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Abstract: The transition to sustainable construction, utilizing low-carbon materials such as geopolymer concrete (GPC) 

reinforced with non-corrosive fiber-reinforced polymer (FRP) bars, necessitates advanced, quantitative structural health 

monitoring (SHM). Current automated crack inspection often relies on traditional machine learning (ML) classification 

models (e.g., SVM), which, while achieving high accuracy in categorizing failure modes, inherently fail to provide the 

quantitative parameters (crack width, length, and area) essential for engineering assessment and maintenance prioritization. 

To address this critical utility gap, this study proposes an enhanced Deep Learning Semantic Segmentation framework: an 

Attention-based U-Net architecture. This model is specifically designed with a residual encoder and optimized with a hybrid 

Dice and Focal loss function to counteract extreme class imbalance and enhance the detection of fine, hairline microcracks 

characteristic of fiber-bridged GPC systems. The framework achieves high segmentation fidelity, evidenced by a mean 

Intersection over Union (mIoU) score ranging from 85%–95% on complex GPC/FRP crack patterns. This pixel-level 

accuracy enables the robust post-processing extraction of maximum crack width (Wmax) and total crack length (Ltotal). 

This methodological shift from qualitative classification to verifiable quantitative segmentation provides the necessary 

empirical foundation to track damage evolution, assess serviceability limits, and inform predictive maintenance schedules 

for novel GPC/FRP composites where standard structural codes are currently lacking. 
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I. INTRODUCTION 

 

The integrity and safety of concrete structures are of 

paramount importance in the construction industry, given the 
vital role these structures play in modern infrastructure. One 

of the major challenges that threaten the longevity and load-

bearing capacity of concrete structures is the formation and 

propagation of cracks, which, if left undetected, can 

compromise structural safety and serviceability. Traditional 

methods of inspecting and identifying cracks, such as manual 

visual inspection, are fraught with challenges, including 

human error, subjectivity, time consumption, and the 

necessity for specialized expertise (Aravind et al., 2021). To 

overcome these limitations, the integration of computer vision 

and machine learning techniques has emerged as a promising 
solution for the automated detection and classification of 

cracks in concrete. 

 

Geopolymer concrete, an innovative and sustainable 

alternative to ordinary Portland cement (OPC) concrete, has 

garnered significant attention in recent years due to its eco-

friendly properties and superior mechanical performance. 

Unlike OPC concrete, geopolymer concrete utilizes 

aluminosilicate source materials activated by alkaline 

solutions, resulting in lower CO2 emissions and enhanced 

durability (Aravind et al., 2021). Despite these advantages, 

geopolymer concrete is not immune to cracking, especially 

when subjected to aggressive environmental conditions and 

mechanical loads. Therefore, the timely detection and 

accurate prediction of crack patterns in geopolymer concrete 

are essential for assessing structural health, guiding 
maintenance, and preventing catastrophic failures. 

 

Recent advancements in image processing, coupled with 

powerful machine learning algorithms, have enabled the 

development of automated systems capable of detecting, 

segmenting, and classifying cracks in concrete structures with 

high accuracy. These systems utilize experimental data, such 

as images captured during mechanical testing, and process 

them using sophisticated algorithms to recognize crack 

patterns and predict failure modes. Notably, support vector 

machines (SVM) and other machine learning classifiers have 
demonstrated remarkable performance in classifying failure 

patterns, achieving high precision and recall scores (Aravind 

et al., 2021). 

 

This research paper presents a comprehensive study on the 

development of a geopolymer concrete crack prediction 

system using machine learning techniques. The study 

encompasses a review of relevant literature, a detailed 

description of the materials and experimental methods 

employed, an analysis of crack patterns observed in 

geopolymer concrete beams reinforced with various fiber-

reinforced polymer (FRP) and steel bars, and a discussion of 
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the results obtained from machine learning-based 

classification of crack modes. The findings underscore the 

potential of automated crack detection systems to 

revolutionize quality assurance and structural health 

monitoring in the construction industry. 

 

II. RELATED WORK 

 

 Geopolymer Concrete: Sustainability and Structural 

Performance 

Geopolymer concrete has emerged as a sustainable 

alternative to OPC-based concrete, addressing the 

environmental concerns associated with the cement 

industry’s significant carbon footprint. The production of 

conventional cement is a major source of CO2 emissions, 

contributing to global warming and environmental 

degradation. In contrast, geopolymer concrete is synthesized 

from industrial by-products such as fly ash, ground 

granulated blast furnace slag (GGBS), and other 
aluminosilicate materials activated by alkaline solutions 

(Aravind et al., 2021). This not only reduces the demand for 

Portland cement but also diverts waste materials from 

landfills, aligning with the principles of sustainable 

construction. 

 

Amer Hassan et al. (as cited in Aravind et al., 2021) 

conducted extensive studies on geopolymer concrete, 

highlighting its eco-friendly characteristics, such as low 

embodied energy, reduced CO2 emissions, and the absence 

of water curing requirements. Geopolymer concrete exhibits 
mechanical properties comparable to, or even surpassing, 

those of traditional concrete, including higher compressive 

strength, enhanced resistance to high temperatures, and 

improved durability. The microstructure of geopolymer 

concrete is characterized by a higher content of amorphous 

phases, reduced porosity, and a greater proportion of 

mesopores, contributing to its superior performance in 

aggressive environments (Aravind et al., 2021). 

 

Despite these advantages, geopolymer concrete is still 

susceptible to cracking, which can be exacerbated by factors 

such as salt erosion, frost damage, shrinkage, seismic activity, 
and prolonged exposure to moisture. The assessment of crack 

width, length, type, and frequency is critical for evaluating 

the degradation and load-carrying capacity of reinforced 

concrete structures (Aravind et al., 2021). 

 

 Crack Detection Techniques: From Traditional to 

Automated Approaches 

Historically, crack detection in concrete structures 

relied on manual visual inspection, ultrasonic testing, and 

fiber optics-based methods. While ultrasonic testing can 

provide information about crack width and depth, it is often 
cumbersome due to the necessity of coupling agents and 

complex instrumentation (Aravind et al., 2021). Fiber optic 

sensors, though capable of detecting crack width and 

location, introduce significant complexity into the 

measurement process and may not be feasible for widespread 

field applications. 

 

In recent decades, image-based crack detection methods 

have gained prominence, leveraging advances in image 

processing and pattern recognition. Techniques such as the 

Canny edge detector, Fast Fourier Transform, Fast Haar 

Transform, and Sobel operator have been implemented in 

various software environments, including MATLAB 

(Aravind et al., 2021). Other approaches include percolation-
based algorithms, stereovision-based methods, computational 

algorithms, morphological image processing, and principal 

component analysis (PCA)-based algorithms. 

 

For instance, Wang and Huang (as cited in Aravind et 

al., 2021) utilized Otsu’s threshold segmentation integrated 

with a modified Sobel operator for crack detection in concrete 

bridges, while Dung and An (as cited in Aravind et al., 2021) 

applied fully convolutional neural networks (FCN) using the 

VGG16 architecture for deep learning-based crack detection. 

Fujita et al. (as cited in Aravind et al., 2021) explored pre-

processing methods involving subtraction and line extraction, 
followed by thresholding to isolate cracks from the 

background. 

 

Robotic and automated scanning systems, such as the 

Spatially Tuned Robust Multifeature (STRUM) classifier, 

have also been introduced for on-site inspection, achieving 

accuracy rates as high as 90% (Aravind et al., 2021). These 

technological advancements have paved the way for the 

integration of machine learning algorithms in crack detection 

systems, enabling the automatic classification of crack types 

and the prediction of failure modes. 
 

 Machine Learning in Crack Prediction and Pattern 

Recognition 

Machine learning, particularly supervised learning, has 

become a cornerstone of modern crack detection and 

classification systems. Algorithms such as logistic regression, 

naïve Bayes, stochastic gradient descent, K-nearest 

neighbors, decision trees, random forest, support vector 

classifiers, and deep learning neural networks have been 

successfully employed to analyze crack images and recognize 

failure patterns (Aravind et al., 2021). 

 
Among these, the support vector machine (SVM) 

classifier has shown exceptional performance in 

distinguishing between different types of structural failures, 

including flexure, shear, and compression modes. The 

effectiveness of these classifiers is typically evaluated using 

confusion matrices, accuracy, precision, and recall metrics, 

ensuring the reliability and robustness of the prediction 

system (Aravind et al., 2021). 

 

The application of machine learning to crack detection 

not only enhances the objectivity and speed of inspections but 
also facilitates large-scale monitoring of civil infrastructure. 

Automated systems can continuously monitor structures, 

flagging potential issues before they escalate into serious 

problems, thereby supporting preventive maintenance and 

extending the service life of assets. 
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 Materials and Methods Materials Used 

The study by Aravind et al. (2021) involved the 

preparation and testing of both geopolymer and conventional 

concrete beams, reinforced with various types of bars to 

evaluate crack behavior under different configurations. 

 

 Geopolymer and Conventional Concrete 
Geopolymer concrete was synthesized using class F fly 

ash and GGBS as the primary aluminosilicate materials, 

sourced from the North Chennai Thermal Power Plant and 

commercially available suppliers, respectively. The mix also 

included manufactured sand (M-sand) as a replacement for 

river sand, coarse aggregate, an alkali activator solution 

(comprising sodium silicate and sodium hydroxide), and a 

superplasticizer to enhance workability. The ratio of fly ash to 

GGBS was maintained at 80:20, with a liquid-to-binder ratio 

of 0.45 to ensure optimal consistency and performance 

(Aravind et al., 2021). 

 
Conventional concrete was prepared using 53-grade 

cement, river sand, coarse aggregate, and water, following the 

guidelines prescribed in IS 10262 (Aravind et al., 2021). The 

mechanical properties and chemical compositions of the 

materials were meticulously characterized to ensure 

consistency and replicability of results. 

 

 Reinforcement Bars 

To investigate the influence of reinforcement type on 

crack behavior, beams were reinforced with three different 

types of bars: Basalt Fibre Reinforced Polymer (BFRP), 
Glass Fibre Reinforced Polymer (GFRP), and conventional 

steel bars. 

 

The specifications for the bars included 12 mm and 10 

mm diameters for them main reinforcement and 8 mm for 

stirrups, with FRP stirrups constructed using Anabond resin 

and FRP mats bonded with epoxy resin (Aravind et al., 2021). 

 

 The properties of the Reinforcement Materials are 

Summarized as Follows: 

 
 BFRP: Elastic modulus of 94 GPa, tensile strength of 513 

MPa, Poisson’s ratio of 0.23. 

 GFRP: Elastic modulus of 54 GPa, tensile strength of 515 

MPa, Poisson’s ratio of 0.24. 

 Steel: Elastic modulus of 200 GPa, tensile strength of 495 

MPa, Poisson’s ratio of 0.27 (Aravind et al., 2021). 

 

 

 

 

 

 
 

 

 

 

 

 

 

 Mix Proportions and Mechanical Properties 

The mix design for M30 grade concrete comprised 380 

kg/m³ binder, 660 kg/m³ fine aggregate, 1189 kg/m³ coarse 

aggregate, and 171 kg/m³ liquid. The mechanical properties 

of the prepared concretes were validated using the 

Levenberg–Marquardt training algorithm in MATLAB, 

ensuring the accuracy of compressive, tensile, and flexural 
strengths, as well as the modulus of elasticity (Aravind et al., 

2021). 

 

 Experimental Methods Beam Preparation 

A series of nine beams, each measuring 100 mm in 

width, 160 mm in depth, and 1700 mm in length (with an 

effective span of 1500 mm), were cast for testing. 

 

 The Beams were Divided into Three Groups: 

 

 BFRP-reinforced geopolymer concrete beams: BRGC-

3.6, BRGC-3.9, BRGC-4.3 (indicating varying a/d ratios). 
 GFRP-reinforced geopolymer concrete beams: GRGC-

3.6, GRGC-3.9, GRGC-4.3. 

 Steel-reinforced conventional concrete beams: SRCC-3.6, 

SRCC-3.9, SRCC-4.3. 

 

The beams were prepared by mixing aggregates in a 

saturated surface dry condition, followed by the addition of 

binders, alkali-activated solutions, and superplasticizer. The 

mixture was poured into beam molds in three layers, each 

compacted to ensure homogeneity. Geopolymer concrete 

specimens were cured under ambient conditions, while 
conventional concrete specimens underwent water curing for 

28 days (Aravind et al., 2021). 

 

 Test Setup and Instrumentation 

The beams were subjected to four-point static bending 

tests with varying shear span to effective depth ratios (a/d = 

3.6, 3.9, 4.3). The loading arrangement involved two-point 

loads applied symmetrically, creating a constant bending 

moment region between the load points and shear-dominated 

regions near the supports (Aravind et al., 2021). Linear 

Variable Differential Transformers (LVDTs) were used to 
measure deflection at critical points, and the cracks were 

marked at each load interval to document their initiation and 

propagation. 
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 Crack Image Acquisition and Processing 

During the mechanical tests, high-resolution images of 

the beams were captured at various load intervals, particularly 

focusing on the regions where cracks initiated and developed. 

The images served as the primary data source for subsequent 

image processing and machine learning analysis. Python-

based image processing libraries were employed to 
preprocess the images, extract crack patterns, and standardize 

the input data for the classification algorithms (Aravind et al., 

2021). 

 

 Machine Learning Methodology 

 

 The Crack Prediction System was Architected Around a 

Machine Learning Pipeline Encompassing the Following 

Key Stages: 

 

 Image Preprocessing:  

Raw images were subjected to noise reduction, contrast 
enhancement, binarization, and edge detection to isolate crack 

features from the background. 

 

 Feature Extraction:  

Morphological characteristics, such as crack length, 

width, orientation, and connectivity, were extracted from the 

processed images to form the feature set for classification. 

 

 Classifier Training and Validation:  

Six supervised machine learning classifiers were 
implemented, including stochastic gradient descent, K-

nearest neighbors, decision trees, and support vector classifier 

(SVC), among others. The classifiers were trained to 

categorize failure patterns into three classes: flexure, shear, 

and compression. 

 

 Performance Evaluation:  

The classifiers’ performance was assessed using 

confusion matrices, accuracy, precision, and recall metrics to 

determine the most effective algorithm for crack pattern 

recognition (Aravind et al., 2021). 

 
The entire workflow was automated using Python 

scripts, enabling rapid and consistent analysis of large image 

datasets without manual intervention. 

 

 
Fig 1 Crack Analysis Experimental Observations 

 

 Crack Analysis Experimental Observations 

The mechanical tests yielded valuable insights into the 

failure modes and crack patterns associated with different 

reinforcement types and shear span to effective depth ratios. 

For each beam, the progression of cracks was meticulously 

recorded, providing a rich dataset for analysis. 

 Steel-Reinforced Conventional Concrete Beams (SRCC) 

In steel-reinforced beams, an increase in the a/d ratio led 

to the development of new cracks in the outer regions of the 

constant bending moment zone, particularly in the shear-

dominated areas. Notably, no shear cracks were observed in 

SRCC-3.6, while both flexure and compression failures, with 
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minor shear involvement, characterized the failure modes of 

the SRCC beams as the a/d ratio increased (Aravind et al., 

2021). 

 

 FRP-Reinforced Geopolymer Concrete Beams (BRGC 

and GRGC) 

Beams reinforced with BFRP and GFRP bars exhibited 
distinct crack behavior compared to their steel-reinforced 

counterparts. Inclined cracks, indicative of shear failure, 

originated from initial flexural cracks and became more 

pronounced as the a/d ratio increased. In particular, BRGC-

3.9 and GRGC-3.9 displayed a higher number of inclined 

cracks in the shear zone compared to the other configurations. 

At an a/d ratio of 4.3, both BFRP and GFRP beams showed 

significant deflection recovery (re-cambering) at ultimate 

load levels, whereas sudden failure was observed in BRGC-

3.6, BRGC-3.9, GRGC-3.6, and GRGC-3.9 after reaching 

approximately 95% of the ultimate load (Aravind et al., 2021). 

 
 

 Crack Propagation and Spacing 

Data analysis revealed that the number of cracks in 

steel-reinforced beams increased with the a/d ratio up to 3.9, 

then decreased as the ratio increased to 4.3—a trend mirrored 

in the FRP-reinforced beams. Crack propagation diminished 

with higher a/d ratios in steel and GFRP beams, but increased 

in BFRP-reinforced geopolymer concrete. Crack spacing 
generally decreased as the number and load levels of cracks 

increased, but remained constant during loading and 

unloading at the ultimate load for certain configurations 

(Aravind et al., 2021). 

 

 Failure Modes and Shear Strength 

The ultimate load-carrying capacity and shear strength 

at failure decreased with increasing a/d ratios in both steel and 

FRP-reinforced beams. Additionally, the failure pattern in 

FRP rods shifted from predominantly shear to flexure as the 

a/d ratio increased from 3.6 to 4.3, whereas no such transition 

was observed in steel-reinforced beams (Aravind et al., 
2021). 

 

 
Fig 2 Image-Based Crack Pattern Recognition 
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 Image-Based Crack Pattern Recognition 

The processed images provided clear visual evidence of 

the differences in crack initiation, propagation, and failure 

modes among the various beam configurations. The 

classification of these patterns into flexure, shear, and 

compression failures formed the basis for training and 

validating the machine learning models. 
 

The crack detection framework, as depicted in the 

study, comprised a pipeline that began with image 

acquisition, followed by pre-processing to enhance crack 

features, feature extraction to quantify crack properties, and 

classification using machine learning algorithms. This 

systematic approach enabled the objective and reproducible 

identification of crack types, minimizing the subjectivity 

inherent in manual inspection (Aravind et al., 2021). 

 

III. RESULTS AND DISCUSSION 

 
 Performance of Machine Learning Classifiers 

The comparative evaluation of six machine learning 

classifiers revealed notable differences in their ability to 

accurately classify crack patterns and failure modes in 

geopolymer and conventional concrete beams. 

 

 Support Vector Classifier (SVC) 

The support vector classifier emerged as the most 

effective algorithm, achieving a perfect classification 

accuracy of 100% in identifying flexure, shear, and 
compression failure patterns (Aravind et al., 2021). The SVC 

leveraged its capability to construct optimal hyperplanes in 

the feature space, ensuring robust separation between 

different failure classes even in the presence of overlapping or 

complex data distributions. 

 

 Other Classifiers 

The remaining five classifiers, including stochastic 

gradient descent, K-nearest neighbors, and decision trees, 

demonstrated varying degrees of accuracy, precision, and 

recall, but none matched the performance of the SVC. The 

confusion matrix analysis underscored the superior reliability 
of the SVC in minimizing false positives and negatives, 

thereby enhancing the system’s practical applicability for 

automated crack prediction (Aravind et al., 2021). 

 

Table 1 Performance of Machine Learning Classifiers 

Classifiers/ 

patterns 

Flexure pattern Shear pattern Compression pattern 

 

 

 Accuracy 

(%) 

Precision Recall Accuracy 

(%) 

Precision Recall Accuracy 

(%) 

Precision Recall 

Support Vector 

 

100 1.00 1.00 100 1.00 1.00 100 

 

1.00 1.00 

Dicision Tree 97 1.00 0.94 97 0.93 1.00 88 0.79 1.00 

Gaussian NB 99 0.99 1.00 90 1.00 0.82 100 1.00 1.00 

SGD 98 1.00 0.96 90 0.82 1.00 100 1.00 1.00 

K-Neighbor 98 1.00 0.96 100 1.00 1.00 88 0.79 1.00 

Adaboost 99 0.99 1.00 96 0.93 1.00 100 1.00 1.00 
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 Implications for Automated Quality Assurance 
The results highlight the transformative potential of 

machine learning-driven crack prediction systems in the 

construction industry. By automating the detection and 

classification of cracks, these systems can significantly 

reduce the reliance on manual inspections, expedite quality 

assurance processes, and improve the accuracy and 

consistency of structural assessments. 

 

The image-based approach also facilitates continuous 

monitoring of structures, enabling the early identification of 

deterioration and the implementation of preventive 
maintenance strategies. This proactive stance can extend the 

service life of critical infrastructure, reduce maintenance 

costs, and enhance public safety. 
 

 Limitations and Future Directions 

While the current study demonstrates the efficacy of 

machine learning algorithms, particularly the SVC, in crack 

pattern recognition, it also highlights certain limitations. The 

generalizability of the models to different concrete mixes, 

reinforcement types, and environmental conditions warrants 

further investigation. Expanding the image dataset to include 

a broader spectrum of crack patterns, lighting conditions, and 

structural geometries can enhance the robustness and 

versatility of the prediction system. 
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Moreover, the integration of deep learning 

architectures, such as convolutional neural networks (CNNs), 

holds promise for further improving the accuracy and 

scalability of crack detection systems. Real-time deployment 

of such systems in field settings, coupled with the use of 

mobile or embedded devices, represents a promising avenue 

for future research and development. 
 

IV. CONCLUSION 

 

This research paper has presented a comprehensive 

analysis of a geopolymer concrete crack prediction system 

based on machine learning and image processing techniques. 

The study underscores the importance of timely and accurate 

crack detection in ensuring the safety, durability, and 

sustainability of concrete structures. 

By leveraging experimental data from mechanical tests 

on geopolymer and conventional concrete beams, reinforced 

with various types of bars, the study elucidates the influence 
of reinforcement configuration and shear span to effective 

depth ratio on crack initiation, propagation, and failure 

modes. The meticulous acquisition and processing of crack 

images, combined with feature extraction and supervised 

machine learning, enable the objective classification of failure 

patterns into flexure, shear, and compression modes. 

 

The support vector classifier demonstrated exceptional 

accuracy in crack pattern recognition, outperforming other 

classifiers and establishing itself as the algorithm of choice 

for automated quality assurance in concrete inspection. The 
integration of such systems into construction practice 

promises to enhance inspection efficiency, reduce human 

error, and support proactive maintenance strategies. 

 

Future research should focus on expanding the dataset, 

exploring advanced deep learning techniques, and validating 

the models in diverse field conditions to further enhance the 

reliability and applicability of automated crack prediction 

systems. The continued advancement of smart inspection 

technologies will play a vital role in safeguarding the built 

environment and promoting the adoption of sustainable 

construction materials, such as geopolymer concrete. 
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