Special Issue, ICMST-2025

ISSN No: -2456-2165

Polymer Matrix Composites and Metal Matrix Composites: A Comparative Review for Aeronautical Structural Applications

V. Geethalakshmi¹

¹Department of Chemistry, KIT-Kalaignar Karunanidhi Institute of Technology, Kannampalayam, Tamil Nadu

Publication Date: 2025/11/21

Abstract: The aerospace industry continually seeks advanced materials that provide superior mechanical strength, high stiffness-to-weight ratios, and thermal stability while reducing overall structural mass. Among the leading candidates, polymer matrix composites (PMCs) and metal matrix composites (MMCs) have emerged as pivotal materials shaping modern aeronautical design. While PMCs dominate applications requiring lightweight and corrosion-resistant structures, MMCs excel in high-temperature and high-load environments. This paper presents a comprehensive comparative review of PMCs and MMCs, focusing on their fundamental properties, fabrication techniques, structural performance, and suitability for various aeronautical applications. The review discusses microstructural behavior, interfacial bonding mechanisms, fatigue life, and thermal stability differences between the two composite systems. Additionally, it evaluates recent advancements in hybrid metal-polymer composites that bridge the performance gap between PMCs and MMCs. The discussion concludes with future research trends emphasizing multifunctional, smart, and sustainable composites for next-generation aircraft structures.

Keywords: Polymer Matrix Composites, Metal Matrix Composites, Comparative Analysis, Aerospace Materials, Mechanical Properties, Thermal Performance, Fatigue Strength, Lightweight Structures, Hybrid Composites.

How to Cite: V. Geethalakshmi (2025) Polymer Matrix Composites and Metal Matrix Composites: A Comparative Review for Aeronautical Structural Applications. *International Journal of Innovative Science and Research Technology*, (ICMST–2025), 49-53. https://doi.org/10.38124/ijisrt/25nov755

I. INTRODUCTION

The evolution of aerospace materials has been driven by the need to reduce structural weight while maintaining or enhancing mechanical performance and reliability. Historically, metals such as aluminum, titanium, and nickel alloys have been the materials of choice for aircraft and spacecraft structures due to their high strength and proven durability. However, the increasing demands of fuel efficiency, environmental sustainability, and operational safety have necessitated the development of advanced composite materials capable of outperforming conventional alloys in specific functions.[1-4]

Polymer Matrix Composites (PMCs) and Metal Matrix Composites (MMCs) have emerged as two major categories of advanced structural materials in aerospace engineering. PMCs, composed of a polymeric resin matrix reinforced with fibers such as carbon, glass, or aramid, offer exceptional specific strength and corrosion resistance. Their low density and ease of fabrication make them ideal for secondary aircraft structures and components that operate under

moderate temperatures. Conversely, MMCs—comprising a metal matrix reinforced with fibers or particles—provide superior load-bearing capacity, stiffness, and thermal stability, enabling their use in high-stress or high-temperature regions like turbine blades, engine casings, and wing spars.[5-10]

The decision to employ PMCs or MMCs in aeronautical structures depends on multiple factors including mechanical loading, thermal environment, manufacturing cost, and lifecycle requirements. Understanding their comparative advantages and limitations is essential for material engineers to optimize structural design and ensure long-term performance. This review systematically compares PMCs and MMCs, focusing on their properties, processing techniques, performance characteristics, and emerging hybrid solutions for aerospace applications.[11-15]

ISSN No: -2456-2165

https://doi.org/10.38124/ijisrt/25nov755

II. MATERIAL COMPOSITION AND MICROSTRUCTURAL CHARACTERISTICS

The key distinction between PMCs and MMCs lies in their matrix and reinforcement systems. PMCs use thermosetting or thermoplastic polymers as matrices, while MMCs employ metals such as aluminum, titanium, and magnesium. The choice of reinforcement fibers—commonly carbon, silicon carbide, or alumina—significantly influences mechanical and thermal performance.[16-21]

Polymer Matrix Composites (PMCs) typically consist of carbon or glass fibers embedded in an epoxy, polyester, or polyimide matrix. The polymer provides shape and environmental resistance, while fibers carry the load and determine stiffness and strength. The fiber orientation—unidirectional, woven, or random—governs anisotropy in mechanical behavior. PMCs offer low density, high fatigue resistance, and corrosion immunity, but are limited by their relatively low operating temperature (below 250°C for most systems) and lower inter laminar shear strength.[22-24]

Metal Matrix Composites (MMCs), on the other hand, incorporate metals like aluminum, titanium, or magnesium as the matrix, reinforced with continuous or discontinuous fibers. The metal matrix ensures high thermal conductivity, ductility, and load transfer efficiency, while the reinforcement enhances stiffness and wear resistance. MMCs possess superior strength retention at elevated temperatures (up to 700°C), making them suitable for propulsion and structural components exposed to thermal cycling. However, they are heavier and often more expensive to produce due to complex processing requirements.[25-28]

Microstructural analysis reveals that interfacial bonding in PMCs is dominated by mechanical interlocking and chemical adhesion, whereas MMCs rely on metallurgical bonding between the matrix and reinforcement. Controlling this interface is crucial: weak adhesion can cause delamination or fiber pull-out, while excessive interfacial reactions can lead to brittle phase formation, reducing ductility. Thus, surface treatments and coatings on fibers are frequently used to optimize bonding behavior in both systems.[29-33]

III. FABRICATION TECHNIQUES AND PROCESSING CONSIDERATIONS

The fabrication methods for PMCs and MMCs differ fundamentally due to their matrix materials and processing temperatures.

> PMC Fabrication Techniques:

Polymer-based composites are manufactured using techniques such as hand lay-up, filament winding, resin transfer molding (RTM), compression molding, and autoclave curing. The hand lay-up and filament winding methods are widely used for aircraft fuselage and wing components because they allow precise fiber placement and orientation control. RTM and vacuum-assisted processes enable high fiber volume fractions and reduced void content,

resulting in superior mechanical integrity. The use of automated fiber placement (AFP) and automated tape laying (ATL) has further improved production efficiency and repeatability in large aerospace components. [22, 34, 35]

> *MMC Fabrication Techniques:*

Metal-based composites, due to their high processing temperatures, require more complex and controlled manufacturing routes. Common methods include powder metallurgy, liquid metal infiltration, squeeze casting, and diffusion bonding. Powder metallurgy provides fine control over composition and microstructure but can lead to porosity if sintering is incomplete. Liquid metal infiltration ensures excellent fiber—matrix bonding, particularly in aluminum-and magnesium-based MMCs. Advanced methods such as additive manufacturing (AM) are now being adapted for MMCs, allowing the integration of reinforcement directly during layer-by-layer metal deposition. This flexibility enables tailored reinforcement distribution and the production of graded structures optimized for specific stress profiles.[36-40]

Processing challenges differ between the two composite types. PMCs must manage void formation and fiber misalignment during curing, while MMCs require strict control of temperature and pressure to prevent fiber degradation or interfacial reaction. The selection of appropriate fabrication technique directly influences mechanical performance, dimensional accuracy, and long-term reliability in service.[41-44]

IV. MECHANICAL AND THERMAL PERFORMANCE

The mechanical and thermal behavior of PMCs and MMCs varies significantly due to differences in constituent materials and interfacial properties.

➤ Mechanical Properties:

PMCs exhibit high specific strength and stiffness but tend to fail in a brittle manner due to the limited ductility of the polymer matrix. They are particularly effective under tensile and flexural loads and perform exceptionally well in vibration damping due to the viscoelastic nature of polymers. MMCs, conversely, offer superior tensile, compressive, and shear strength, maintaining structural integrity under high loads. The metallic matrix contributes to ductility, allowing gradual failure mechanisms and resistance to catastrophic fracture. Fatigue life in MMCs is generally higher due to the enhanced load transfer across the matrix–fiber interface, making them ideal for high-cycle aerospace applications.[45-48]

> Thermal Properties:

The temperature capability of PMCs is limited by the glass transition temperature of the polymer matrix, typically between 120°C and 250°C for epoxy-based systems. High-performance thermoplastics like PEEK and polyimides can withstand temperatures up to 400°C but are more costly and difficult to process. MMCs, in contrast, operate effectively at temperatures exceeding 600°C, maintaining mechanical

Special Issue, ICMST-2025

ISSN No: -2456-2165

https://doi.org/10.38124/ijisrt/25nov755

strength and dimensional stability under thermal cycling. This advantage makes MMCs indispensable in engine components, heat shields, and other high-temperature zones.

➤ Weight and Density:

PMCs have a clear advantage in terms of weight reduction, with densities ranging from 1.2 to 1.8 g/cm³, compared to 2.5–4.5 g/cm³ for most MMCs. However, the higher density of MMCs is offset by their ability to replace multiple metal components with a single lightweight, high-strength structure, leading to overall system-level weight savings.[49, 50]

> Corrosion and Environmental Resistance:

PMCs are inherently corrosion resistant and immune to oxidation, while MMCs, being metal-based, are susceptible to galvanic corrosion, particularly in humid or saline environments. Protective coatings and surface treatments are therefore essential for MMCs used in exposed aircraft components.

V. COMPARATIVE EVALUATION, HYBRID SYSTEMS, AND FUTURE OUTLOOK

The selection between PMCs and MMCs in aerospace design depends on operational requirements, cost considerations, and environmental conditions. PMCs dominate secondary structures, interior panels, and control surfaces where weight savings and corrosion resistance are critical. MMCs are preferred in load-bearing, thermally stressed regions such as engines, wing spars, and landing gear assemblies.

Recent advancements have led to the emergence of hybrid metal—polymer composites, which combine the lightweight corrosion resistance of PMCs with the strength and thermal endurance of MMCs. These hybrids are produced through layered architectures, co-curing processes, or metal—polymer co-infiltration techniques. They exhibit exceptional impact resistance, vibration damping, and multifunctionality, offering a balanced solution for next-generation aircraft design.

The future of aerospace materials will likely focus on smart composites capable of self-healing, damage sensing, and adaptive responses. Integration of nanomaterials such as graphene, carbon nanotubes, and silicon carbide nanowires within polymer or metal matrices has already shown promise in improving conductivity, strength, and fatigue life. Furthermore, sustainable processing methods—including additive manufacturing, recycling of composite scrap, and green resin systems—will become increasingly important as the industry moves toward carbon-neutral aviation.

In conclusion, both PMCs and MMCs have unique advantages that make them indispensable in aeronautical engineering. PMCs lead in lightweight, corrosion-resistant applications, while MMCs dominate high-temperature and load-bearing structures. The convergence of both materials in hybrid systems represents the next frontier in aerospace material science, enabling the creation of structures that are

not only strong and durable but also intelligent and sustainable, paving the way for future innovations in flight technology.

REFERENCES

- [1]. J. Sethubathi, "Recent Progress in Polymer Matrix Composites with Chemically Modified Natural Fiber Reinforcement," International Journal of Innovative Science and Research Technology, vol. 10, pp. 828-833, 2025.
- [2]. J. Sethubathi, "Developments in Eco-friendly Composite Materials: Applications of Chemically Treated Natural Fibers in Polymers," International Journal of Innovative Science and Research Technology, vol. 10, pp. 823-827, 2025.
- [3]. J. Sethubathi, "Evaluation of Natural Plant Fibers and their Hybrid Composites to Improve Polymer Strength," International Journal of Innovative Science and Research Technology, vol. 10, pp. 813-817, 2025.
- [4]. J. Sethubathi, "Chemical Compatibility and Performance Optimization in Natural Fiber-Based Polymer Composites," International Journal of Innovative Science and Research Technology, vol. 10, pp. 834-838, 2025.
- [5]. P. S. S. N. Saravanan, T.A.Sukantha, T.Natarajan, "Extraction and Characterization of New Cellulose Fiber from the Agrowaste of Lagenaria Siceraria (Bottle Guard) Plant," J o u r n a l o f A d v a n c e s i n C h e m i s t r y, vol. 12, pp. 4382-4388, 2016.
- [6]. P. S. S. N. Saravanan, "Characterization of New Cellulose Fiber from the Molina (Lagenaria Siceraria) Plant," Journal of Applied Research and Technology, vol. 16, pp. 204-210, 2018.
- [7]. S. Nagappan, S. P. Subramani, S. K. Palaniappan, and B. Mylsamy, "Impact of alkali treatment and fiber length on mechanical properties of new agro waste Lagenaria Siceraria fiber reinforced epoxy composites," Journal of Natural Fibers, vol. 19, pp. 6853-6864, 2022.
- [8]. N. Saravanan, "Mechanical Properties of Pineapple Leaf Fiber Reinforced Epoxy Composites," in Intelligent Manufacturing Systems – NCIMS 2011, 2011.
- [9]. N. Saravanan, N. Kumar, G. Bharathiraja, and R. Pandiyarajan, "Optimization and characterization of surface treated Lagenaria siceraria fiber and its reinforcement effect on epoxy composites," Pigment & Resin Technology, vol. 52, pp. 273-284, 2022.
- [10]. K. Sasikumar, K. Dineshkumar, K. Deeban, M. Sambathkumar, and N. Saravanan, "Effect of shot peening on surface properties of Al7075 hybrid aluminum metal matrix composites," Materials Today: Proceedings, vol. 33, pp. 2792-2794, 2020.
- [11]. K. Arunraja, P. Muthugounder, S. Karthikeyan, S. Ganesan, A. Gowrishankar, and B. Muruganandhan, "Influences of jute fiber and alumina nanoparticles on behaviour of polyester composite synthesized via hand layup route," in AIP Conference Proceedings, 2025, p. 020290.

ISSN No: -2456-2165

- [12]. S. Ganesan, G. Boopathi, S. Kalaiarasan, B. E. Jebasingh, P. Muruganandhan, and S. Karthikeyan, "Synthesis and characteristics evaluation of epoxy hybrid nanocomposite featured with ramie fiber and SiC," in AIP Conference Proceedings, 2025, p. 020241.
- [13]. G. Kaliyaperumal, N. Karthikeyan, C. Priya, S. Karthikeyan, M. Ammaiappan, and S. Prabagaran, "Hybrid reinforcement's actions on flexural/tensile/impact strength of polyester composite made via injection molding route," in AIP Conference Proceedings, 2025.
- [14]. S. Karthikeyan, S. Ganesan, A. Suresh, P. Muruganandhan, B. E. Jebasingh, and K. Manogar, "Impact of E glass fiber on functional properties of low density polyethyle composite made via compression mold," in AIP Conference Proceedings, 2025, p. 020243.
- [15]. S. Karthikeyan, A. Jagadheeswari, J. G. Murali, G. Kaliannan, S. Marimuthu, and S. Kalaiarasan, "Hot compression actions on functional behavior of polyester composite configured with basalt fiber," in AIP Conference Proceedings, 2025, p. 020294.
- [16]. S. Karthikeyan, M. Karthick, M. Munipalli, N. Sankar, L. Suriyaprakash, and P. Muthugounder, "Effect of roselle fiber on physical and thermal behaviour of polypropylene nanocomposite developed by conventional route," in AIP Conference Proceedings, 2025, p. 020223.
- [17]. S. Karthikeyan, A. Karthikeyan, B. K. Jose, S. Marimuthu, T. Sathish, and J. G. Murali, "Influences of titanium carbide on behaviour of jute fiber made epoxy composite for automotive usage," in AIP Conference Proceedings, 2025, p. 020296.
- [18]. S. Karthikeyan, S. Manivannan, R. Venkatesh, S. Karthikeyan, R. Anand, and S. Sasikaran, "Optimization and Characteristics of Multimodal Binder on Polymer Nanocomposite for Lightweight Applications," Journal of Environmental Nanotechnology, vol. 13, pp. 207-216, 2024.
- [19]. S. Karthikeyan, S. Manivannan, R. Venkatesh, S. Karthikeyan, A. Kuila, and S. Lakshmanan, "Impact of Binder Selection on Functional Properties of Polymer Nanocomposite Featured with Metal Oxide Nanoparticle," Journal of Environmental Nanotechnology, vol. 13, pp. 262-270, 2024.
- [20]. S. Manivannan, R. Venkatesh, G. Kaliyaperumal, S. Karthikeyan, V. Mohanavel, M. E. M. Soudagar, et al., "Magnesium Alloy Hybrid Composite Properties are Featured with Boron Carbide Particle for Automotive Seat Frame Usage," SAE Technical Paper 0148-7191, 2024.
- [21]. S. Marimuthu, R. Ashokkumar, S. Karthick, A. Karthikeyan, S. Karthikeyan, and R. Gunasekaran, "Synthetic fiber featured epoxy composite for light weight application: Performance measures," in AIP Conference Proceedings, 2025, p. 020293.
- [22]. J. G. Murali, S. Marimuthu, P. Vignesh, P. Prakash, G. V. Kaliyannan, and S. Karthikeyan, "Influences of silicon carbide particles on tensile performance and hardness behavior of polyethylene composites made

- via injection mold," in AIP Conference Proceedings, 2025, p. 020292.
- [23]. P. Muthugounder, R. D. Kumar, S. Ganesan, A. Gowrishankar, S. Karthikeyan, and B. E. Jebasingh, "Featuring of boron nitride on high density polyethylene/sisal fiber composite: Characteristics evaluation," in AIP Conference Proceedings, 2025, p. 020246.
- [24]. S. Raja, R. Ali, S. Karthikeyan, R. Surakasi, R. Anand, N. Devarasu, et al., "Energy-Efficient FDM Printing of Sustainable Polymers: Optimization Strategies for Material and Process Performance," Applied Chemical Engineering, vol. 7, p. 10.59429, 2024.
- [25]. S. Raja, R. M. Ali, Y. V. Babar, R. Surakasi, S. Karthikeyan, B. Panneerselvam, et al., "Integration of nanomaterials in FDM for enhanced surface properties: Optimized manufacturing approaches," Applied Chemical Engineering, vol. 7, 2024.
- [26]. S. Raja, M. A. Rusho, K. C. Sekhar, K. S. Kumar, K. Alagarraja, A. P. Kumar, et al., "Innovative surface engineering of sustainable polymers: Toward green and high-performance materials," Applied Chemical Engineering, vol. 7, 2024.
- [27]. A. Saravanakumar, J. G. Murali, A. Kuila, S. Karthikeyan, S. Ganesan, and A. Gowrishankar, "Biodegradable bast fiber made polypropylene composite via hot compression: Characteristics study," in AIP Conference Proceedings, 2025, p. 020291.
- [28]. N. Saravanan, S. Karthikeyan, S. Marimuthu, J. G. Murali, M. Prasath, and A. Gowrishankar, "Effect of surface treatment on characteristics of bast fiber incorporated polyethylene composite: Behavior study," in AIP Conference Proceedings, 2025, p. 020295.
- [29]. R. Subramani, R. M. Ali, R. Surakasi, D. R. Sudha, S. Karthick, S. Karthikeyan, et al., "Surface metamorphosis techniques for sustainable polymers: Optimizing material performance and environmental impact," Applied Chemical Engineering, vol. 7, pp. 11-11, 2024.
- [30]. R. Venkatesh, N. Aravindan, S. Manivannan, S. Karthikeyan, V. Mohanavel, M. E. M. Soudagar, et al., "Study of Natural Fiber Incorporated Polypropylene Composite Laminate for Lightweight Applications," SAE Technical Paper 0148-7191, 2024
- [31]. R. Venkatesh, G. Kaliyaperumal, S. Manivannan, S. Karthikeyan, N. Aravindan, V. Mohanavel, et al., "Effect of Silicon Carbide Addition and Jute Fiber Surface Treatment on Functional Qualities of Low-Density Polyethylene Composites," SAE Technical Papers, 2024.
- [32]. R. Venkatesh, G. Kaliyaperumal, S. Manivannan, S. Karthikeyan, V. Mohanavel, M. E. M. Soudagar, et al., "Performance Evaluation of Nano Silicon Carbide Configured Aluminium Alloy with Titanium Nanocomposite via Semisolid Stir Cast," SAE Technical Paper 0148-7191, 2024.

ISSN No: -2456-2165

- [33]. R. Venkatesh, G. Kaliyaperumal, S. Manivannan, S. Karthikeyan, V. Mohanavel, M. E. M. Soudagar, et al., "Characteristics of Magnesium Composite Reinforced with Silicon Carbide and Boron Nitride via Liquid Stir Processing," SAE Technical Paper 0148-7191, 2024.
- [34]. G. Kaliyaperumal, C. Devanathan, S. Prabagaran, P. Prakash, Arivazhagan, and L. Suriyaprakash, "Featuring with sodium hydroxide processed bast fiber made polypropylene composite: Behaviour investigation," in AIP Conference Proceedings, 2025, p. 020099.
- [35]. D. Gunaseelan, M. N. Kumar, and P. Prakash, "Wind and Solar Mobile Charging Station with IoT," in 2024 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 2024, pp. 1-6.
- [36]. R. Janani, S. Bhuvana, V. Geethalakshmi, R. Jeyachitra, K. Sathishkumar, R. Balu, et al., "Micro and nano plastics in food: A review on the strategies for identification, isolation, and mitigation through photocatalysis, and health risk assessment," Environmental Research, vol. 241, p. 117666, 2024.
- [37]. V. Geethalaksmi and C. Theivarasu, "Synthesis and Characterization of Samarium (III (and Gadolinium (III) Complexes Containing2-Methoxy-6-((2-(Piperazin-1yl) Ethylimino) Methyl) Phenol as Ligand," International Journal of ChemTech Research, vol. 9, pp. 941-949, 2016.
- [38]. V. Geethalakshmi, C. Theivarasu, N. Nalini, and V. Gomathi, "Spectroscopic, microbial studies and invitro anticancer activity of Pyridine Schiff base ligand and its lanthanum complexes," Bulletin of Materials Science, vol. 46, p. 223, 2023.
- [39]. V. Geethalakshmi, N. Nalini, and C. Theivarasu, "Anticancer activity of morpholine schiff base complexes," in AIP Conference Proceedings, 2020, p. 100016.
- [40]. N. Nalini, K. S. Thangamani, V. Geethalakshmi, and S. Nithyashree, "14 - Innovative nanosensors for detection of dyes," in Nanotechnology-based Sensors for Detection of Environmental Pollution, F. M. Policarpo Tonelli, A. Roy, M. Ozturk, and H. C. A. Murthy, Eds., ed: Elsevier, 2024, pp. 265-275.
- [41]. P. Balakrishnan, M. J. John, L. Pothen, M. Sreekala, and S. Thomas, "Natural fibre and polymer matrix composites and their applications in aerospace engineering," in Advanced composite materials for aerospace engineering, ed: Elsevier, 2016, pp. 365-383.
- [42]. S. Kangishwar, N. Radhika, A. A. Sheik, A. Chavali, and S. Hariharan, "A comprehensive review on polymer matrix composites: material selection, fabrication, and application," Polymer Bulletin, vol. 80, pp. 47-87, 2023.
- [43]. A. Kaur and H. Singh, "A review on comparative study of polymer matrix composites and metal matrix composites," Int J Res Appl Sci Eng Technol, vol. 8, pp. 253-256, 2020.
- [44]. B. Parveez, M. Kittur, I. A. Badruddin, S. Kamangar, M. Hussien, and M. Umarfarooq, "Scientific

- advancements in composite materials for aircraft applications: a review," Polymers, vol. 14, p. 5007, 2022.
- [45]. N. Ramawat, N. Sharma, P. Yamba, and M. A. Sanidhi, "Recycling of polymer-matrix composites used in the aerospace industry-A comprehensive review," Materials Today: Proceedings, 2023.
- [46]. S. Sajan and D. P. Selvaraj, "A review on polymer matrix composite materials and their applications," Materials Today: Proceedings, vol. 47, pp. 5493-5498, 2021.
- [47]. A. K. Sharma, R. Bhandari, A. Aherwar, and R. Rimašauskienė, "Matrix materials used in composites: A comprehensive study," Materials Today: Proceedings, vol. 21, pp. 1559-1562, 2020.
- [48]. A. K. Sharma, R. Bhandari, A. Aherwar, R. Rimašauskienė, and C. Pinca-Bretotean, "A study of advancement in application opportunities of aluminum metal matrix composites," Materials Today: Proceedings, vol. 26, pp. 2419-2424, 2020.
- [49]. V. Srinivasan, S. Kunjiappan, and P. Palanisamy, "A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications," International nano letters, vol. 11, pp. 321-345, 2021.
- [50]. T. Trzepieciński, S. M. Najm, M. Sbayti, H. Belhadjsalah, M. Szpunar, and H. G. Lemu, "New advances and future possibilities in forming technology of hybrid metal—polymer composites used in aerospace applications," Journal of Composites Science, vol. 5, p. 217, 2021.