dynamic motion analysis. To bridge the 

gap between handcrafted motion features and learned 

embeddings, [18] introduced Efficient Crowd Anomaly 

Detection Using Sparse Feature Tracking and Neural Networks, 

combining sparse optical flow–based tracking with a neural 

network classifier. This hybrid formulation captures both 

motion and appearance patterns, offering improved 

interpretability. Nevertheless, it does not fully exploit ensemble 

learning to integrate diverse classifiers. Comprehensive surveys 
such as Deep Crowd Anomaly Detection: State of the Art, 

Challenges, and Future Research Directions [19] emphasize that 

most recent frameworks depend heavily on deep CNN-based 

features and that hybrid or ensemble architectures remain 

underexplored. This observation supports the need for 

frameworks that combine optical flow motion cues with deep 

embeddings to achieve a balance between efficiency and 

accuracy. Similarly, the systematic review Recent Trends in 

Crowd Management Using Deep Learning Techniques [20] 

highlights that hybrid approaches—combining motion 

estimation, density modeling, and deep learning—achieve 
superior results over single-model architectures. However, it 

also notes that real-time ensemble frameworks optimized for 

speed and scalability are still lacking in literature. 

 

In summary, while ensemble and hybrid learning strategies 

have shown substantial promise in improving the robustness of 

video-based crowd behavior analysis, most recent methods 

continue to depend primarily on deep features. The proposed 

work addresses this gap by introducing an adaptive ensemble 

framework that fuses optical flow motion cues with deep CNN 
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embeddings, thereby improving both detection accuracy and 

computational efficiency for real-time surveillance. 
 

III. PROPOSED FRAMEWORK 

 

The proposed Hybrid Ensemble Learning Framework aims 

to achieve accurate and real-time crowd behavior analysis by 

effectively combining motion-based and appearance-based 

features. The architecture comprises four primary stages: 

preprocessing, optical flow computation, deep motion feature 

extraction, and ensemble-based classification. The overall 

system architecture is conceptually illustrated in Figure 1.  

 

 
Fig 1 Block Diagram of the Proposed Hybrid Ensemble 

Learning Framework 

 
A. Preprocessing 

Each input video stream is first decomposed into a 

sequence of frames. To ensure consistency and computational 

efficiency, all frames are resized to 224 × 224 pixels and 

normalized to the range [0,1]. Optional background subtraction 

is applied using a Gaussian Mixture Model (GMM) to eliminate 

static regions and isolate moving crowd entities. This step 

reduces noise and improves the reliability of subsequent motion 

estimation by focusing on dynamic objects. Temporal 

smoothing and frame differencing are also used to enhance 

motion continuity. 
 

B.  Optical Flow Computation 

To capture the fine-grained motion dynamics within the 

crowd, dense optical flow is computed between consecutive 

frames using the Farnebäck algorithm. This method provides 

pixel-wise motion vectors (𝑢, 𝑣) representing horizontal and 

vertical displacements. The magnitude and orientation of these 

vectors are encoded into motion energy maps, where intensity 

reflects speed and color encodes direction. These maps preserve 

spatio-temporal motion structure while being compact 
representations suitable for integration with deep features. 

Mathematically, the motion magnitude 𝑀(𝑥, 𝑦) =

√𝑢(𝑥, 𝑦)2 + 𝑣(𝑥, 𝑦)2is used to form the optical flow magnitude 

channel for each frame pair. 

 

C. Deep Motion Feature Extraction 

In parallel, high-level spatio-temporal features are 
extracted using a lightweight Convolutional Neural Network 

(CNN) architecture, specifically MobileNetV2, due to its 

balance between accuracy and computational efficiency. The 

CNN processes short frame sequences (5–10 frames) to learn 

temporal dependencies and motion texture patterns. The 

penultimate layer produces a 256-dimensional feature 

embedding that captures both crowd density and individual 

motion cues. These deep features complement the handcrafted 

optical flow representations, allowing the model to integrate 

both local motion vectors and global scene dynamics. 

 
D. Ensemble Learning Module 

The extracted optical flow features and CNN-based deep 

embeddings are concatenated into a unified feature vector. This 

combined representation is passed to an ensemble of classifiers, 

each contributing unique decision characteristics: 

 Random Forest (RF): exploits feature-level randomness to 

provide robust classification against noise and outliers. 

 Gradient Boosting Machine (GBM): captures complex 

nonlinear decision boundaries and improves precision 

through iterative residual correction. 

 Lightweight CNN Classifier: performs fine-grained 
classification based on spatial patterns, aiding in scene-level 

understanding. 

 

A weighted majority voting mechanism integrates the 

predictions of these classifiers. The weights are adaptively 

assigned based on individual validation performance, allowing 

the ensemble to emphasize more reliable learners under different 

scene conditions dynamically. This adaptive weighting 

enhances both robustness and generalization, primarily when the 

system operates under real-world lighting and density 

variations. 

 

IV. METHODOLOGY 

 

To formally describe the proposed Hybrid Ensemble 

Learning Framework, let the input surveillance video sequence 

be denoted by 

𝒱 = {𝐹𝑡}𝑡=1
𝑇 , 

 

where 𝐹𝑡 represents the video frame at time 𝑡, and 𝑇denotes 

the total number of frames in the sequence. 

 

A. Optical Flow Estimation 

The motion information between consecutive frames 𝐹𝑡and 

𝐹𝑡+1is estimated using dense optical flow, which computes the 

apparent motion of pixels in the image plane. 

For each pixel (𝑥, 𝑦), the optical flow constraint equation is 
defined as: 

 

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0, 
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where: 

 𝐼𝑥and 𝐼𝑦 are the partial derivatives of the image intensity 

𝐼(𝑥, 𝑦, 𝑡) with respect to the spatial coordinates 𝑥and 𝑦, 

 𝐼𝑡 is the partial derivative with respect to time 𝑡, 
 𝑢and 𝑣denote the horizontal and vertical components of the 

motion vector, respectively. 

 
Using the Farnebäck dense optical flow algorithm, a 

smooth polynomial expansion is fitted to local neighborhoods to 

estimate (𝑢, 𝑣)across the image. The computed optical flow 

field captures the displacement of each pixel between frames 

𝐹𝑡and 𝐹𝑡+1. 

 

The motion magnitude and direction are then calculated as: 

 

𝑀(𝑥, 𝑦) = √𝑢(𝑥, 𝑦)2 + 𝑣(𝑥, 𝑦)2, 𝜃(𝑥, 𝑦) = tan⁡−1(
𝑣(𝑥, 𝑦)

𝑢(𝑥, 𝑦)
). 

 

From these values, histograms of motion magnitudes and 

orientations are generated over local regions to form a compact 

motion descriptor, denoted by: 
 

𝑀flow = Hist(𝑀, 𝜃), 
 

which encodes the dominant motion patterns within the 

scene. 

 

B. Deep Motion Feature Extraction 

In parallel, deep spatio-temporal representations are 

extracted using a pretrained MobileNetV2 model, which is fine-

tuned on short frame clips of length 𝑛. Each video segment is 

represented as a tensor 𝒳 ∈ ℝ𝑛×𝐻×𝑊×3, where 𝐻and 𝑊are the 

height and width of the frames. 
 

The CNN processes these temporal segments to capture 

high-level semantic and motion features. The output of the 

penultimate layer provides a 256-dimensional deep motion 

feature vector, represented as: 

 

𝑀cnn = 𝑓cnn(𝒳), 
 

where 𝑓cnn(⋅)denotes the nonlinear transformation learned by the 

CNN. 
 

C. Feature Fusion 

To combine motion dynamics and appearance information, 

the handcrafted optical flow features and CNN embeddings are 

concatenated into a single fusion feature vector: 

 

𝑀fusion = [𝑀flow ∥ 𝑀cnn], 
 

where “∥” denotes vector concatenation. 

This fusion representation captures both low-level motion cues 
and high-level semantic attributes, improving the model’s 

discriminative capacity for abnormal event detection in crowded 

scenes. 

D. Ensemble Learning and Decision Fusion 

The fused feature vector 𝑀fusionis input to an ensemble of 

𝑘 classifiers, each producing a posterior probability distribution 

over the possible crowd behavior classes 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑚}. 
 

Let 𝑃𝑖( 𝑐 ∣∣ 𝑀fusion ) denote the posterior probability 

estimated by the classifier 𝑖, and 𝑤𝑖 represent the corresponding 

weight assigned to that classifier. 

 

The final ensemble decision is computed using a weighted 
majority voting rule: 

 

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝐶 ∑𝑤𝑖𝑃𝑖(𝑐 ∣ 𝑀fusion)⁡)

𝑘

𝑖=1

, 

 

where 𝑦denotes the predicted class label (e.g., normal or 

abnormal behavior). 

 

The classifier weights 𝑤𝑖 are optimized based on 

individual validation accuracy, using cross-entropy 

minimization on a held-out validation subset: 

 

min⁡
𝑤𝑖

  ℒ = −∑𝑦𝑐𝑙𝑜𝑔
𝑐∈𝐶

⁡(∑𝑤𝑖𝑃𝑖(𝑐 ∣ 𝑀fusion)⁡)

𝑘

𝑖=1

, 

 
 

subject to the normalization constraint ∑ 𝑤𝑖 = 1𝑘
𝑖=1 . 

 

This adaptive weighting ensures that classifiers with higher 
validation performance contribute more to the final decision, 

thereby enhancing robustness and generalization across diverse 

crowd scenarios. 

 

V. DATASET 

 

To evaluate the performance and generalization capability 

of the proposed Hybrid Ensemble Learning Framework for 

Crowd Behavior Analysis, we conducted experiments on three 

widely used benchmark datasets: 

 

A. UCSD Pedestrian Dataset (Ped1 and Ped2): 
The UCSD dataset consists of surveillance videos captured 

from a static camera overlooking pedestrian walkways. The 

scenes primarily depict normal pedestrian movement, while 

anomalies include bicycles, vehicles, or people walking in 

restricted areas. Ped1: Features smaller scenes with perspective 

distortion and crowded conditions. Ped2: Contains clearer 

pedestrian movements with less occlusion but more dynamic 

anomalies. Each video sequence was resized to 224×224 pixels 

and processed at 30 fps. Ground-truth anomaly annotations from 

the dataset were used for evaluation. 
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B. Violent Flows (VF) Dataset: 

The VF dataset includes videos depicting violent and 
nonviolent crowd behavior in public settings, such as protests, 

fights, and panic situations. The dataset contains 246 video clips, 

each lasting approximately 2–5 seconds. It provides a suitable 

testbed for assessing the model’s ability to recognize aggressive 

and chaotic motion patterns in real-world environments. 

 

C. UMN Dataset: 

The UMN dataset consists of three different scenes 

showing groups of people walking normally before suddenly 

dispersing due to simulated panic or abnormal events. Each 

sequence lasts between 145 and 200 frames. This dataset is 
useful for testing the framework’s capability to detect transitions 

from normal to abnormal crowd motion. 

All datasets were split into 70% for training and 30% for 

testing. Data augmentation techniques, such as horizontal 
flipping, random cropping, and brightness adjustment, were 

applied to improve robustness to environmental variations. 

 

VI. RESULTS AND DISCUSSION 

 

The proposed Hybrid Ensemble Learning Framework 

(Optical Flow + CNN + Ensemble) was evaluated against three 

baseline models on the UCSD, Violent Flows, and UMN 

datasets. Table 1 summarizes comparative performance across 

accuracy, precision, recall, and F1-score. 

 

 

Table 1 Performance Comparison on Benchmark Datasets 

Model Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Random Forest (Handcrafted) UCSD Ped2 84.6 83.2 82.9 83.0 

CNN + SVM (Hybrid Baseline) UCSD Ped2 88.4 87.6 86.8 87.2 

3D CNN UCSD Ped2 90.1 89.5 88.7 89.0 

Proposed Hybrid Ensemble UCSD Ped2 94.7 94.1 93.4 93.7 

Random Forest VF 81.5 80.2 78.9 79.5 

CNN + SVM VF 86.8 86.2 85.5 85.8 

3D CNN VF 89.6 88.7 87.9 88.3 

Proposed Hybrid Ensemble VF 93.2 92.6 91.8 92.1 

Random Forest UMN 85.1 84.5 83.8 84.0 

CNN + SVM UMN 89.8 88.9 87.7 88.3 

3D CNN UMN 91.3 90.2 89.5 89.8 

Proposed Hybrid Ensemble UMN 95.5 94.9 94.1 94.5 

 

The computational efficiency of the proposed framework was assessed in terms of Frames Per Second (FPS) on an NVIDIA RTX 

3060 GPU with an Intel Core i7 CPU. Results are presented in Table 2. 

 

Table 2. Real-Time Performance (FPS) 

Model FPS Remarks 

3D CNN 22 Heavy temporal convolution; high computational cost 

CNN + SVM 31 Moderately efficient; lacks motion-level detail 

Random Forest 45 Fast but less accurate due to handcrafted features 

Proposed Hybrid Ensemble 38 Balanced accuracy and speed through feature fusion 

 

Although the proposed system runs slightly slower than 

the purely handcrafted Random Forest baseline, it achieves 

significantly higher accuracy while maintaining near real-time 

performance (≈38 FPS), sufficient for practical video 

surveillance applications. 
 

The experimental results demonstrate that integrating 

optical flow motion cues with deep CNN representations via an 

adaptive ensemble yields a robust, generalizable system for 

crowd behavior analysis. Compared with single-stream deep 

learning approaches (e.g., 3D CNN), the ensemble achieves 

improved accuracy (+4–5%) and better generalization across 

varying crowd densities and camera viewpoints. Furthermore, 

adaptive classifier weighting based on validation performance 
enables dynamic adjustment to scene complexity. This 

property makes the proposed model scalable and suitable for 

real-world surveillance scenarios that demand both accuracy 

and efficiency. 
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VII. CONCLUSION AND FUTURE WORK 

 

This paper presents a hybrid ensemble learning 

framework for real-time analysis of crowd behavior that 

integrates optical flow and deep motion features. The 

combination of traditional motion estimation and CNN-based 

representation significantly improves robustness and speed, 

making it suitable for large-scale surveillance systems. 
 

Future work will explore Transformer-based motion 

encoding, federated ensemble learning for privacy-preserving 

surveillance, and self-supervised training to reduce labeling 

cost. 
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