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Abstract— Crowd Behavior analysis has become a crucial component of modern video surveillance systems, enabling automatic
detection of abnormal events such as panic, congestion, and violence. Traditional approaches often fail to generalize under
complex environmental conditions, while deep learning methods alone require large datasets and extensive computation. This
paper proposes a hybrid ensemble learning framework that integrates optical flow—based motion features with deep motion
representations extracted from convolutional neural networks (CNNs) to achieve real-time and robust crowd behavior
recognition. The ensemble model combines Random Forests (RFs), Gradient Boosting (GB), and a lightweight CNN classifier
via weighted voting. Experiments conducted on benchmark datasets, such as the UCSD Anomaly Detection Dataset and Violent
Flows (VF), demonstrate that the proposed framework outperforms individual classifiers and state-of-the-art deep models in
terms of accuracy, F1-score, and processing speed. The results confirm that ensemble learning effectively bridges the gap
between handcrafted motion cues and deep spatio-temporal representations for practical surveillance applications.
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I INTRODUCTION perspective distortions, and changes in illumination in
surveillance footage. Traditional computer vision methods rely

In recent years, the growing demand for intelligent
surveillance systems has led to significant advances in crowd
behavior analysis. Automated understanding of crowd dynamics
helps in early detection of abnormal events such as panic,
stampedes, and violence, thereby improving public safety and
emergency response. However, analyzing crowd motion
remains challenging due to occlusions, density variations,
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on handcrafted motion features such as optical flow, histograms
of oriented gradients (HOG), or trajectory clustering, which
often fail to capture the complex spatio-temporal dependencies
of crowd motion. In contrast, deep learning approaches,
especially 3D convolutional neural networks and recurrent
models, have shown promise but require massive, labeled
datasets and high computational resources. To overcome these
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limitations, this paper introduces a hybrid ensemble framework
that fuses optical flow—based motion features with deep motion
embeddings learned from CNNs. The ensemble model
integrates multiple weak and strong classifiers to improve
generalization and reduce overfitting. By combining traditional
motion estimation with data-driven feature learning, the
proposed approach achieves high recognition accuracy while
maintaining real-time performance. Violence detection,
shopping behavior analysis, and medical and educational
applications, as well as behavior analysis (with several types
such as Person, Group, and Crowd), are concentrated on natural
events, including fall detection, lava flow, and fire detection.
Social-related applications include sports analysis, music
recognition, and smart home applications. Finally, Object-
Tracking and Detection applications will consist of traffic
analysis, road safety, tracking, anomaly detection, and vehicle
identification. This taxonomy provides a broad view of the
domains in which video analytics can be effectively utilized and
demonstrates the potential to address a wide range of challenges
and opportunities.

The main contributions of this paper are:

e A novel hybrid ensembles learning framework combining
optical flow motion descriptors and deep CNN-based
features.

e A multi-stage motion analysis pipeline capable of handling
dense crowd scenes in real-time.

e An extensive experimental evaluation demonstrating
superior accuracy and speed over baseline models.

The rest of the paper is structured as follows: Section 1l
discusses related work. Section Il presents the proposed
framework. Section 1V describes the methodology. Section V
presents the Dataset. Section VI represents the discussion and
results. Section VII concludes the paper, highlighting future
research directions.

1. RELATED WORK

Crowd behavior analysis has been extensively studied
across three major categories: motion-based, appearance-based,
and hybrid methods [1], [2]. Each category captures distinct
aspects of crowd dynamics and presents unique advantages and
limitations. Motion-based approaches analyze crowd movement
patterns by exploiting temporal variations in optical flow or
particle dynamics.

One of the earliest and most influential works in this
category introduced a Lagrangian particle dynamics framework
for crowd flow segmentation and stability analysis [3]. Their
method treated the optical-flow field as a motion vector field
through which virtual particles were advected, enabling the
automatic detection of coherent motion segments and
bottlenecks. Although this approach effectively revealed motion
coherence in dense scenes, it was sensitive to noise, occlusion,
and perspective distortion, particularly in unconstrained outdoor
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environments. Building upon this concept, an integrated Social
Force Model (SFM) with optical flow to quantify interaction
forces among individuals in a crowd [4]. Their model estimated
the "repulsive” and "attractive™ forces between motion particles,
enabling the detection of abnormal behaviors such as panic and
congestion. This fusion of physical and visual modeling marked
a milestone in physics-informed computer vision for crowd
analysis. However, the handcrafted feature representations and
reliance on accurate flow estimation limited robustness to
varying lighting and camera angles. The Social Force Model
(SFM) itself was initially proposed in the field of pedestrian
dynamics [5]. It is driven by internal motivations (the desired
direction) and by social interactions (repulsion from others or
obstacles). While physically interpretable, SFM-based crowd
behavior models are computationally intensive and tricky to
generalize with large-scale, real-world video data.

Appearance-based methods employ visual and spatio-
temporal features extracted from raw video frames. Early
examples used Histograms of Oriented Gradients (HOG) and
Local Binary Patterns (LBP) for motion-region description.
With the rise of deep learning, Convolutional Neural Networks
(CNNs) and 3D CNNs have become dominant due to their
ability to learn discriminative representations directly from data
[6]. In [7], an introduced spatio-temporal residual network was
used to detect violent crowd behavior, achieving high accuracy
on the Violent Flows dataset. Similarly, [8] it used object-centric
autoencoders for unsupervised anomaly detection, learning
latent representations of normal motion patterns without labeled
anomalies. While these deep approaches outperform classical
models in accuracy, they require large-scale labeled datasets and
high computational resources and often lack interpretability in
real-time surveillance applications.

Recent studies have explored hybrid frameworks that
combine the complementary strengths of motion-based and
appearance-based techniques. Optical flow descriptors provide
interpretable motion cues, while CNN embeddings capture
higher-level spatial semantics. Ensemble learning has emerged
as an effective strategy to integrate multiple weak classifiers or
modalities to improve generalization [9]. For example,[1] a
comprehensive survey highlighting the advantages of hybrid
fusion and ensemble techniques for achieving robustness under
occlusion and perspective distortion. Similarly, modern reviews
on optical flow [10] emphasize that integrating deep features
with motion fields can reduce noise sensitivity and enhance
anomaly localization. In summary, motion-based approaches
such as optical flow and SFM provide interpretable and efficient
representations, but they are vulnerable to visual noise and scale
variations. Deep learning—based models offer powerful
representation learning, but they are resource-intensive. The
emerging hybrid ensemble paradigm, as proposed in this work,
leverages both—combining the speed and structure of motion
models with the discriminative power of deep neural networks
—achieving a practical balance among interpretability,
accuracy, and computational efficiency.
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Crowd behavior analysis has evolved from classical
motion estimation methods to sophisticated deep learning
frameworks that integrate spatial and temporal cues. Traditional
models relied on handcrafted motion features such as optical
flow and social force models (SFM), which, while effective for
simple motion patterns, often failed under occlusion,
illumination changes, or perspective distortion. Recent advances
in convolutional and recurrent neural architecture have
significantly enhanced the understanding of crowd dynamics in
surveillance videos. In recent years, 3D convolutional neural
networks (3D CNNs) have emerged as powerful tools for
modeling spatio-temporal dependencies in dense scenes. For
example, Analyzing Crowd Behavior in Highly Dense Crowd
Videos Using 3D ConvNet and Multi-SVM [11] employed a 3D
ConvNet to extract motion—appearance features from dense
crowd videos, followed by a Multi-SVM classifier for crowd
behavior classification. Although the hybrid approach improved
feature discriminability, the two-stage pipeline limited its
adaptability for online real-time deployment.

To address temporal dependencies and real-time
constraints, Deep Learning Based Anomaly Detection in Real-
Time Video [12] integrated an Inflated 3D CNN (I13D-
ResNet50) with Multiple Instance Learning (MIL). This
framework achieved strong performance on benchmark datasets
while maintaining near real-time inference. However, the model
required high computational resources, highlighting the trade-
off between detection accuracy and latency in deep
architectures.  Another notable contribution, Crowd Scene
Anomaly Detection in Online Videos [13], combined CNN-
based feature extraction with geometric rectification to
compensate for perspective distortions in dense and cluttered
crowd scenes. This hybrid strategy demonstrated improved
robustness against camera angle variations and occlusions,
suggesting that a combination of motion and appearance cues is
vital for accurate crowd analysis. More recently, An Enhanced
Framework for Real-Time Dense Crowd Abnormal Behavior
Detection Using YOLOV8 [14]leveraged an object detection
backbone to identify individuals and groups in crowded scenes,
enhancing detection performance through Soft-NMS post-
processing. The system achieved real-time performance on
high-density datasets such as the Hajj Pilgrimage video corpus.
Although it is primarily an object-detection framework, it
emphasizes how modern architecture can be adapted to motion-
driven behavioral understanding. Finally, Weakly-Supervised
Anomaly Detection in Surveillance Videos Based on Two-
Stream 13D Convolution Network [15] proposed a dual-stream
network that integrates spatial and temporal cues using weak
supervision. The model reduces reliance on large, annotated
datasets by employing Multiple Instance Learning and soft-label
propagation. This approach aligns closely with the goal of
achieving high recognition accuracy without requiring extensive
manual labeling. Overall, recent research trends indicate a shift
toward hybrid deep architectures that combine motion features,
spatial appearance, and contextual information. While 3D
CNNs, 13D models, and YOLOv8 demonstrate significant
improvements in anomaly detection accuracy, they often remain
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constrained by computational cost. These limitations motivate
the development of ensemble frameworks that integrate
lightweight motion representations—such as optical flow—with
deep learned embeddings to achieve both efficiency and
robustness in real-time crowd behavior analysis.

Recent research has increasingly focused on ensemble
learning to enhance the robustness and adaptability of crowd
behavior analysis systems. Ensemble frameworks integrate
multiple classifiers or feature representations to capture
complementary aspects of crowd motion and appearance,
thereby improving generalization under varying environmental
conditions. An essential contribution in this direction is the
Ensemble-Based Knowledge Distillation for Video Anomaly
Detection proposed in [16]. The authors employed multiple
teacher networks, whose knowledge was transferred to a
lightweight student model, thereby improving anomaly
detection accuracy while maintaining computational efficiency.
Although this ensemble strategy enhances robustness, it relies
primarily on deep representations and omits explicit motion
modeling. A similar trend can be observed in the Multi-View
Crowd Congestion Monitoring System Based on an Ensemble
of CNN Classifiers [17]. This framework employs an ensemble
of CNN models trained across multiple camera perspectives to
address view-dependent and occlusion challenges in dense
crowds. The system demonstrates strong detection accuracy
under varying viewpoints; however, it remains limited to visual
feature fusion and lacks dynamic motion analysis. To bridge the
gap between handcrafted motion features and learned
embeddings, [18] introduced Efficient Crowd Anomaly
Detection Using Sparse Feature Tracking and Neural Networks,
combining sparse optical flow-based tracking with a neural
network classifier. This hybrid formulation captures both
motion and appearance patterns, offering improved
interpretability. Nevertheless, it does not fully exploit ensemble
learning to integrate diverse classifiers. Comprehensive surveys
such as Deep Crowd Anomaly Detection: State of the Art,
Challenges, and Future Research Directions [19] emphasize that
most recent frameworks depend heavily on deep CNN-based
features and that hybrid or ensemble architectures remain
underexplored. This observation supports the need for
frameworks that combine optical flow motion cues with deep
embeddings to achieve a balance between efficiency and
accuracy. Similarly, the systematic review Recent Trends in
Crowd Management Using Deep Learning Techniques [20]
highlights that hybrid approaches—combining motion
estimation, density modeling, and deep learning—achieve
superior results over single-model architectures. However, it
also notes that real-time ensemble frameworks optimized for
speed and scalability are still lacking in literature.

In summary, while ensemble and hybrid learning strategies
have shown substantial promise in improving the robustness of
video-based crowd behavior analysis, most recent methods
continue to depend primarily on deep features. The proposed
work addresses this gap by introducing an adaptive ensemble
framework that fuses optical flow motion cues with deep CNN
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embeddings, thereby improving both detection accuracy and
computational efficiency for real-time surveillance.

I11.  PROPOSED FRAMEWORK

The proposed Hybrid Ensemble Learning Framework aims
to achieve accurate and real-time crowd behavior analysis by
effectively combining motion-based and appearance-based
features. The architecture comprises four primary stages:
preprocessing, optical flow computation, deep motion feature
extraction, and ensemble-based classification. The overall
system architecture is conceptually illustrated in Figure 1.

Hybrid Ensemble Learning
Framework

Optical Flow
Computation Deep Motion

Feature
Extraction Ensemble
Learning
@ Module

Prediction

Input Video

Reromcessi

Fig 1 Block Diagram of the Proposed Hybrid Ensemble
Learning Framework

A. Preprocessing

Each input video stream is first decomposed into a
sequence of frames. To ensure consistency and computational
efficiency, all frames are resized to 224 x 224 pixels and
normalized to the range [0,1]. Optional background subtraction
is applied using a Gaussian Mixture Model (GMM) to eliminate
static regions and isolate moving crowd entities. This step
reduces noise and improves the reliability of subsequent motion
estimation by focusing on dynamic objects. Temporal
smoothing and frame differencing are also used to enhance
motion continuity.

B. Optical Flow Computation

To capture the fine-grained motion dynamics within the
crowd, dense optical flow is computed between consecutive
frames using the Farnebdck algorithm. This method provides
pixel-wise motion vectors (u,v) representing horizontal and
vertical displacements. The magnitude and orientation of these
vectors are encoded into motion energy maps, where intensity
reflects speed and color encodes direction. These maps preserve
spatio-temporal motion structure while being compact
representations suitable for integration with deep features.
Mathematically, the motion  magnitude M(x,y) =

Ju(x,y)? + v(x,y)2is used to form the optical flow magnitude
channel for each frame pair.
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C. Deep Motion Feature Extraction

In parallel, high-level spatio-temporal features are
extracted using a lightweight Convolutional Neural Network
(CNN) architecture, specifically MobileNetV2, due to its
balance between accuracy and computational efficiency. The
CNN processes short frame sequences (5-10 frames) to learn
temporal dependencies and motion texture patterns. The
penultimate layer produces a 256-dimensional feature
embedding that captures both crowd density and individual
motion cues. These deep features complement the handcrafted
optical flow representations, allowing the model to integrate
both local motion vectors and global scene dynamics.

D. Ensemble Learning Module

The extracted optical flow features and CNN-based deep
embeddings are concatenated into a unified feature vector. This
combined representation is passed to an ensemble of classifiers,
each contributing unique decision characteristics:

e Random Forest (RF): exploits feature-level randomness to
provide robust classification against noise and outliers.

e Gradient Boosting Machine (GBM): captures complex
nonlinear decision boundaries and improves precision
through iterative residual correction.

e Lightweight CNN Classifier: performs fine-grained
classification based on spatial patterns, aiding in scene-level
understanding.

A weighted majority voting mechanism integrates the
predictions of these classifiers. The weights are adaptively
assigned based on individual validation performance, allowing
the ensemble to emphasize more reliable learners under different
scene conditions dynamically. This adaptive weighting
enhances both robustness and generalization, primarily when the
system operates under real-world lighting and density
variations.

IV. METHODOLOGY

To formally describe the proposed Hybrid Ensemble
Learning Framework, let the input surveillance video sequence
be denoted by

V= {Ft}?=1l

where F, represents the video frame at time ¢, and T denotes
the total number of frames in the sequence.

A. Optical Flow Estimation

The motion information between consecutive frames F.and
F,,is estimated using dense optical flow, which computes the
apparent motion of pixels in the image plane.
For each pixel (x,y), the optical flow constraint equation is
defined as:

Lu+Lv+1, =0,
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where:

e Land I, are the partial derivatives of the image intensity
I(x,y,t) with respect to the spatial coordinates xand y,

e [, isthe partial derivative with respect to time t,

¢ yand vdenote the horizontal and vertical components of the
motion vector, respectively.

Using the Farnebédck dense optical flow algorithm, a
smooth polynomial expansion is fitted to local neighborhoods to
estimate (u,v)across the image. The computed optical flow
field captures the displacement of each pixel between frames
F.and F, 4.

The motion magnitude and direction are then calculated as:

v(x,y)

M(x,y) = Julx,y)? + v(x,y)2,0(x,y) = tan-l(u(x >

From these values, histograms of motion magnitudes and
orientations are generated over local regions to form a compact
motion descriptor, denoted by:

My, = Hist(M, 6),

which encodes the dominant motion patterns within the
scene.

B. Deep Motion Feature Extraction

In parallel, deep spatio-temporal representations are
extracted using a pretrained MobileNetVV2 model, which is fine-
tuned on short frame clips of length n. Each video segment is
represented as a tensor X € R™HXWx3 ‘where Hand Ware the
height and width of the frames.

The CNN processes these temporal segments to capture
high-level semantic and motion features. The output of the
penultimate layer provides a 256-dimensional deep motion
feature vector, represented as:

Mcnn = fcnn (X),

where £, (-)denotes the nonlinear transformation learned by the
CNN.

C. Feature Fusion

To combine motion dynamics and appearance information,
the handcrafted optical flow features and CNN embeddings are
concatenated into a single fusion feature vector:

MquiOn = [Mﬂow I Mcnn]'
where “I” denotes vector concatenation.
This fusion representation captures both low-level motion cues
and high-level semantic attributes, improving the model’s
discriminative capacity for abnormal event detection in crowded
scenes.
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D. Ensemble Learning and Decision Fusion

The fused feature vector My,,,iS input to an ensemble of
k classifiers, each producing a posterior probability distribution
over the possible crowd behavior classes C = {c;, ¢, ..., cn }-

Let P;(c| Mgg,,) denote the posterior probability
estimated by the classifier i, and w; represent the corresponding
weight assigned to that classifier.

The final ensemble decision is computed using a weighted
majority voting rule:

k
y= argmaxceczwipi(c | Miygion) ),

i=1

where ydenotes the predicted class label (e.g., normal or
abnormal behavior).

The classifier weights w; are optimized based on
individual  validation  accuracy, using  cross-entropy
minimization on a held-out validation subset:

k

min £= =" ylog () wiPi(c | Miyi))

wi
cec i=1

subject to the normalization constraint X, w; = 1.

This adaptive weighting ensures that classifiers with higher
validation performance contribute more to the final decision,
thereby enhancing robustness and generalization across diverse
crowd scenarios.

V. DATASET

To evaluate the performance and generalization capability
of the proposed Hybrid Ensemble Learning Framework for
Crowd Behavior Analysis, we conducted experiments on three
widely used benchmark datasets:

A. UCSD Pedestrian Dataset (Ped1 and Ped?2):

The UCSD dataset consists of surveillance videos captured
from a static camera overlooking pedestrian walkways. The
scenes primarily depict normal pedestrian movement, while
anomalies include bicycles, vehicles, or people walking in
restricted areas. Pedl: Features smaller scenes with perspective
distortion and crowded conditions. Ped2: Contains clearer
pedestrian movements with less occlusion but more dynamic
anomalies. Each video sequence was resized to 224x224 pixels
and processed at 30 fps. Ground-truth anomaly annotations from
the dataset were used for evaluation.
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B. Violent Flows (VF) Dataset:

The VF dataset includes videos depicting violent and
nonviolent crowd behavior in public settings, such as protests,
fights, and panic situations. The dataset contains 246 video clips,
each lasting approximately 2-5 seconds. It provides a suitable
testbed for assessing the model’s ability to recognize aggressive
and chaotic motion patterns in real-world environments.

C. UMN Dataset:

The UMN dataset consists of three different scenes
showing groups of people walking normally before suddenly
dispersing due to simulated panic or abnormal events. Each
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All datasets were split into 70% for training and 30% for
testing. Data augmentation techniques, such as horizontal
flipping, random cropping, and brightness adjustment, were
applied to improve robustness to environmental variations.

VI. RESULTS AND DISCUSSION

The proposed Hybrid Ensemble Learning Framework
(Optical Flow + CNN + Ensemble) was evaluated against three
baseline models on the UCSD, Violent Flows, and UMN
datasets. Table 1 summarizes comparative performance across
accuracy, precision, recall, and F1-score.

sequence lasts between 145 and 200 frames. This dataset is
useful for testing the framework’s capability to detect transitions
from normal to abnormal crowd maotion.

Table 1 Performance Comparison on Benchmark Datasets

| Model || Dataset || Accuracy (%) || Precision (%) || Recall (%) || F1-Score (%) |
| Random Forest (Handcrafted) || UCSD Ped2 || 84.6 | 83.2 | 829 | 83.0 |
| CNN +SVM (Hybrid Baseline) || UCSD Ped2 || 88.4 I 87.6 | 8.8 | 87.2 |
| 3D CNN | ucsDPed2 || 90.1 | 89.5 | 887 | 89.0 |
| Proposed Hybrid Ensemble || UCSD Ped?2 || 94.7 || 94.1 || 93.4 || 93.7 |
| Random Forest | VF | 815 | 80.2 | 789 | 79.5 |
| CNN + SVM I VF I 86.8 I 86.2 | 85 | 85.8 |
| 3D CNN | VF | 89.6 I 88.7 | 879 | 88.3 |
| Proposed Hybrid Ensemble || VF || 93.2 || 92.6 || 91.8 || 92.1 |
| Random Forest | uvmn | 85.1 I 84.5 | 838 | 84.0 |
| CNN + SVM | umn | 89.8 I 88.9 | 877 | 88.3 |
| 3D CNN | umn | 91.3 I 90.2 | 85 | 89.8 |
| Proposed Hybrid Ensemble || UMN || 95.5 H 94.9 || 94.1 || 94.5 |

The computational efficiency of the proposed framework was assessed in terms of Frames Per Second (FPS) on an NVIDIA RTX
3060 GPU with an Intel Core i7 CPU. Results are presented in Table 2.

Table 2. Real-Time Performance (FPS)

| Model I Remarks |
| 3D CNN I 22 | Heavy temporal convolution; high computational cost |
| CNN + SVM | 31 | Moderately efficient; lacks motion-level detail |
| Random Forest I 45 | Fast but less accurate due to handcrafted features |
| Proposed Hybrid Ensemble || 38 || Balanced accuracy and speed through feature fusion |

Although the proposed system runs slightly slower than
the purely handcrafted Random Forest baseline, it achieves
significantly higher accuracy while maintaining near real-time
performance (=38 FPS), sufficient for practical video
surveillance applications.

The experimental results demonstrate that integrating

optical flow motion cues with deep CNN representations via an
adaptive ensemble yields a robust, generalizable system for
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crowd behavior analysis. Compared with single-stream deep
learning approaches (e.g., 3D CNN), the ensemble achieves
improved accuracy (+4-5%) and better generalization across
varying crowd densities and camera viewpoints. Furthermore,
adaptive classifier weighting based on validation performance
enables dynamic adjustment to scene complexity. This
property makes the proposed model scalable and suitable for
real-world surveillance scenarios that demand both accuracy
and efficiency.
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VII. CONCLUSION AND FUTURE WORK

This paper presents a hybrid ensemble learning
framework for real-time analysis of crowd behavior that
integrates optical flow and deep motion features. The
combination of traditional motion estimation and CNN-based
representation significantly improves robustness and speed,
making it suitable for large-scale surveillance systems.

Future work will explore Transformer-based motion
encoding, federated ensemble learning for privacy-preserving
surveillance, and self-supervised training to reduce labeling
cost.
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