Special Issue, ICMST-2025

ISSN No: -2456-2165

Mechanical Behaviour and Tensile Strength Analysis of Natural Fiber-Reinforced Epoxy Composites: A Study on SEM, Thermal and Chemical Properties

Durai S.¹; Sangeeth Kumar V.¹; Suriya Prakash B.¹; Dhanish P.¹

¹Department of Mechanical Engineering, K.S.R. College of Engineering, KSR Kalvi Nagar, Tiruchengode, Tamil Nadu

Publication Date: 2025/11/21

https://doi.org/10.38124/ijisrt/25nov752

Abstract: Natural fiber-reinforced epoxy composites have become a subject of significant research due to their eco-friendly nature, lightweight properties, and competitive mechanical performance compared to traditional synthetic composites. This study focuses on the mechanical behavior and tensile strength characteristics of natural fiber-reinforced epoxy composites and correlates them with microstructural, thermal, and chemical analyses. The investigation emphasizes the use of advanced techniques such as scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR) to understand the fiber-matrix interface, thermal stability, and chemical bonding mechanisms. The results show that appropriate fiber surface treatments and optimized fiber loading enhance the tensile strength and interfacial adhesion between the natural fibers and epoxy matrix. The analysis further reveals that the improved thermal resistance and chemical compatibility contribute to the composite's superior performance in engineering applications. This comprehensive characterization provides a framework for designing high-strength, sustainable composite materials for structural, automotive, and aerospace applications.

Keywords: Natural Fibers, Epoxy Composites, Tensile Strength, Mechanical Properties, SEM, TGA, FTIR, Thermal Stability, Fiber–Matrix Adhesion, Sustainable Materials.

How to Cite: Durai S.; Sangeeth Kumar V.; Suriya Prakash B.; Dhanish P. (2025). Mechanical Behaviour and Tensile Strength Analysis of Natural Fiber-Reinforced Epoxy Composites: A Study on SEM, Thermal and Chemical Properties. *International Journal of Innovative Science and Research Technology*, (ICMST–2025), 43-48. https://doi.org/10.38124/ijisrt/25nov752

I. INTRODUCTION

In recent years, the search for sustainable and high-performance materials has encouraged a shift from conventional synthetic fibers to natural fiber reinforcements in polymer composites. Natural fibers such as jute, hemp, flax, sisal, and coir are abundantly available, renewable, biodegradable, and low-cost. They have shown excellent potential for use in polymer matrices such as epoxy, polyester, and polypropylene, particularly in semi-structural and structural applications. Among polymer matrices, epoxy resin is one of the most widely used due to its high adhesive strength, good dimensional stability, and chemical resistance.[1-4]

However, natural fibers possess inherent variability in composition, surface morphology, and moisture absorption, which affect their compatibility with hydrophobic polymer matrices. As a result, understanding the mechanical behavior, especially tensile properties, is vital to ensure reliable performance. The fiber—matrix interface plays a crucial role in transferring load efficiently from the matrix to the reinforcement. Weak bonding leads to fiber pull-out and debonding under stress, which reduces the mechanical integrity of the composite.[5-15]

Advanced characterization techniques such as scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR) provide valuable insights into the microstructural, thermal, and chemical features of the composite system.[16]

https://doi.org/10.38124/ijisrt/25nov752

Special Issue, ICMST-2025

ISSN No: -2456-2165

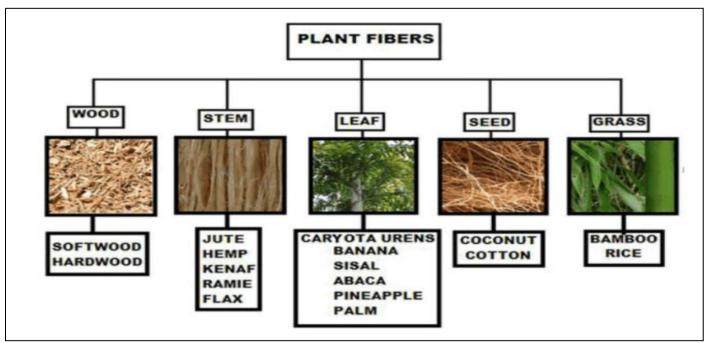


Fig 1 Classification of Plant Fibers (Image Courtesy: Researchgate.net)

These analyses reveal the quality of adhesion, the degradation behavior under heat, and the chemical functionalities that influence composite performance. The combination of these parameters governs the overall tensile strength and mechanical durability of natural fiber-reinforced epoxy composites.[17-21]

Thus, this paper aims to examine the tensile behavior of natural fiber-reinforced epoxy composites and correlate it with microstructural, thermal, and chemical characteristics. Such comprehensive understanding is essential to optimize the design and processing of natural fiber composites for engineering applications.[22-24]

II. MATERIAL PREPARATION AND EXPERIMENTAL METHODS

The preparation of natural fiber-reinforced epoxy composites involves several critical steps, including fiber extraction, surface treatment, composite fabrication, and testing. The choice of natural fiber and surface treatment significantly influences the mechanical performance of the resulting composite.[25, 26]

> Fiber Preparation and Treatment

Natural fibers are first extracted from plant sources through mechanical or retting processes, depending on the fiber type. After extraction, they are cleaned and dried to remove impurities and moisture. A chemical surface treatment, typically using an alkali solution (NaOH), is applied to enhance surface roughness and remove lignin, hemicellulose, and waxes. This treatment exposes cellulose fibrils, improving mechanical interlocking with the epoxy resin. Some studies also use silane or peroxide coupling agents to improve chemical bonding at the interface.[27-31]

➤ Composite Fabrication

The epoxy matrix is prepared by mixing the resin with a hardener in a specific stoichiometric ratio. The treated fibers are arranged either in unidirectional or random orientations, and the epoxy mixture is poured into a mold to form the composite laminate. The composite is cured under controlled temperature and pressure to ensure uniform cross-linking of the resin.[32-35]

➤ Mechanical Testing

The tensile behavior of the composites is evaluated using a universal testing machine (UTM) according to ASTM standards. Parameters such as ultimate tensile strength, Young's modulus, and elongation at break are measured. These values provide direct insights into the load-bearing capacity and stiffness of the composite material.

By optimizing fiber volume fraction and treatment conditions, the mechanical performance of the composites can be tailored for specific applications such as lightweight panels, casings, and automotive interiors.[36-42]

III. MECHANICAL AND TENSILE BEHAVIOR

The mechanical behavior of natural fiber-reinforced epoxy composites depends on various factors, including fiber type, fiber-matrix adhesion, fiber orientation, and loading conditions. Among the mechanical properties, tensile strength is one of the most important indicators of performance. It represents the ability of the material to resist deformation or failure under axial loading.[43, 44]

> Tensile Strength and Modulus

The tensile strength of untreated natural fiber–epoxy composites is often lower due to poor interfacial adhesion caused by surface impurities and hydrophilic nature of fibers. However, after alkali or silane treatment, significant

Special Issue, ICMST-2025

ISSN No: -2456-2165

improvement in tensile strength is observed. The enhanced interfacial bonding allows more efficient stress transfer from the matrix to the fibers, reducing the risk of fiber pull-out and interfacial debonding. In many cases, a moderate fiber loading (around 20-30 wt%) provides the best balance between strength and toughness, as excessive fiber content epoxy network. can lead to void formation or agglomeration, weakening the composite,[45-48]

> Failure Mechanism

SEM analysis of fractured surfaces provides visual evidence of the failure mechanisms involved. In well-bonded composites, fiber breakage dominates, indicating effective stress transfer. In poorly bonded composites, fiber pull-out and matrix cracking are observed, demonstrating interfacial failure. This distinction is critical because the interface quality directly controls mechanical durability under cyclic or impact loading.[49-51]

> Influence of Fiber Orientation

The orientation of fibers also plays a vital role in tensile behavior. Unidirectional composites exhibit high tensile strength along the fiber direction but weak transverse strength. Randomly oriented composites, on the other hand, provide isotropic mechanical response but lower overall stiffness. By aligning fibers strategically or using woven mats, the mechanical performance can be optimized for specific load-bearing requirements.[52]

Overall, natural fiber-reinforced epoxy composites exhibit an excellent combination of strength, stiffness, and ductility, making them ideal for medium-load applications where sustainability and weight reduction are priorities.

IV. SEM, THERMAL, AND CHEMICAL **CHARACTERIZATION**

➤ Scanning Electron Microscopy (SEM)

SEM provides crucial information about the microstructure and fracture morphology of the composite. The images reveal how effectively the fibers are bonded to the epoxy matrix. After chemical treatment, the fiber surfaces appear rougher, with visible fibrillation that promotes mechanical interlocking. SEM micrographs of fractured specimens often show fewer voids and better adhesion for treated fibers compared to untreated ones. The quality of interfacial bonding observed under SEM correlates directly with the tensile strength values obtained from mechanical tests.[53, 54]

➤ Thermal Analysis (TGA and DSC)

Thermal analysis helps to assess the stability of the composite under heat. Thermogravimetric analysis (TGA) shows three major stages of decomposition: moisture loss below 120°C, hemicellulose degradation between 200°C and 300°C, and cellulose decomposition between 300°C and 400°C. The residual char content at 600°C provides information about thermal resistance. Treated fibers exhibit higher degradation onset temperatures, indicating improved thermal stability due to the removal of thermally unstable components.

https://doi.org/10.38124/ijisrt/25nov752 Differential scanning calorimetry (DSC) measures thermal transitions such as glass transition (Tg) and melting

behavior. The Tg of the composite typically increases after surface treatment, suggesting stronger fiber-matrix interaction and restricted molecular mobility within the

> Chemical Characterization (FTIR)

Fourier-transform infrared spectroscopy (FTIR) reveals the functional groups and chemical bonding mechanisms within the composite. Characteristic peaks around 3400 cm⁻¹ correspond to -OH stretching of cellulose, while peaks at 1730 cm⁻¹ indicate carbonyl groups in hemicellulose. After treatment, reduced intensity in hemicellulose and lignin peaks confirms their removal, leading to enhanced hydrophobic epoxy compatibility with the Additionally, the emergence of Si-O-Si and Si-O-C bonds in silane-treated fibers indicates improved chemical bonding between fiber and matrix.

V. DISCUSSION AND CONCLUSION

The combination of mechanical, microstructural, thermal, and chemical analyses provides a comprehensive understanding of the performance of natural fiber-reinforced epoxy composites. The findings demonstrate that surfacetreated fibers significantly improve tensile strength and stiffness due to enhanced fiber-matrix adhesion. SEM analysis confirms that treated fibers exhibit better interfacial bonding and fewer voids, leading to improved load transfer and reduced failure initiation sites.

Thermal analysis indicates that treated composites can withstand higher processing and operating temperatures, while FTIR studies validate the formation of stronger chemical bonds between fiber and epoxy. improvements collectively make natural fiber-reinforced epoxy composites highly suitable for automotive panels, interior components, sporting goods, and lightweight structural parts.

The study concludes that the mechanical behavior and tensile strength of natural fiber-epoxy composites are highly dependent on the synergy between chemical treatment, interfacial morphology, and thermal stability. With continued optimization and hybridization techniques, natural fibers can effectively replace synthetic reinforcements in numerous engineering applications, offering a pathway toward sustainable, high-performance composite materials.

REFERENCES

- [1]. J. Sethubathi, "Recent Progress in Polymer Matrix Composites with Chemically Modified Natural Fiber Reinforcement," International Journal of Innovative Science and Research Technology, vol. 10, pp. 828-833, 2025.
- [2]. J. Sethubathi, "Developments in Eco-friendly Composite Materials: Applications of Chemically Treated Natural Fibers in Polymers," International

ISSN No: -2456-2165

- Journal of Innovative Science and Research Technology, vol. 10, pp. 823-827, 2025.
- [3]. J. Sethubathi, "Evaluation of Natural Plant Fibers and their Hybrid Composites to Improve Polymer Strength," International Journal of Innovative Science and Research Technology, vol. 10, pp. 813-817, 2025.
- [4]. J. Sethubathi, "Chemical Compatibility and Performance Optimization in Natural Fiber-Based Polymer Composites," International Journal of Innovative Science and Research Technology, vol. 10, pp. 834-838, 2025.
- [5]. M. Arul, K. Sasikumar, M. Sambathkumar, R. Gukendran, and N. Saravanan, "Mechanical and fracture study of hybrid natural fiber reinforced composite—Coir and sugarcane leaf sheath," Materials Today: Proceedings, vol. 33, pp. 2795-2797, 2020.
- [6]. S. Karthi, K. Sasikumar, R. Sangeetha, and N. Saravanan, "Effect of relative content on mechanical properties of coir and Napier grass fibers reinforced hybrid polyester composites," Materials Today: Proceedings, vol. 33, pp. 2929-2933, 2020.
- [7]. P. S. S. N. Saravanan, T.A.Sukantha, T.Natarajan, "Extraction and Characterization of New Cellulose Fiber from the Agrowaste of Lagenaria Siceraria (Bottle Guard) Plant," JournalofAdvancesin Chemistry, vol. 12, pp. 4382-4388, 2016.
- [8]. P. S. S. N. Saravanan, "Characterization of New Cellulose Fiber from the Molina (Lagenaria Siceraria) Plant," Journal of Applied Research and Technology, vol. 16, pp. 204-210, 2018.
- [9]. P. S. S. N. Saravanan, T.A.Sukantha., "Surface modification of eco-friendly ligno-cellulosic fibre extracted from Lagenaria siceraria plant agro waste: a sustainable approach," International Journal of Environment and Sustainable Development, vol. 17, pp. 366-378, 2018.
- [10]. P. M. N.Saravanan, P.S.Sampath, "PINEAPPLE LEAF FIBER REINFORCED POLYMER COMPOSITE AS A REPLACEMENT FOR ABS PLASTICS IN INDUSTRIAL SAFETY HELMET SHELL A REVIEW," International Journal of Software & Hardware Research in Engineering, vol. 3, pp. 36-46, 2015.
- [11]. S. Nagappan, S. P. Subramani, S. K. Palaniappan, and B. Mylsamy, "Impact of alkali treatment and fiber length on mechanical properties of new agro waste Lagenaria Siceraria fiber reinforced epoxy composites," Journal of Natural Fibers, vol. 19, pp. 6853-6864, 2022.
- [12]. N. Saravanan, "Mechanical Properties of Pineapple Leaf Fiber Reinforced Epoxy Composites," in Intelligent Manufacturing Systems – NCIMS 2011, 2011.
- [13]. N. Saravanan, "Influence on Fiber Parameters on Mechanical Properties of Natural Fiber Reinforced Polymer Composites," in Recent Trends In Mechatronics And Industrial Safety Engineering, 2015.

- [14]. N. Saravanan, N. Kumar, G. Bharathiraja, and R. Pandiyarajan, "Optimization and characterization of surface treated Lagenaria siceraria fiber and its reinforcement effect on epoxy composites," Pigment & Resin Technology, vol. 52, pp. 273-284, 2022.
- [15]. K. Sasikumar, K. Dineshkumar, K. Deeban, M. Sambathkumar, and N. Saravanan, "Effect of shot peening on surface properties of Al7075 hybrid aluminum metal matrix composites," Materials Today: Proceedings, vol. 33, pp. 2792-2794, 2020.
- [16]. A. N. Arulsamy, G. S, B. Murugesan, S. J. Samuel Chelladurai, M. K. Selvaraj, V. Palanivel, et al., "Experimental investigation on microstructure and mechanical properties of friction welded dissimilar alloys," Advances in Materials Science and Engineering, vol. 2022, p. 5769115, 2022.
- [17]. R. Janani, S. Bhuvana, V. Geethalakshmi, R. Jeyachitra, K. Sathishkumar, R. Balu, et al., "Micro and nano plastics in food: A review on the strategies for identification, isolation, and mitigation through photocatalysis, and health risk assessment," Environmental Research, vol. 241, p. 117666, 2024.
- [18]. V. Geethalaksmi and C. Theivarasu, "Synthesis and Characterization of Samarium (III (and Gadolinium (III) Complexes Containing2-Methoxy-6-((2-(Piperazin-1yl) Ethylimino) Methyl) Phenol as Ligand," International Journal of ChemTech Research, vol. 9, pp. 941-949, 2016.
- [19]. V. Geethalakshmi, C. Theivarasu, N. Nalini, and V. Gomathi, "Spectroscopic, microbial studies and invitro anticancer activity of Pyridine Schiff base ligand and its lanthanum complexes," Bulletin of Materials Science, vol. 46, p. 223, 2023.
- [20]. V. Geethalakshmi, N. Nalini, and C. Theivarasu, "Anticancer activity of morpholine schiff base complexes," in AIP Conference Proceedings, 2020, p. 100016.
- [21]. N. Nalini, K. S. Thangamani, V. Geethalakshmi, and S. Nithyashree, "14 Innovative nanosensors for detection of dyes," in Nanotechnology-based Sensors for Detection of Environmental Pollution, F. M. Policarpo Tonelli, A. Roy, M. Ozturk, and H. C. A. Murthy, Eds., ed: Elsevier, 2024, pp. 265-275.
- [22]. K. Krishnasamy, J. Palanisamy, and M. Bhuvaneshwarana, "A review on natural fiber reinforced biocomposites properties and its applications," in AIP Conference Proceedings, 2024, p. 020015.
- [23]. J. Venkatesh, M. Bhuvaneshwaran, and P. Jagadeesh, "Experimental Analysis on Mechanical Properties of Hemp/Rice Cereal Fibre Reinforced Hybrid Composites for Light Weight Applications," in International Symposium on Lightweight and Sustainable Polymeric Materials, 2023, pp. 377-385.
- [24]. J. Palanisamy, K. Karthik, G. Subbiah, and K. K. Priya, "Advanced Characterization of Alangium Salviifolium Bark Fibre: Thermal, Structural, and Chemical Properties for High-Performance Polymer Composite Reinforcement," Results in Engineering, p. 105296, 2025.

ISSN No: -2456-2165

- [25]. S. Sundaram and M. Kumarasamy, "Joint characteristics and process parameters optimization on friction stir welding of AA 2024-T6 and AA 5083-H111 aluminium alloys," Journal of the Serbian Chemical Society, vol. 89, pp. 1387-1399, 2024.
- [26]. E. M. Sundaram, V. Santhosh, M. Sundaresan, and S. Sakthivel, "Machine Learning Model for Predicting Tensile Strength of Aluminium Alloy 5083," in 2025 International Conference on Advanced Computing Technologies (ICoACT), 2025, pp. 1-6.
- [27]. V. Fiore, M. Luciano, and L. Calabrese, "Green chemical treatments of eco-friendly fibers and polymers for the sustainable environment," in Eco-Friendly Fiber Reinforced Polymer Composite Materials, ed: Elsevier, 2026, pp. 377-404.
- [28]. J. Jain and S. Sinha, "Pineapple leaf fiber polymer composites as a promising tool for sustainable, ecofriendly composite material," Journal of Natural Fibers, vol. 19, pp. 10031-10052, 2022.
- [29]. H. Moustafa, A. M. Youssef, N. A. Darwish, and A. I. Abou-Kandil, "Eco-friendly polymer composites for green packaging: Future vision and challenges," Composites Part B: Engineering, vol. 172, pp. 16-25, 2019.
- [30]. A. Ramachandran, S. Mavinkere Rangappa, V. Kushvaha, A. Khan, S. Seingchin, and H. N. Dhakal, "Modification of fibers and matrices in natural fiber reinforced polymer composites: a comprehensive review," Macromolecular rapid communications, vol. 43, p. 2100862, 2022.
- [31]. Y. G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai, and S. Siengchin, "Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review," Frontiers in materials, vol. 6, p. 226, 2019.
- [32]. K. Arunraja, P. Muthugounder, S. Karthikeyan, S. Ganesan, A. Gowrishankar, and B. Muruganandhan, "Influences of jute fiber and alumina nanoparticles on behaviour of polyester composite synthesized via hand layup route," in AIP Conference Proceedings, 2025, p. 020290.
- [33]. S. Ganesan, G. Boopathi, S. Kalaiarasan, B. E. Jebasingh, P. Muruganandhan, and S. Karthikeyan, "Synthesis and characteristics evaluation of epoxy hybrid nanocomposite featured with ramie fiber and SiC," in AIP Conference Proceedings, 2025, p. 020241.
- [34]. G. Kaliyaperumal, N. Karthikeyan, C. Priya, S. Karthikeyan, M. Ammaiappan, and S. Prabagaran, "Hybrid reinforcement's actions on flexural/tensile/impact strength of polyester composite made via injection molding route," in AIP Conference Proceedings, 2025.
- [35]. S. Karthikeyan, S. Ganesan, A. Suresh, P. Muruganandhan, B. E. Jebasingh, and K. Manogar, "Impact of E glass fiber on functional properties of low density polyethyle composite made via compression mold," in AIP Conference Proceedings, 2025, p. 020243.

- [36]. S. Karthikeyan, A. Jagadheeswari, J. G. Murali, G. Kaliannan, S. Marimuthu, and S. Kalaiarasan, "Hot compression actions on functional behavior of polyester composite configured with basalt fiber," in AIP Conference Proceedings, 2025, p. 020294.
- [37]. S. Karthikeyan, M. Karthick, M. Munipalli, N. Sankar, L. Suriyaprakash, and P. Muthugounder, "Effect of roselle fiber on physical and thermal behaviour of polypropylene nanocomposite developed by conventional route," in AIP Conference Proceedings, 2025, p. 020223.
- [38]. S. Karthikeyan, A. Karthikeyan, B. K. Jose, S. Marimuthu, T. Sathish, and J. G. Murali, "Influences of titanium carbide on behaviour of jute fiber made epoxy composite for automotive usage," in AIP Conference Proceedings, 2025, p. 020296.
- [39]. S. Karthikeyan, S. Manivannan, R. Venkatesh, S. Karthikeyan, R. Anand, and S. Sasikaran, "Optimization and Characteristics of Multimodal Binder on Polymer Nanocomposite for Lightweight Applications," Journal of Environmental Nanotechnology, vol. 13, pp. 207-216, 2024.
- [40]. S. Karthikeyan, S. Manivannan, R. Venkatesh, S. Karthikeyan, A. Kuila, and S. Lakshmanan, "Impact of Binder Selection on Functional Properties of Polymer Nanocomposite Featured with Metal Oxide Nanoparticle," Journal of Environmental Nanotechnology, vol. 13, pp. 262-270, 2024.
- [41]. S. Manivannan, R. Venkatesh, G. Kaliyaperumal, S. Karthikeyan, V. Mohanavel, M. E. M. Soudagar, et al., "Magnesium Alloy Hybrid Composite Properties are Featured with Boron Carbide Particle for Automotive Seat Frame Usage," SAE Technical Paper 0148-7191, 2024.
- [42]. S. Marimuthu, R. Ashokkumar, S. Karthick, A. Karthikeyan, S. Karthikeyan, and R. Gunasekaran, "Synthetic fiber featured epoxy composite for light weight application: Performance measures," in AIP Conference Proceedings, 2025, p. 020293.
- [43]. J. G. Murali, S. Marimuthu, P. Vignesh, P. Prakash, G. V. Kaliyannan, and S. Karthikeyan, "Influences of silicon carbide particles on tensile performance and hardness behavior of polyethylene composites made via injection mold," in AIP Conference Proceedings, 2025, p. 020292.
- [44]. P. Muthugounder, R. D. Kumar, S. Ganesan, A. Gowrishankar, S. Karthikeyan, and B. E. Jebasingh, "Featuring of boron nitride on high density polyethylene/sisal fiber composite: Characteristics evaluation," in AIP Conference Proceedings, 2025, p. 020246.
- [45]. S. Raja, R. Ali, S. Karthikeyan, R. Surakasi, R. Anand, N. Devarasu, et al., "Energy-Efficient FDM Printing of Sustainable Polymers: Optimization Strategies for Material and Process Performance," Applied Chemical Engineering, vol. 7, p. 10.59429, 2024.
- [46]. S. Raja, R. M. Ali, Y. V. Babar, R. Surakasi, S. Karthikeyan, B. Panneerselvam, et al., "Integration of nanomaterials in FDM for enhanced surface

ISSN No: -2456-2165

- properties: Optimized manufacturing approaches," Applied Chemical Engineering, vol. 7, 2024.
- [47]. S. Raja, M. A. Rusho, K. C. Sekhar, K. S. Kumar, K. Alagarraja, A. P. Kumar, et al., "Innovative surface engineering of sustainable polymers: Toward green and high-performance materials," Applied Chemical Engineering, vol. 7, 2024.
- [48]. A. Saravanakumar, J. G. Murali, A. Kuila, S. Karthikeyan, S. Ganesan, and A. Gowrishankar, "Biodegradable bast fiber made polypropylene composite via hot compression: Characteristics study," in AIP Conference Proceedings, 2025, p. 020291.
- [49]. N. Saravanan, S. Karthikeyan, S. Marimuthu, J. G. Murali, M. Prasath, and A. Gowrishankar, "Effect of surface treatment on characteristics of bast fiber incorporated polyethylene composite: Behavior study," in AIP Conference Proceedings, 2025, p. 020295.
- [50]. R. Subramani, R. M. Ali, R. Surakasi, D. R. Sudha, S. Karthick, S. Karthikeyan, et al., "Surface metamorphosis techniques for sustainable polymers: Optimizing material performance and environmental impact," Applied Chemical Engineering, vol. 7, pp. 11-11, 2024.
- [51]. R. Venkatesh, N. Aravindan, S. Manivannan, S. Karthikeyan, V. Mohanavel, M. E. M. Soudagar, et al., "Study of Natural Fiber Incorporated Polypropylene Composite Laminate for Lightweight Applications," SAE Technical Paper 0148-7191, 2024.
- [52]. R. Venkatesh, G. Kaliyaperumal, S. Manivannan, S. Karthikeyan, N. Aravindan, V. Mohanavel, et al., "Effect of Silicon Carbide Addition and Jute Fiber Surface Treatment on Functional Qualities of Low-Density Polyethylene Composites," SAE Technical Papers, 2024.
- [53]. R. Venkatesh, G. Kaliyaperumal, S. Manivannan, S. Karthikeyan, V. Mohanavel, M. E. M. Soudagar, et al., "Performance Evaluation of Nano Silicon Carbide Configured Aluminium Alloy with Titanium Nanocomposite via Semisolid Stir Cast," SAE Technical Paper 0148-7191, 2024.
- [54]. R. Venkatesh, G. Kaliyaperumal, S. Manivannan, S. Karthikeyan, V. Mohanavel, M. E. M. Soudagar, et al., "Characteristics of Magnesium Composite Reinforced with Silicon Carbide and Boron Nitride via Liquid Stir Processing," SAE Technical Paper 0148-7191, 2024.