Special Issue, ICMST-2025

ISSN No: -2456-2165

Thermal, Structural and Chemical Properties of Natural Bark Fibers for Use in Advanced Polymer Composite Reinforcement

Jagadeesh P.1; Dharani N.1; Kamal Raj N.1; Gowtham T.1

¹Department of Mechanical Engineering, K. S. R. College of Engineering, K. S. R. Kalvi Nagar, Tiruchengode, Tamil Nadu 637 215

Publication Date: 2025/11/21

Abstract: The demand for sustainable and high-performance reinforcement materials has led to extensive research on natural fibers derived from plant sources. Among these, bark fibers have emerged as a promising reinforcement for polymer composites due to their unique combination of mechanical strength, low density, renewability, and cost-effectiveness. However, the effective utilization of bark fibers in high-performance applications requires a comprehensive understanding of their thermal, structural, and chemical characteristics. This paper presents an in-depth review of the advanced characterization of natural bark fibers and their suitability for polymer composite reinforcement. It explores various analytical methods such as thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM), which provide insights into the fiber's chemical composition, crystallinity, surface morphology, and thermal degradation behavior. The study also discusses how alkali and silane treatments modify the fiber surface and improve fiber-matrix adhesion in polymer composites. The results of such characterization are crucial in optimizing processing parameters and enhancing the mechanical and thermal performance of bark fiber-reinforced composites for structural, automotive, and aerospace applications.

Keywords: Natural Fibers, Bark Fiber, Polymer Composites, Thermal Analysis, FTIR, XRD, SEM, Surface Modification, Fiber-Matrix Adhesion, Sustainable Materials.

How to Cite: Jagadeesh P.; Dharani N.; Kamal Raj N.; Gowtham T. (2025). Thermal, Structural and Chemical Properties of Natural Bark Fibers for Use in Advanced Polymer Composite Reinforcement. *International Journal of Innovative Science and Research Technology*, (ICMST–2025), 6-11. https://doi.org/10.38124/ijisrt/25nov749

I. INTRODUCTION

The growing emphasis on environmental sustainability and circular materials has accelerated the use of natural fibers as reinforcements in polymer composites. Unlike synthetic fibers such as glass or carbon, natural fibers offer biodegradability, low cost, and reduced environmental impact. Among the wide variety of plant-derived fibers, bark fibers have recently gained attention due to their high cellulose content, inherent strength, and abundance as an agro-industrial by-product. Bark fibers are extracted from the outer layer of trees, which serves as a protective barrier against mechanical and environmental stress. This natural function imparts a complex microstructure rich in lignocellulosic constituents—cellulose, hemicellulose, lignin, and extractives—that directly influence their mechanical and thermal behavior when used as reinforcements in polymer matrices.[1-3].

The aerospace and automotive industries are continuously seeking lightweight yet high-strength materials to enhance energy efficiency. Polymer composites reinforced with natural fibers like bark have the potential to replace synthetic alternatives in semi-structural components, interior panels, and insulation systems. However, the variability of natural fibers in terms of chemical composition, moisture content, and fiber morphology necessitates advanced characterization to ensure performance consistency and predictability. Without understanding the fiber's internal structure and thermal stability, it is difficult to achieve proper interfacial bonding with polymer matrices or to design processing conditions that preserve fiber integrity.[4-12].

Characterization thus forms the foundation of material optimization. By employing sophisticated analytical techniques such as FTIR, TGA, XRD, and SEM, researchers can evaluate the physical, thermal, and chemical attributes of bark fibers. These methods not only reveal the intrinsic composition and crystallinity of the fibers but also provide insights into the effects of surface treatments. The results from such analyses are vital for improving adhesion between fiber and matrix, enhancing load transfer, and achieving superior mechanical properties in the final composite material.[13-17].

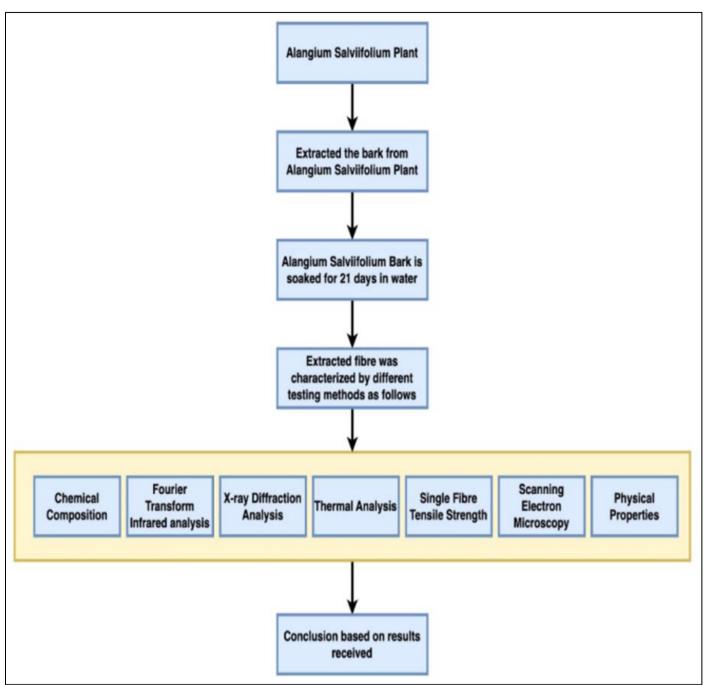


Fig 1 Flow Chart of Alangium Salviifolium Fibre Extraction Characterization Process.

II. COMPOSITION AND STRUCTURAL FEATURES OF BARK FIBERS

Bark fibers are composed primarily of cellulose, hemicellulose, and lignin, along with minor quantities of waxes, pectins, and extractives. Cellulose provides the fundamental structural framework, conferring stiffness and tensile strength through its semi-crystalline arrangement of β -D-glucose chains. Hemicellulose, an amorphous polysaccharide, contributes to flexibility but also influences moisture absorption. Lignin acts as a natural adhesive, providing rigidity and resistance against biological degradation. The relative proportion of these components varies depending on the botanical source, age of the plant, and extraction method.

The microstructure of bark fibers reveals a hierarchical organization, with microfibrils embedded in a lignin–hemicellulose matrix. The degree of crystallinity, often quantified using X-ray diffraction (XRD), determines the mechanical stiffness and thermal resistance of the fiber. Higher crystallinity correlates with improved strength and dimensional stability, whereas higher amorphous content enhances flexibility but increases moisture sensitivity.

The fiber surface morphology, typically examined using scanning electron microscopy (SEM), shows longitudinal ridges, microvoids, and surface impurities. These irregularities can either facilitate or hinder bonding with the polymer matrix depending on the degree of cleanliness and roughness. To improve adhesion, chemical surface treatments

such as alkali (NaOH) or silane modification are commonly employed. Alkali treatment removes waxes and lignin, exposing the cellulose fibrils and increasing surface roughness, while silane treatment introduces functional groups that chemically bond with polymer chains.[18-21]

Such structural and surface characterizations are essential for tailoring the fiber—matrix interface. In polymer composites, weak interfacial adhesion leads to poor stress transfer and premature failure. Understanding the structure-property relationship at the fiber level enables the engineering of composite systems with optimized strength, durability, and environmental resistance.[22-26]

III. THERMAL CHARACTERIZATION OF BARK FIBERS

Thermal analysis plays a critical role in determining the suitability of natural fibers for high-temperature processing and end-use applications. The two most widely used techniques—thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)—provide quantitative information on the fiber's degradation profile and thermal transitions.[27-31].

TGA measures the weight loss of the fiber as a function of temperature, revealing distinct stages of thermal decomposition. Typically, an initial weight loss below 120°C corresponds to moisture evaporation, followed by major decomposition between 200°C and 400°C due to the breakdown of hemicellulose and cellulose. Lignin decomposition occurs over a broader range (250°C–500°C) because of its complex aromatic structure. The residual char content after 600°C provides insight into the fiber's thermal stability and potential for fire retardancy. Bark fibers often exhibit high residual mass due to the presence of lignin, indicating better resistance to thermal degradation compared to purely cellulose-based fibers.[32-37].

DSC analysis identifies endothermic and exothermic transitions, such as moisture desorption, softening, or crystallization. The glass transition temperature (Tg) provides an estimate of the fiber's dimensional stability under varying thermal conditions. These parameters are critical when integrating bark fibers into thermoplastic matrices, as the processing temperature must remain below the degradation onset temperature of the fiber to prevent structural damage.[38-44].

The effect of chemical treatments on thermal properties is also significant. Alkali treatment generally increases the thermal stability of bark fibers by removing low molecular weight impurities and improving crystalline order. Silanetreated fibers exhibit enhanced interfacial compatibility, resulting in improved heat transfer across the fiber–matrix interface. Such improvements make bark fibers suitable for applications requiring elevated thermal resistance, such as automotive under-hood components and aerospace interior panels. [45-47].

IV. CHEMICAL AND SPECTROSCOPIC ANALYSIS

Chemical characterization of bark fibers provides insights into their molecular composition and functional groups, which govern their bonding potential with polymer matrices. The most widely used analytical tool is Fourier-transform infrared spectroscopy (FTIR). FTIR spectra reveal characteristic absorption bands associated with cellulose, hemicellulose, and lignin components. Peaks near 3400 cm⁻¹ indicate hydroxyl (–OH) stretching vibrations, representing hydrogen bonding in cellulose. Absorptions at 1730 cm⁻¹ correspond to carbonyl (C=O) groups in hemicellulose and esterified lignin, while aromatic skeletal vibrations near 1500 cm⁻¹ are signatures of lignin. The relative intensity of these bands provides information about the chemical composition and purity of the fiber.[48].

After chemical modification, FTIR spectra show noticeable changes. For instance, alkali treatment reduces the intensity of peaks associated with lignin and hemicellulose, confirming their partial removal. Silane treatment introduces new peaks corresponding to Si–O–Si and Si–O–C bonds, indicating the successful formation of chemical bridges between the fiber surface and the silane coupling agent. These modifications enhance fiber hydrophobicity and improve compatibility with hydrophobic polymer matrices like polypropylene or epoxy.

Complementary techniques such as X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS) provide additional information. XRD determines the crystallinity index (CI) of bark fibers, a measure of the ordered cellulose regions relative to amorphous components. Higher CI values correlate with increased stiffness and lower moisture uptake. EDS, performed alongside SEM imaging, reveals elemental composition—useful for detecting residual alkali or silane content after surface treatment. Together, these methods form a comprehensive picture of the chemical state and structural organization of bark fibers.

Such detailed chemical insights are crucial for designing fiber—matrix interfaces that enable efficient stress transfer. For high-performance composites, the interfacial bond strength often dictates the overall mechanical performance more than the intrinsic strength of the fiber itself. Hence, chemical characterization not only confirms composition but also guides the optimization of surface treatments for targeted applications.

V. APPLICATION POTENTIAL AND CONCLUSIONS

The successful integration of natural bark fibers into polymer composites has opened new pathways for sustainable high-performance materials. Detailed characterization enables engineers to select optimal fibers, treatments, and processing methods tailored to specific requirements. The enhanced mechanical and thermal properties achieved through controlled chemical modification make bark fiber—reinforced composites suitable for a range of applications including

automotive interiors, aircraft cabin panels, building materials, and consumer products.

From a sustainability standpoint, bark fibers offer significant advantages: they are biodegradable, renewable, and often derived from waste streams of the timber and agroindustries. Utilizing these fibers not only reduces environmental impact but also adds economic value to underutilized biomass resources. With advancements in hybrid composite technology, bark fibers can be combined with synthetic reinforcements or nanoparticles to achieve properties comparable to traditional glass or carbon fiber composites while maintaining ecological benefits.

In conclusion, the advanced characterization of natural bark fibers is fundamental to unlocking their full potential in high-performance polymer composites. Thermal, structural, and chemical analyses provide critical insights into their behavior during processing and service. The combination of improved surface chemistry, enhanced crystallinity, and stable thermal response ensures that bark fiber—reinforced composites can meet the demanding requirements of modern engineering applications. As research progresses, these materials are poised to become key contributors to the next generation of eco-efficient, lightweight, and durable structural composites.

REFERENCES

- [1]. K. Krishnasamy, J. Palanisamy, and M. Bhuvaneshwarana, "A review on natural fiber reinforced biocomposites properties and its applications," in AIP Conference Proceedings, 2024, p. 020015.
- [2]. J. Venkatesh, M. Bhuvaneshwaran, and P. Jagadeesh, "Experimental Analysis on Mechanical Properties of Hemp/Rice Cereal Fibre Reinforced Hybrid Composites for Light Weight Applications," in International Symposium on Lightweight and Sustainable Polymeric Materials, 2023, pp. 377-385.
- [3]. J. Palanisamy, K. Karthik, G. Subbiah, and K. K. Priya, "Advanced Characterization of Alangium Salviifolium Bark Fibre: Thermal, Structural, and Chemical Properties for High-Performance Polymer Composite Reinforcement," Results in Engineering, p. 105296, 2025.
- [4]. P. S. S. N. Saravanan, T.A.Sukantha, T.Natarajan, "Extraction and Characterization of New Cellulose Fiber from the Agrowaste of Lagenaria Siceraria (Bottle Guard) Plant," J o u r n a l o f A d v a n c e s i n C h e m i s t r y, vol. 12, pp. 4382-4388, 2016.
- [5]. P. S. S. N. Saravanan, "Characterization of New Cellulose Fiber from the Molina (Lagenaria Siceraria) Plant," Journal of Applied Research and Technology, vol. 16, pp. 204-210, 2018.
- [6]. P. S. S. N. Saravanan, T.A.Sukantha., "Surface modification of eco-friendly ligno-cellulosic fibre extracted from Lagenaria siceraria plant agro waste: a sustainable approach," International Journal of Environment and Sustainable Development, vol. 17, pp. 366-378, 2018.

- [7]. P. M. N.Saravanan, P.S.Sampath, "PINEAPPLE LEAF FIBER REINFORCED POLYMER COMPOSITE AS A REPLACEMENT FOR ABS PLASTICS IN INDUSTRIAL SAFETY HELMET SHELL A REVIEW," International Journal of Software & Hardware Research in Engineering, vol. 3, pp. 36-46, 2015.
- [8]. S. Nagappan, S. P. Subramani, S. K. Palaniappan, and B. Mylsamy, "Impact of alkali treatment and fiber length on mechanical properties of new agro waste Lagenaria Siceraria fiber reinforced epoxy composites," Journal of Natural Fibers, vol. 19, pp. 6853-6864, 2022.
- [9]. N. Saravanan, "Mechanical Properties of Pineapple Leaf Fiber Reinforced Epoxy Composites," in Intelligent Manufacturing Systems – NCIMS 2011, 2011
- [10]. N. Saravanan, "Influence on Fiber Parameters on Mechanical Properties of Natural Fiber Reinforced Polymer Composites," in Recent Trends in Mechatronics and Industrial Safety Engineering, 2015.
- [11]. N. Saravanan, N. Kumar, G. Bharathiraja, and R. Pandiyarajan, "Optimization and characterization of surface treated Lagenaria siceraria fiber and its reinforcement effect on epoxy composites," Pigment & Resin Technology, vol. 52, pp. 273-284, 2022.
- [12]. K. Sasikumar, K. Dineshkumar, K. Deeban, M. Sambathkumar, and N. Saravanan, "Effect of shot peening on surface properties of Al7075 hybrid aluminum metal matrix composites," Materials Today: Proceedings, vol. 33, pp. 2792-2794, 2020.
- [13]. R. Janani, S. Bhuvana, V. Geethalakshmi, R. Jeyachitra, K. Sathishkumar, R. Balu, et al., "Micro and nano plastics in food: A review on the strategies for identification, isolation, and mitigation through photocatalysis, and health risk assessment," Environmental Research, vol. 241, p. 117666, 2024.
- [14]. V. Geethalaksmi and C. Theivarasu, "Synthesis and Characterization of Samarium (III (and Gadolinium (III) Complexes Containing2-Methoxy-6-((2-(Piperazin-1yl) Ethylimino) Methyl) Phenol as Ligand," International Journal of ChemTech Research, vol. 9, pp. 941-949, 2016.
- [15]. V. Geethalakshmi, C. Theivarasu, N. Nalini, and V. Gomathi, "Spectroscopic, microbial studies and invitro anticancer activity of Pyridine Schiff base ligand and its lanthanum complexes," Bulletin of Materials Science, vol. 46, p. 223, 2023.
- [16]. V. Geethalakshmi, N. Nalini, and C. Theivarasu, "Anticancer activity of morpholine schiff base complexes," in AIP Conference Proceedings, 2020, p. 100016.
- [17]. N. Nalini, K. S. Thangamani, V. Geethalakshmi, and S. Nithyashree, "14 Innovative nanosensors for detection of dyes," in Nanotechnology-based Sensors for Detection of Environmental Pollution, F. M. Policarpo Tonelli, A. Roy, M. Ozturk, and H. C. A. Murthy, Eds., ed: Elsevier, 2024, pp. 265-275.
- [18]. J. Sethubathi, "Recent Progress in Polymer Matrix Composites with Chemically Modified Natural Fiber Reinforcement," International Journal of Innovative

https://doi.org/10.38124/ijisrt/25nov747

ISSN No: -2456-2165

- Science and Research Technology, vol. 10, pp. 828-833, 2025.
- [19]. J. Sethubathi, "Developments in Eco-friendly Composite Materials: Applications of Chemically Treated Natural Fibers in Polymers," International Journal of Innovative Science and Research Technology, vol. 10, pp. 823-827, 2025.
- [20]. J. Sethubathi, "Evaluation of Natural Plant Fibers and their Hybrid Composites to Improve Polymer Strength," International Journal of Innovative Science and Research Technology, vol. 10, pp. 813-817, 2025.
- [21]. J. Sethubathi, "Chemical Compatibility and Performance Optimization in Natural Fiber-Based Polymer Composites," International Journal of Innovative Science and Research Technology, vol. 10, pp. 834-838, 2025.
- [22]. K. Arunraja, P. Muthugounder, S. Karthikeyan, S. Ganesan, A. Gowrishankar, and B. Muruganandhan, "Influences of jute fiber and alumina nanoparticles on behaviour of polyester composite synthesized via hand layup route," in AIP Conference Proceedings, 2025, p. 020290.
- [23]. S. Ganesan, G. Boopathi, S. Kalaiarasan, B. E. Jebasingh, P. Muruganandhan, and S. Karthikeyan, "Synthesis and characteristics evaluation of epoxy hybrid nanocomposite featured with ramie fiber and SiC," in AIP Conference Proceedings, 2025, p. 020241.
- [24]. G. Kaliyaperumal, N. Karthikeyan, C. Priya, S. Karthikeyan, M. Ammaiappan, and S. Prabagaran, "Hybrid reinforcement's actions on flexural/tensile/impact strength of polyester composite made via injection molding route," in AIP Conference Proceedings, 2025.
- [25]. S. Karthikeyan, S. Ganesan, A. Suresh, P. Muruganandhan, B. E. Jebasingh, and K. Manogar, "Impact of E glass fiber on functional properties of low density polyethyle composite made via compression mold," in AIP Conference Proceedings, 2025, p. 020243.
- [26]. S. Karthikeyan, A. Jagadheeswari, J. G. Murali, G. Kaliannan, S. Marimuthu, and S. Kalaiarasan, "Hot compression actions on functional behavior of polyester composite configured with basalt fiber," in AIP Conference Proceedings, 2025, p. 020294.
- [27]. S. Karthikeyan, M. Karthick, M. Munipalli, N. Sankar, L. Suriyaprakash, and P. Muthugounder, "Effect of roselle fiber on physical and thermal behaviour of polypropylene nanocomposite developed by conventional route," in AIP Conference Proceedings, 2025, p. 020223.
- [28]. S. Karthikeyan, A. Karthikeyan, B. K. Jose, S. Marimuthu, T. Sathish, and J. G. Murali, "Influences of titanium carbide on behaviour of jute fiber made epoxy composite for automotive usage," in AIP Conference Proceedings, 2025, p. 020296.
- [29]. S. Karthikeyan, S. Manivannan, R. Venkatesh, S. Karthikeyan, R. Anand, and S. Sasikaran, "Optimization and Characteristics of Multimodal Binder on Polymer Nanocomposite for Lightweight

- Applications," Journal of Environmental Nanotechnology, vol. 13, pp. 207-216, 2024.
- [30]. S. Karthikeyan, S. Manivannan, R. Venkatesh, S. Karthikeyan, A. Kuila, and S. Lakshmanan, "Impact of Binder Selection on Functional Properties of Polymer Nanocomposite Featured with Metal Oxide Nanoparticle," Journal of Environmental Nanotechnology, vol. 13, pp. 262-270, 2024.
- [31]. S. Manivannan, R. Venkatesh, G. Kaliyaperumal, S. Karthikeyan, V. Mohanavel, M. E. M. Soudagar, et al., "Magnesium Alloy Hybrid Composite Properties are Featured with Boron Carbide Particle for Automotive Seat Frame Usage," SAE Technical Paper 0148-7191, 2024.
- [32]. S. Marimuthu, R. Ashokkumar, S. Karthick, A. Karthikeyan, S. Karthikeyan, and R. Gunasekaran, "Synthetic fiber featured epoxy composite for light weight application: Performance measures," in AIP Conference Proceedings, 2025, p. 020293.
- [33]. J. G. Murali, S. Marimuthu, P. Vignesh, P. Prakash, G. V. Kaliyannan, and S. Karthikeyan, "Influences of silicon carbide particles on tensile performance and hardness behavior of polyethylene composites made via injection mold," in AIP Conference Proceedings, 2025, p. 020292.
- [34]. P. Muthugounder, R. D. Kumar, S. Ganesan, A. Gowrishankar, S. Karthikeyan, and B. E. Jebasingh, "Featuring of boron nitride on high density polyethylene/sisal fiber composite: Characteristics evaluation," in AIP Conference Proceedings, 2025, p. 020246.
- [35]. S. Raja, R. Ali, S. Karthikeyan, R. Surakasi, R. Anand, N. Devarasu, et al., "Energy-Efficient FDM Printing of Sustainable Polymers: Optimization Strategies for Material and Process Performance," Applied Chemical Engineering, vol. 7, p. 10.59429, 2024.
- [36]. S. Raja, R. M. Ali, Y. V. Babar, R. Surakasi, S. Karthikeyan, B. Panneerselvam, et al., "Integration of nanomaterials in FDM for enhanced surface properties: Optimized manufacturing approaches," Applied Chemical Engineering, vol. 7, 2024.
- [37]. S. Raja, M. A. Rusho, K. C. Sekhar, K. S. Kumar, K. Alagarraja, A. P. Kumar, et al., "Innovative surface engineering of sustainable polymers: Toward green and high-performance materials," Applied Chemical Engineering, vol. 7, 2024.
- [38]. A. Saravanakumar, J. G. Murali, A. Kuila, S. Karthikeyan, S. Ganesan, and A. Gowrishankar, "Biodegradable bast fiber made polypropylene composite via hot compression: Characteristics study," in AIP Conference Proceedings, 2025, p. 020291.
- [39]. N. Saravanan, S. Karthikeyan, S. Marimuthu, J. G. Murali, M. Prasath, and A. Gowrishankar, "Effect of surface treatment on characteristics of bast fiber incorporated polyethylene composite: Behavior study," in AIP Conference Proceedings, 2025, p. 020295.
- [40]. R. Subramani, R. M. Ali, R. Surakasi, D. R. Sudha, S. Karthick, S. Karthikeyan, et al., "Surface metamorphosis techniques for sustainable polymers: Optimizing material performance and environmental

- impact," Applied Chemical Engineering, vol. 7, pp. 11-11, 2024.
- [41]. R. Venkatesh, N. Aravindan, S. Manivannan, S. Karthikeyan, V. Mohanavel, M. E. M. Soudagar, et al., "Study of Natural Fiber Incorporated Polypropylene Composite Laminate for Lightweight Applications," SAE Technical Paper 0148-7191, 2024.
- [42]. R. Venkatesh, G. Kaliyaperumal, S. Manivannan, S. Karthikeyan, N. Aravindan, V. Mohanavel, et al., "Effect of Silicon Carbide Addition and Jute Fiber Surface Treatment on Functional Qualities of Low-Density Polyethylene Composites," SAE Technical Papers, 2024.
- [43]. R. Venkatesh, G. Kaliyaperumal, S. Manivannan, S. Karthikeyan, V. Mohanavel, M. E. M. Soudagar, et al., "Performance Evaluation of Nano Silicon Carbide Configured Aluminium Alloy with Titanium Nanocomposite via Semisolid Stir Cast," SAE Technical Paper 0148-7191, 2024.
- [44]. R. Venkatesh, G. Kaliyaperumal, S. Manivannan, S. Karthikeyan, V. Mohanavel, M. E. M. Soudagar, et al., "Characteristics of Magnesium Composite Reinforced with Silicon Carbide and Boron Nitride via Liquid Stir Processing," SAE Technical Paper 0148-7191, 2024.
- [45]. J. S. Ahmed, K. Satyasree, R. R. Kumar, O. Meenakshisundaram, and S. Shanmugavel, "A comprehensive review on recent developments of natural fiber composites synthesis, processing, properties, and characterization," Engineering Research Express, vol. 5, p. 032001, 2023.
- [46]. G. B. Balachandran, P. Narayanasamy, A. B. Alexander, P. W. David, R. K. Mariappan, M. E. Ramachandran, et al., "multi-analytical investigation of the physical, chemical, morphological, tensile, and structural properties of Indian mulberry (Morinda tinctoria) bark fibers," Heliyon, vol. 9, 2023.
- [47]. S. K. Mani, S. Selvaraj, G. Sivanantham, F. S. Arockiasamy, J. Iyyadurai, and M. Mani, "Advancements in chemical modifications using NaOH to explore the chemical, mechanical and thermal properties of natural fiber polymer composites (NFPC)," International Polymer Processing, vol. 39, pp. 406-432, 2024.
- [48]. T. Raja, M. Vinayagam, A. Venkataramanan, A. Mohankumar, A. Chinnathambi, S. A. Alharbi, et al., "Effect of nano alumina particles on Boehmeria nivea fiber-reinforced polyester green composite: biological, elemental and mechanical analysis," Optical and Quantum Electronics, vol. 56, p. 538, 2024.