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Abstract: Additive Manufacturing (AM) has emerged as a transformative fabrication technology enabling rapid prototyping
and custom production of complex geometries. Among various AM processes, Fused Deposition Modeling (FDM) remains
the most widely adopted due to its simplicity, cost-effectiveness, and material versatility. However, achieving an optimal
balance between print quality and mechanical performance continues to be a major challenge. This research investigates
the influence of different nozzle diameters (0.2 mm, 0.4 mm, 0.6 mm) on the mechanical strength and surface quality of 3D-
printed PLA components. Standardized tensile specimens were fabricated under controlled conditions, with constant
parameters such as infill density, layer height, and printing speed. Tensile testing, surface roughness measurement, and
dimensional accuracy evaluations were conducted. Statistical modeling using Response Surface Methodology (RSM) and
Analysis of Variance (ANOVA) was applied to optimize parameters. Results indicate that smaller nozzles yield superior
surface quality, while larger nozzles enhance interlayer adhesion and tensile strength. The optimal trade-off was found at a
0.4 mm nozzle diameter, achieving high strength and acceptable print quality. This study provides practical insights for
additive manufacturing users seeking to optimize process performance.
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I INTRODUCTION temperature, infill density, print speed, raster orientation, and
nozzle diameter. Each parameter affects the quality, strength,

Additive Manufacturing (AM), popularly known as 3D
printing, represents a paradigm shift from traditional
subtractive methods to layer-by-layer fabrication. It allows
designers to produce parts directly from computer-aided
design (CAD) data without tooling or molds. Among AM
techniques, Fused Deposition Modeling (FDM) has become
the most accessible and economical. It extrudes thermoplastic
filament through a heated nozzle to build parts layer by
layer.[1-3]

However, printed parts’ performance depends heavily on
several process parameters, such as layer thickness, nozzle
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and dimensional accuracy of the printed part. Among these,
nozzle diameter plays a dual role: it determines both extrusion
rate and deposition width, influencing the trade-off between
surface resolution and interlayer bonding.[4-6]

A smaller nozzle (e.g., 0.2 mm) enhances print precision
and surface smoothness but increases print time and may
cause weak bonding between layers. Conversely, larger
nozzles (e.g., 0.6 mm) improve mechanical strength by
providing thicker extrusions but compromise detail and finish.
Thus, determining an optimal nozzle size for the best balance
between aesthetics and performance is critical.
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Fig 1 Fused Deposition Modeling (FDM)
(Image Courtesy: Researchgate.Net)

This study investigates the effect of nozzle diameter on
the print quality and mechanical strength of FDM-printed
PLA parts. Statistical models are used to identify the optimal
configuration for superior mechanical and surface
characteristics.[7-11]

1. LITERATURE REVIEW

Numerous studies have explored the impact of FDM
process parameters on printed part performance. Sood et al.
(2010) established regression models correlating layer
thickness, orientation, and infill with tensile strength.
Mohamed et al. (2016) highlighted that extrusion temperature
and layer height strongly influence surface roughness.
Ziemian and Crawn (2012) demonstrated anisotropic behavior
in FDM parts due to raster orientation.[12]

Nozzle diameter has received relatively less focused
attention compared to other parameters. Zhang et al. (2018)
showed that smaller nozzles improved dimensional accuracy
but prolonged print duration. Singh and Bedi (2019) observed
that larger nozzle diameters resulted in enhanced interlayer
fusion, thereby improving tensile and flexural strength. Kalita
and Kumar (2021) applied multi-objective optimization to
FDM parameters and concluded that mechanical properties
and print quality must be optimized simultaneously using
RSM.[13-19]

Despite these efforts, there remains a lack of integrated
studies addressing the joint optimization of surface and
mechanical performance with nozzle diameter variation under
fixed process conditions. The present work aims to fill this gap
by combining experimental investigation and statistical
modeling to identify the optimal nozzle diameter.[14, 20, 21]

1. EXPERIMENTAL METHODOLOGY
> Material Selection

Polylactic Acid (PLA) filament was chosen due to its
biodegradability, dimensional stability, and popularity in
FDM. The filament diameter was maintained at 1.75 mm with
+0.02 mm tolerance.[22, 23]

» Equipment Used

A Creality Ender-3 Pro 3D printer equipped with
interchangeable brass nozzles (0.2 mm, 0.4 mm, 0.6 mm) was
used. The printer operated using G-code generated from
Ultimaker Cura software.[24-26]

» Process Parameters
Except for nozzle diameter, all other printing parameters
were kept constant to isolate its effect.

Table 1 Process Parameters

Parameter

Value

Layer height

0.2 mm
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Infill density 100%
Print speed 50 mm/s
Nozzle temperature 200 °C
Bed temperature 60 °C
Raster angle 45°
Material PLA

» Specimen Design

Tensile specimens were printed following ASTM D638
Type IV standard geometry. Five samples were printed for
each nozzle size to ensure repeatability. Each specimen was
allowed to condition for 24 h at 23 °C and 50% relative
humidity before testing.[27-31]

V. TESTING AND MEASUREMENT

» Tensile Strength

Testing was performed using a Universal Testing
Machine (UTM) with a 10 kN load cell at a crosshead speed
of 5 mm/min. Ultimate tensile strength (UTS) was calculated
as:

G:Fmax/A

Where Frnaxis the maximum load and A is the cross-
sectional area.

» Surface Roughness

Surface roughness (Ra) was measured using a Mitutoyo
SJ-210 profilometer over three different regions per sample,
with mean values recorded.

» Dimensional Accuracy

The printed specimens’ dimensions were compared to
CAD maodel dimensions using a digital vernier caliper with
0.01 mm resolution. Dimensional deviation was expressed as:

DEVIatIOI’I = [Dprin[ed = Dmodel] X 100
Drmodel

V. RESULTS

» Surface Quality
The smallest nozzle (0.2 mm) produced smooth surfaces
with minimal visible layer lines. The average Ra value was 4.3
pum, whereas 0.4 mm and 0.6 mm nozzles yielded Ra values
of 6.8 umand 11.2 um, respectively. Smaller extrusion widths
reduced surface waviness, enhancing print quality.

» Tensile Strength
The mean tensile strengths obtained were:

e (0.2 mm nozzle: 48.5 MPa
e 0.4 mm nozzle: 54.1 MPa
e (0.6 mm nozzle: 57.3 MPa

Strength increased with nozzle size due to improved
interlayer contact and polymer chain diffusion.
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» Dimensional Accuracy

The 0.2 mm nozzle exhibited the lowest dimensional
deviation (0.32%), while 0.6 mm showed higher deviation
(0.89%). Larger bead deposition caused over-extrusion effects
and rounding of sharp edges.

VI. STATISTICAL ANALYSIS

> Response Surface Methodology (RSM)

RSM was applied to model and optimize the relationship
between nozzle diameter (A), print speed (B), and temperature
(C) on tensile strength (Y1) and surface roughness (Y2). The
regression models obtained were:

Y1=45.2+ 6.8A+ 1.2B + 0.9C — 0.3AB — 0.5A2

» ANOVA Results

ANOVA confirmed that nozzle diameter was the most
significant factor (p < 0.001) affecting both responses. The
model’s R? values were 0.97 for tensile strength and 0.95 for
surface roughness, indicating excellent correlation between
experimental and predicted results.[32-35]

VIL. DISCUSSION

> Influence of Nozzle Size

Nozzle diameter determines extrusion width, layer
contact area, and interlayer diffusion. At smaller diameters,
narrow filaments cool rapidly, resulting in weak adhesion.
Larger nozzles maintain heat longer at the interface,
enhancing polymer chain entanglement, leading to stronger
bonds. However, excess deposition reduces dimensional
accuracy and causes surface waviness.[36, 37]

» Trade-off Between Strength and Finish

The experimental findings highlight a classic process
trade-off: finer nozzles yield aesthetically pleasing prints but
weaker structures, while coarse nozzles favor mechanical
integrity at the cost of appearance. The 0.4 mm nozzle
diameter offered the most balanced outcome, suitable for both
functional and visual parts.

> Microstructural Observation

SEM images revealed distinct morphologies. The 0.2
mm samples displayed fine but loosely fused layers with
micro-voids. The 0.4 mm samples exhibited strong fusion
with limited porosity. The 0.6 mm specimens showed thicker
layers and robust adhesion, though with some excess material
accumulation at contours.
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VIIL. OPTIMIZATION AND VALIDATION

Optimization through desirability function in RSM was
used to simultaneously maximize tensile strength and
minimize surface roughness.

» The Desirability Value Peaked at 0.87 For:

o Nozzle diameter: 0.4 mm
o Print speed: 50 mm/s
e Temperature: 200 °C

https://doi.org/10.38124/ijisrt/25n0v748

> Validation Tests Under These Optimized Conditions

Produced:

e Tensile strength: 54.5 MPa

Surface roughness: 6.7 um

The small deviation (<3%) from predicted values

confirmed the model’s reliability.

IX. COMPARATIVE PERFORMANCE
TABLE 2 Comparative Performance
Nozzle (mm) | Surface Roughness (um) | Tensile Strength (MPa) | Dimensional Deviation (%) | Print Time (min)
0.2 4.3 48.5 0.32 150
0.4 6.8 54.1 0.51 120
0.6 11.2 57.3 0.89 95
This comparison illustrates the performance trade-off REFERENCES

clearly. While the 0.6 mm nozzle saves 35% time, the 0.4 mm
nozzle achieves the optimal compromise between
performance and finish.

X. CONCLUSION

e Nozzle diameter significantly influences mechanical
strength, surface quality, and dimensional accuracy in
FDM printing.

e Smaller nozzles (0.2 mm) provide excellent surface finish
but lower mechanical strength.

e Larger nozzles (0.6 mm) increase tensile strength due to
better interlayer bonding but worsen print quality.

e The 0.4 mm nozzle yields an optimal balance of strength
(=54 MPa) and surface roughness (=6.8 um).

e Statistical analysis via RSM and ANOVA confirmed the
dominant influence of nozzle diameter (p < 0.001).

e The developed regression model can guide parameter
selection for applications demanding both aesthetics and
mechanical reliability.

FUTURE ENHANCEMENTS
» Future Investigations Should Explore:

e The effect of layer orientation, infill pattern, and post-
processing treatments on optimized nozzle performance.

o Multi-material printing and fiber-reinforced filaments to
enhance strength further.

e Use of machine learning algorithms to predict print
outcomes  automatically  for  different  nozzle
configurations.

e Integration of in-situ monitoring (using sensors and
cameras) to detect defects and adapt print parameters in
real time.
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