Special Issue, ICMST-2025 ISSN No: -2456-2165

Eco-Friendly Polymer Composites Using Chemically Modified Natural Fibers

T. Dharanipriya¹

¹Agricultural Engineering, Erode Sengunthar Engineering College, Erode, Tamilnadu, India

Publication Date: 2025/11/21

Abstract: The increasing awareness of environmental protection and sustainability has led to the development of natural fiber-reinforced polymer composites as alternatives to conventional synthetic materials. These composites offer renewability, biodegradability, and cost-effectiveness. However, poor fiber—matrix adhesion limits their mechanical performance. This study focuses on developing eco-friendly polymer composites reinforced with chemically modified natural fibers such as jute, sisal, and banana. Alkali and silane treatments were used to enhance fiber surface characteristics. Mechanical, thermal, and morphological analyses revealed that chemical modification significantly improves tensile and flexural properties, thermal stability, and water resistance. The results demonstrate the potential of these composites in sustainable engineering applications such as automotive, packaging, and construction industries.

Keywords: Natural Fibers, Polymer Composites, Chemical Modification, Eco-Friendly Materials, Fiber–Matrix Interface, Sustainability

How to Cite: T. Dharanipriya (2025). Eco-Friendly Polymer Composites Using Chemically Modified Natural Fibers. *International Journal of Innovative Science and Research Technology*, (ICMST–2025), 26-30. https://doi.org/10.38124/ijisrt/25nov750

I. INTRODUCTION

The rapid growth of industries relying on composite materials has prompted significant research into sustainable alternatives that reduce environmental impact. Synthetic fibers such as glass, carbon, and aramid dominate the composite market due to their superior strength and stiffness. However, their production consumes large amounts of energy and relies heavily on non-renewable resources, leading to issues of recyclability and waste management.[1-4]

Natural fibers derived from plants such as jute, sisal, flax, banana, and coir are gaining attention as replacements for synthetic reinforcements. They are abundant, lightweight, renewable, biodegradable, and cost-effective. Their low density also contributes to a high specific strength-to-weight ratio, which is desirable in automotive and structural applications.[5-9]

Despite these advantages, the hydrophilic nature of natural fibers results in poor interfacial adhesion with nonpolar polymer matrices such as polypropylene (PP) or polylactic acid (PLA). This leads to reduced load transfer efficiency and degraded mechanical performance. To overcome this, chemical surface modification techniques such as alkali, silane, acetylation, and permanganate treatments are employed to remove surface impurities, alter surface energy, and introduce functional groups that enhance fiber–matrix bonding.[10-12]

This research aims to develop and characterize ecofriendly polymer composites reinforced with chemically modified natural fibers and to evaluate their structural, thermal, and water absorption characteristics for potential industrial applications.[13-16] ISSN No: -2456-2165

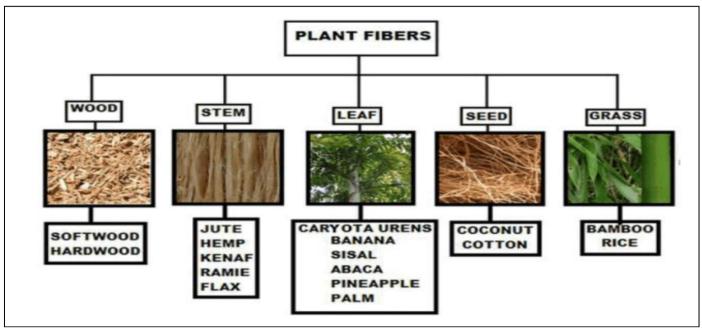


Fig 1 Classification of Plant Fibers (Image Courtesy: Researchgate.net)

II. MATERIALS AND METHODS

A. Materials

Matrix Materials:

Polylactic acid (PLA) and polypropylene (PP) were chosen as polymer matrices for their distinct biodegradable and thermoplastic characteristics.

> Reinforcing Fibers:

Jute, sisal, and banana fibers were sourced locally, washed, and dried prior to treatment.

> Chemical Reagents:

Sodium hydroxide (NaOH), silane coupling agent (3-aminopropyltriethoxy-silane), acetic acid, ethanol, and distilled water were used for surface modification.[17-21]

B. Chemical Treatment of Fibers

➤ Alkali Treatment (Mercerization):

Fibers were immersed in a 5 wt% NaOH solution for 4 h at room temperature. The process removes lignin, hemicellulose, pectin, and waxy substances from the fiber surface. This increases surface roughness, exposes cellulose fibrils, and enhances the number of active hydroxyl sites for bonding. After treatment, fibers were washed with distilled water until neutral pH was achieved and oven-dried at 80°C for 24 h.

> Silane Treatment:

Alkali-treated fibers were further soaked in a 2% silane solution prepared in an ethanol—water mixture (pH ≈ 4.5) for 1 h. Silane acts as a coupling agent that forms siloxane linkages with the hydroxyl groups of the fiber and covalent bonds with the polymer matrix, thereby enhancing interfacial adhesion. The fibers were subsequently dried at 60°C for 12 h before use.[22-25]

C. Composite Fabrication

Composites were fabricated using compression molding technique. The treated and untreated fibers were mixed with the polymer matrix at different fiber loadings (10%, 20%, and 30% by weight).

The mixture was preheated and pressed at 180°C for PLA and 200°C for PP, under 5 MPa pressure for 10 minutes. After cooling, specimens were cut according to ASTM standards for mechanical and physical testing.[26-29]

D. Characterization Methods

➤ Mechanical Properties:

Tensile (ASTM D638) and flexural (ASTM D790) tests were performed using a universal testing machine (UTM).

> Thermal Properties:

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were conducted to assess thermal degradation and crystallinity.

➤ Morphological Analysis:

Scanning Electron Microscopy (SEM) was employed to examine fiber-matrix interface and fracture surfaces.

➤ Moisture Absorption Test:

Samples were immersed in distilled water for 48 h at room temperature; moisture uptake (%) was determined from weight gain.[30-32]

III. RESULTS AND DISCUSSION

Mechanical Properties

Treated fiber composites exhibited substantial improvements in mechanical performance compared to untreated composites.

For 20% silane-treated jute fiber composites, tensile strength increased by approximately 38%, and flexural

ISSN No: -2456-2165

strength by 32% over untreated samples. This is due to improved interfacial adhesion that facilitates efficient stress transfer between the matrix and fibers. Alkali treatment is also enhanced interlocking at the fiber surface, while silane provided chemical bonding, thereby combining mechanical and chemical reinforcement effects. [33-37]

> Thermal Stability

TGA results indicated that untreated composites began degradation at 290°C, while silane-treated fiber composites showed onset degradation around 305–315°C. This improvement in thermal stability can be attributed to better matrix encapsulation of fibers and reduced micro-void formation. DSC analysis revealed a slight increase in crystallization temperature, suggesting enhanced nucleation due to treated fiber surfaces.[38-40]

➤ Morphological Analysis

SEM micrographs revealed that untreated composites displayed voids, fiber pull-out, and poor adhesion at the interface. In contrast, chemically treated fibers were well-embedded within the matrix, with smooth fracture surfaces and minimal voids. The improved compatibility is evident from the cohesive fracture behavior, validating the effectiveness of surface modification in promoting interfacial bonding.[41]

➤ Water Absorption Behavior

Moisture uptake in untreated fiber composites reached 8–10% by weight after 48 h immersion, whereas silane-treated composites absorbed only 4–5%. The reduction in hydrophilicity is due to the substitution of hydroxyl groups and the presence of silane layers that prevent water penetration. Lower moisture absorption enhances dimensional stability, which is crucial for outdoor and packaging applications.[42, 43]

➤ Comparative Performance

Among all fiber types, jute fiber composites showed the best mechanical performance, while sisal composites exhibited superior toughness. Banana fiber composites had excellent impact resistance due to their flexible structure. Overall, chemically modified fibers consistently outperformed untreated fibers in every property evaluated. [44-48]

IV. APPLICATIONS

The improved eco-friendly composites are ideal for replacing traditional glass-fiber composites in semi-structural and consumer applications, such as:

- Automotive: Door panels, dashboards, seat backs, and insulation boards.
- Construction: Ceiling tiles, wall partitions, and decorative laminates.
- Packaging: Biodegradable trays, films, and containers.
- Consumer goods: Furniture panels, sporting goods, and luggage shells.

Their biodegradability and low environmental impact also make them attractive for green manufacturing and circular economy initiatives.[49-54]

V. CONCLUSION

https://doi.org/10.38124/ijisrt/25nov750

This study successfully demonstrates the potential of chemically modified natural fibers as reinforcements for ecofriendly polymer composites. Alkali and silane treatments significantly improved fiber-matrix adhesion, leading to notable enhancements in mechanical, thermal, and moistureresistance properties. The treated composites showed up to 40% improvement in strength, higher thermal stability, and reduced hydrophilicity. The findings confirm that natural fiber-based composites are viable, sustainable alternatives to materials. promoting both environmental conservation and material innovation. Future work will focus on hybridization with nanofillers and exploring biodegradable polymer matrices to further enhance performance and reduce environmental footprint.

REFERENCES

- [1]. N. Abilash and M. Sivapragash, "Environmental benefits of eco-friendly natural fiber reinforced polymeric composite materials," International Journal of Application or Innovation in Engineering & Management, vol. 2, pp. 53-59, 2013.
- [2]. K. Begum and M. Islam, "Natural fiber as a substitute to synthetic fiber in polymer composites: a review," Res. J. Eng. Sci, vol. 2278, p. 9472, 2013.
- [3]. S. Behera, R. K. Gautam, and S. Mohan, "The effect of eco-friendly chemical treatment on sisal fiber and its epoxy composites: thermal, mechanical, tribological and morphological properties," Cellulose, vol. 29, pp. 9055-9072, 2022.
- [4]. J. K. Bhatia, B. S. Kaith, and S. Kalia, "Recent developments in surface modification of natural fibers for their use in biocomposites," Biodegradable Green Composites, pp. 80-117, 2016.
- [5]. G. Bogoeva-Gaceva, M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, et al., "Natural fiber eco-composites," Polymer composites, vol. 28, pp. 98-107, 2007.
- [6]. F. C. Cabrera, "Eco-friendly polymer composites: A review of suitable methods for waste management," Polymer Composites, vol. 42, pp. 2653-2677, 2021.
- [7]. V. Fiore, M. Luciano, and L. Calabrese, "Green chemical treatments of eco-friendly fibers and polymers for the sustainable environment," in Eco-Friendly Fiber Reinforced Polymer Composite Materials, ed: Elsevier, 2026, pp. 377-404.
- [8]. V. Fiore, T. Scalici, F. Nicoletti, G. Vitale, M. Prestipino, and A. Valenza, "A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites," Composites Part B: Engineering, vol. 85, pp. 150-160, 2016.
- [9]. H. Guesmi, A. Adili, and L. Dehmani, "Effect of fibers surface treatments on the mechanical and thermal properties of composites reinforced by eco-friendly fibers," International Journal of Environmental Science and Technology, vol. 20, pp. 9505-9520, 2023.
- [10]. J. Jain and S. Sinha, "Pineapple leaf fiber polymer composites as a promising tool for sustainable, eco-

friendly composite material," Journal of Natural Fibers, vol. 19, pp. 10031-10052, 2022.

- [11]. S. Kalia, B. Kaith, and I. Kaur, "Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review," Polymer Engineering & Science, vol. 49, pp. 1253-1272, 2009.
- [12]. J. J. Kenned, K. Sankaranarayanasamy, and C. S. Kumar, "Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: A review," Polymers and Polymer Composites, vol. 29, pp. 1011-1038, 2021.
- [13]. N. Lu, S. Oza, and M. G. Tajabadi, "Surface modification of natural fibers for reinforcement in polymeric composites," Surface modification of biopolymers, pp. 224-237, 2015.
- [14]. S. K. Mani, S. Selvaraj, G. Sivanantham, F. S. Arockiasamy, J. Iyyadurai, and M. Mani, "Advancements in chemical modifications using NaOH to explore the chemical, mechanical and thermal properties of natural fiber polymer composites (NFPC)," International Polymer Processing, vol. 39, pp. 406-432, 2024.
- [15]. H. Moustafa, A. M. Youssef, N. A. Darwish, and A. I. Abou-Kandil, "Eco-friendly polymer composites for green packaging: Future vision and challenges," Composites Part B: Engineering, vol. 172, pp. 16-25, 2019.
- [16]. A. B. Nair and R. Joseph, "Eco-friendly biocomposites using natural rubber (NR) matrices and natural fiber reinforcements," in Chemistry, manufacture and applications of natural rubber, ed: Elsevier, 2014, pp. 249-283.
- [17]. V. L. Narayana and L. B. Rao, "A brief review on the effect of alkali treatment on mechanical properties of various natural fiber reinforced polymer composites," Materials Today: Proceedings, vol. 44, pp. 1988-1994, 2021.
- [18]. N. Nurhania, S. Syarifuddin, B. Armynah, and D. Tahir, "Fiber-reinforced polymer composite: Higher performance with renewable and eco-friendly plant-based fibers," Polymers from Renewable Resources, vol. 14, pp. 215-233, 2023.
- [19]. S. PA, K. Joseph, U. G, and S. Thomas, "Surface-modified sisal fiber-reinforced eco-friendly composites: Mechanical, thermal, and diffusion studies," Polymer composites, vol. 32, pp. 131-138, 2011.
- [20]. A. Ramachandran, S. Mavinkere Rangappa, V. Kushvaha, A. Khan, S. Seingchin, and H. N. Dhakal, "Modification of fibers and matrices in natural fiber reinforced polymer composites: a comprehensive review," Macromolecular rapid communications, vol. 43, p. 2100862, 2022.
- [21]. R. A. Reddy, K. Yoganandam, and V. Mohanavel, "Effect of chemical treatment on natural fiber for use in fiber reinforced composites—Review," Materials Today: Proceedings, vol. 33, pp. 2996-2999, 2020.
- [22]. P. Sahu and M. Gupta, "Eco-friendly treatment and coating for improving the performance of sisal composites," Polymer Testing, vol. 93, p. 106923, 2021.

- [23]. S. J. Skosana, C. Khoathane, and T. Malwela, "Driving towards sustainability: A review of natural fiber reinforced polymer composites for eco-friendly automotive light-weighting," Journal of Thermoplastic Composite Materials, vol. 38, pp. 754-780, 2025.
- [24]. K. Srinivas, A. L. Naidu, and M. R. Bahubalendruni, "A review on chemical and mechanical properties of natural fiber reinforced polymer composites," International Journal of Performability Engineering, vol. 13, p. 189, 2017.
- [25]. S. Suresh, D. Sudhakara, and B. Vinod, "Investigation on industrial waste eco-friendly natural fiber-reinforced polymer composites," Journal of Bio-and Tribo-Corrosion, vol. 6, p. 40, 2020.
- [26]. F. Tanasă, M. Zănoagă, C. A. Teacă, M. Nechifor, and A. Shahzad, "Modified hemp fibers intended for fiber-reinforced polymer composites used in structural applications—A review. I. Methods of modification," Polymer Composites, vol. 41, pp. 5-31, 2020.
- [27]. Y. G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai, and S. Siengchin, "Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review," Frontiers in materials, vol. 6, p. 226, 2019.
- [28]. A. M. Varghese and V. Mittal, "Surface modification of natural fibers," Biodegradable and biocompatible polymer composites: processing, properties and applications, vol. 115, 2017.
- [29]. M. Zwawi, "A review on natural fiber bio-composites, surface modifications and applications," molecules, vol. 26, p. 404, 2021.
- [30]. G. Kaliyaperumal, C. Devanathan, S. Prabagaran, P. Prakash, Arivazhagan, and L. Suriyaprakash, "Featuring with sodium hydroxide processed bast fiber made polypropylene composite: Behaviour investigation," in AIP Conference Proceedings, 2025, p. 020099.
- [31]. J. G. Murali, S. Marimuthu, P. Vignesh, P. Prakash, G. V. Kaliyannan, and S. Karthikeyan, "Influences of silicon carbide particles on tensile performance and hardness behavior of polyethylene composites made via injection mold," in AIP Conference Proceedings, 2025, p. 020292.
- [32]. D. Gunaseelan, M. N. Kumar, and P. Prakash, "Wind and Solar Mobile Charging Station with IoT," in 2024 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 2024, pp. 1-6.
- [33]. R. Janani, S. Bhuvana, V. Geethalakshmi, R. Jeyachitra, K. Sathishkumar, R. Balu, et al., "Micro and nano plastics in food: A review on the strategies for identification, isolation, and mitigation through photocatalysis, and health risk assessment," Environmental Research, vol. 241, p. 117666, 2024.
- [34]. V. Geethalaksmi and C. Theivarasu, "Synthesis and Characterization of Samarium (III (and Gadolinium (III) Complexes Containing2-Methoxy-6-((2-(Piperazin-1yl) Ethylimino) Methyl) Phenol as Ligand," International Journal of ChemTech Research, vol. 9, pp. 941-949, 2016.

ISSN No: -2456-2165

- [35]. V. Geethalakshmi, C. Theivarasu, N. Nalini, and V. Gomathi, "Spectroscopic, microbial studies and invitro anticancer activity of Pyridine Schiff base ligand and its lanthanum complexes," Bulletin of Materials Science, vol. 46, p. 223, 2023.
- [36]. V. Geethalakshmi, N. Nalini, and C. Theivarasu, "Anticancer activity of morpholine schiff base complexes," in AIP Conference Proceedings, 2020, p. 100016.
- [37]. N. Nalini, K. S. Thangamani, V. Geethalakshmi, and S. Nithyashree, "14 - Innovative nanosensors for detection of dyes," in Nanotechnology-based Sensors for Detection of Environmental Pollution, F. M. Policarpo Tonelli, A. Roy, M. Ozturk, and H. C. A. Murthy, Eds., ed: Elsevier, 2024, pp. 265-275.
- [38]. K. Krishnasamy, J. Palanisamy, and M. Bhuvaneshwarana, "A review on natural fiber reinforced biocomposites properties and its applications," in AIP Conference Proceedings, 2024, p. 020015.
- [39]. J. Venkatesh, M. Bhuvaneshwaran, and P. Jagadeesh, "Experimental Analysis on Mechanical Properties of Hemp/Rice Cereal Fibre Reinforced Hybrid Composites for Light Weight Applications," in International Symposium on Lightweight and Sustainable Polymeric Materials, 2023, pp. 377-385.
- [40]. J. Palanisamy, K. Karthik, G. Subbiah, and K. K. Priya, "Advanced Characterization of Alangium Salviifolium Bark Fibre: Thermal, Structural, and Chemical Properties for High-Performance Polymer Composite Reinforcement," Results in Engineering, p. 105296, 2025.
- [41]. A. N. Arulsamy, G. S, B. Murugesan, S. J. Samuel Chelladurai, M. K. Selvaraj, V. Palanivel, et al., "Experimental investigation on microstructure and mechanical properties of friction welded dissimilar alloys," Advances in Materials Science and Engineering, vol. 2022, p. 5769115, 2022.
- [42]. S. Sundaram and M. Kumarasamy, "Joint characteristics and process parameters optimization on friction stir welding of AA 2024-T6 and AA 5083-H111 aluminium alloys," Journal of the Serbian Chemical Society, vol. 89, pp. 1387-1399, 2024.
- [43]. E. M. Sundaram, V. Santhosh, M. Sundaresan, and S. Sakthivel, "Machine Learning Model for Predicting Tensile Strength of Aluminium Alloy 5083," in 2025 International Conference on Advanced Computing Technologies (ICoACT), 2025, pp. 1-6.
- [44]. A. Venkataramanan, M. Dhanenthiran, K. Balasubramanian, K. Mallieswaran, and M. Vinosh, "Predict the fatigue life of solution treated and aged TIG welded AA6061 aluminum alloy joints," in AIP Conference Proceedings, 2022, p. 020020.
- [45]. A. Venkataramanan, J. J. Praveen, B. A. Kumar, R. Vinothkumar, and M. Vinosh, "Fatigue life assessment on artificially aged TIG welded AA6061 aluminum alloy joints," in AIP Conference Proceedings, 2022, p. 020013.
- [46]. A. Venkataramanan, M. Subramaniyan, S. L. Kumar, R. R. Jawahar, and L. Prabhu, "Application of CCD in RSM to obtain optimize treatment of tribological

- characteristics of WC-10Co-4Cr nanoceramic thermal spray coating," Materials Today: Proceedings, vol. 45, pp. 6160-6170, 2021.
- [47]. T. Raja, M. Vinayagam, A. Venkataramanan, A. Mohankumar, A. Chinnathambi, S. A. Alharbi, et al., "Effect of nano alumina particles on Boehmeria nivea fiber-reinforced polyester green composite: biological, elemental and mechanical analysis," Optical and Quantum Electronics, vol. 56, p. 538, 2024.
- [48]. E. Natarajan, A. Venkataramanan, R. Sasikumar, S. Parasuraman, and G. Kosalishkwaran, "Dynamic Analysis of Compliant LEG of a Stewart-Gough Type Parallel Mechanism," in 2019 IEEE Student Conference on Research and Development (SCOReD), 2019, pp. 123-128.
- [49]. E. Murugesan and G. R. Kannan, "An experimental study on synthesis of ternary biodiesel through potassium hydroxide catalyst transesterification," Environmental Progress & Sustainable Energy, vol. 42, p. e13958, 2023.
- [50]. G. Pradeep, T. Sankaramoorthy, M. Elango, T. N. Kumar, and R. Girimurugan, "Structural analysis and mechanical properties of thermal battery by flexible phase change materials [PCM]," Materials Today: Proceedings, vol. 56, pp. 3196-3200, 2022.
- [51]. J. Mohanraj, G. Kannan, and M. Elango, "Intensification of Biodiesel Production by Optimizing Process Parameters from Waste Cooking Oil through Response Surface Methodology," in IOP Conference Series: Earth and Environmental Science, 2022, p. 012017.
- [52]. M. Elango, C. S. Dhanalakshmi, P. Madhu, and T. V. Muni, "Improving the suitability of triple blend biodiesel in a low heat rejection diesel engine with the addition of nanoparticle through performance and emission characteristics analysis," Indian Journal of Chemical Technology, vol. 32, 2025.
- [53]. M. Marappan, A. Mahendran, G. Ravivarman, K. S. Kumar, M. Elango, S. Kesavan, et al., "Optimized Cooling Solutions for Lithium-Ion Batteries in Electric Vehicles using PCM Composites," in E3S Web of Conferences, 2025, p. 02011.
- [54]. R. Kamalakannan, G. Pradeep, T. NaveenKumar, and M. Elango, "Machining parameters in WEDM of EN31 steel using Taguchi technique optimization," Materials Today: Proceedings, vol. 50, pp. 1781-1785, 2022.