$Volume\ 10,\ Issue\ 11,\ November-2025$

ISSN No: -2456-2165

A Novel Mathematical Model for Understanding Celestial Rotation and Vibration Dynamics

Sandeep Kumar Mitra¹

¹B. Sc. Engineering Mechanical, M. Sc. Real Estate Valuation Independent Researcher, H. N. 117, Netaji Palli, College Road, Ghatsila, East Singhbhum, Jharkhand 832303, India

Publication Date: 2025/11/29

Abstract: This study proposes a novel mathematical equation which accurately describes the relationship between rotation period, mass, radius and frequency factor of vibration for the Sun, Earth and Moon. The proposed Equation stands for spherical, oblate spheroid Celestial bodies.

It is hypothesized that the Sun's vibration contributes to its rotation about its axis. The Sun, as the central body of the solar system, exerts significant influence on vibration and rotation of other Celestial bodies Earth, Moon which also vibrates in almost same frequency as the sun vibrates.

The Sun controls the planets along with their satellites to revolve around it and also rotate about their axis. It has also been observed that due to high magnitude of earthquake, the angular rotation speed of the earth increases and gradually it retains to the original rotation speed.

The equation is validated using publicly available data and offers new insights into Celestial mechanics.

Keywords: Celestial Bodies (E.G., Sun, Earth, Moon), Celestial Mechanics, Solar System, Rotation Period, Sun Dynamics, Radius of Celestial Bodies, Mass of Celestial Bodies, Frequency Factor of Vibration of Celestial Bodies, Frequency Factor of Vibration of the Sun, Mathematical Modelling.

How to Cite: Sandeep Kumar Mitra (2025). A Novel Mathematical Model for Understanding Celestial Rotation and Vibration Dynamics. *International Journal of Innovative Science and Research Technology*, 10(11), 1995-1999. https://doi.org/10.38124/ijisrt/25nov768

I. INTRODUCTION

My curiosity about why and how celestial bodies continue to rotate at constant yet varying angular velocities, despite various obstructions such as hurricanes, typhoons, tornadoes, storms, and tidal effects, sparked my interest in this subject. There may be any other law based on which this is happening, the astronomical scientists are having in-depth knowledge in this regard. I have no qualification on astronomy so, I tried to find a mathematical approach based on the imagination and thought as mentioned hereunder.

It is Sun's vibration due to which the Sun also rotates and since the Sun controls all the Celestial bodies of the solar system hence all the Celestial bodies are vibrating with almost same frequency factor of vibration causing rotating about their axis with different angular velocity which depend on their individual mass and radius. To determine the frequency factor of vibration 'f', the proposed mathematical equation, $f=(\omega^0.147*R^2)/M^0.7$ has been established where 'M', 'R', ' ω ' represents mass, radius and angular velocity of Celestial body.

The frequency factor of vibration of the Sun, Earth and Moon are found almost same and therefore equation f=(ω^0 0.147*R 2)/ M 0 0.7 satisfy for the Sun, Earth and Moon.

II. AVAILABLE DATA

The data used in this study were obtained from sources such as Cole and Connell (Vol.97, No. 4, p. 225), Deborah Scherre (Stanford Solar Center), and the Royal Museums Greenwich Solar System data.

Table 1 (a): Data of the Sun, Earth, Moon, (b): Data of Planets other than Earth, (c): Data of Satellites of Planets other than Earth

Celestial Bodies	Rotation period	Diameter Km	Mass Kg	Acquisition source of data
		Table	e 1a-Data of t	the Sun, Earth, Moon
Sun	27Days	Deborah Scherre (Stanford Solar Center), p.10		
Earth	24Hrs	12742	6.00E+24	,,,,
Moon	27.322 Days	3476		Royal Museums Greenwich Solar System data
Moon			7.35E+22	Cole and Connell (Vol.97, No. 4, p. 225)
		Table	2 1b-Data of	Planets other than Earth
Mercury	59Days	4879	3.30E+23	Deborah Scherre (Stanford Solar Center), p.12
Venus	243Days	12104	4.87E+24	Deborah Scherre (Stanford Solar Center), p.14
Mars	24.7Hrs	6780	6.40E+23	Deborah Scherre (Stanford Solar Center), p.22
lupiter	9.8Hrs	139822	1.90E+27	Deborah Scherre (Stanford Solar Center), p.26
Saturn	11Hrs	116464	5.70E+26	Deborah Scherre (Stanford Solar Center), p.30
Uranus	17.00Hrs	50724	8.68E+25	Deborah Scherre (Stanford Solar Center), p.35
Neptune	16Hrs	49244	1.02E+26	Deborah Scherre (Stanford Solar Center), p.39
		Table 1c-Da	ta of Satellite	es of Planets other than Earth
Callisto	16.689Days	4800		Royal Museums Greenwich Solar System data
Callisto			1.06E+23	Cole and Connell (Vol.97, No. 4, p. 225)
Europa	3.55 Days			Royal Museums Greenwich Solar System data
Europa		3120	4.075.00	Cole and Connell (Vol.97, No. 4, p. 225)
Europa	7.4550	F262		Cole and Connell (Vol.97, No. 4, p. 225)
Ganymede Ganymede	7.155Days	5262	1.405+22	Royal Museums Greenwich Solar System data Cole and Connell (Vol.97, No. 4, p. 225)
lo	1.769Days	3652	1.491+23	Royal Museums Greenwich Solar System data
lo	1.705Days			Cole and Connell (Vol.97, No. 4, p. 225)
Enceladus	1.37Days	500		Royal Museums Greenwich Solar System data
Enceladus				Cole and Connell (Vol.97, No. 4, p. 225)
Umbriel	4.144Days	1190		Royal Museums Greenwich Solar System data
Umbriel			1.27E+21	Cole and Connell (Vol.97, No. 4, p. 225)
Titania	8.7Days	1610		Royal Museums Greenwich Solar System data
Titania			3.47E+21	Cole and Connell (Vol.97, No. 4, p. 225)
ethys	1.888Days	1050	6 265 20	Royal Museums Greenwich Solar System data
ethys Dione	2.737Days	1120	6.26E+20	Cole and Connell (Vol.97, No. 4, p. 225) Royal Museums Greenwich Solar System data
Dione				Cole and Connell (Vol.97, No. 4, p. 225)
thea	2.737Days	1530		Royal Museums Greenwich Solar System data
thea	4.445			
Лiranda Лiranda	1.414Days	320	7.48E+19	Royal Museums Greenwich Solar System data Cole and Connell (Vol.97, No. 4, p. 225)
beron	13.463Days	1550	7.462+19	Royal Museums Greenwich Solar System data
beron			2.90E+21	Cole and Connell (Vol.97, No. 4, p. 225)
apetus	79.331Days	1460		Royal Museums Greenwich Solar System data
apetus				Cole and Connell (Vol.97, No. 4, p. 225)
Aimas Aimas	0.942Day	390	4.00E+19	Royal Museums Greenwich Solar System data Cole and Connell (Vol.97, No. 4, p. 225)
nimas riton	5.877Days	3500	4.00E+19	Royal Museums Greenwich Solar System data
riton	3.677Days		5.70E+22	Cole and Connell (Vol.97, No. 4, p. 225)
itan	15.495Days	5150		Royal Museums Greenwich Solar System data
itan			1.36E+23	Cole and Connell (Vol.97, No. 4, p. 225)

➤ Title of Tables:

- Table 1a: Data of the Sun, Earth, Moon
- Table 1b: Data of Planets other than Earth
- Table 1c: Data of Satellites of Planets other than Earth
- Table 2: Frequency Factor of Vibration for the Sun, Earth and Moon
- Table 3: Frequency Factor of Vibration for Planets Other Than Earth
- Table 4: Frequency Factor of Vibration for Satellites of Planets Other Than Earth

> Author's statement/ Declaration:

- The above article is completely written by the author as per assumption and thought.
- Data as per column (3), (4) & (5) of table No. 2,3 and 4 considered from websites/ as per reference list.
- The equation is very small but it took about five years to finalise the same $f=(\omega^0.147*R^2)/M^0.7$
- This is an individual research work, not done through any institution and no guide has been consulted.
- Conflict of interest statement: Not applicable.

Table: In Table 2,3 &4 the mathematical equation expressed as $f=(\omega^0.147*R^2)/M^0.7$ Where, f, ω , R & M

stands for frequency factor of vibration, Angular velocity of rotation in radian/Hr, radius in Km, and mass in Kg respectively.

Mass(M)= (CO^0.147*R^2/ f) ^ (1/0.7) considering frequency factor of vibration of the Sun. Radius (R)=D/2 Km, (T)Rotation period (Hr)=Daysx24, frequency factor of vibration f=(ω ^0.147xR^2)/ M^0.7, Frequency factor of vibration of Sun(f), Mass(M) Kg considering frequency factor of vibration of the Sun.

Considering frequency factor of Sun f = 1.506363824110E-10 in equation $f=(\omega^0.147xR^2)/M^0.7$,

Condition 1, if (ω) and M as per respective value as per column (4) and (5) of Celestial bodies, then,

Radius \Re is calculated as $\Re = ((f*M^0.7)/\bigcirc^0.147)^(1/2)$ which is mentioned in column (7).

Condition 2, if (ω) and R as per as per respective value as per column (4) and (3) of Celestial bodies, then,

Mass M is calculated as $M = (C^0.147*R^2/f)^(1/0.7)$ which is mentioned in column (8).

Table 2 Frequency Factor of Vibration for the Sun, Earth and Moon

1	2	3	4	5	6	7	8
Rotation Period of	Diameter	Radius	(ω)	Mass (M)	$f=(\omega^0.147xR^2)$	Radius ₹	Mass (M) Kg
Celestial bodies	(D)Km	R(Km)	Radian/Hr	Kg	M^0.7	(Km)	Condition 2
						Condition 1	
Sun	1391000	695500	0.0097	2.00E+30	1.506363824110E-	695500	2.00E+30
27Days					10		
Earth	12742	6371	0.261905	6.00E+24	1.507219186458E-	6369	6.00E+24
24Hrs					10		
Moon	3476	1738	0.009586	7.35E+22	1.503135564109E-	1740	7.33E+22
27.322 Days					10		

In reference to Table No. (2), The specified equation satisfies for Frequency factor of vibration(f) as mentioned in column (6) and found closely equal/constant for the Sun, the Moon and the Earth. Radius R mentioned in column (7) and

Mass(M) mentioned in column (8) is calculated for the Sun, Moon and Earth considering frequency factor of Sun f=1.506363824110E-10. The equation is validated using publicly available data.

Table 3 Frequency Factor of Vibration for Planets Other Than Earth

Table 5 Trequency Tables of Trefaction for Trainers Outer Trian Earth								
1	2	3	4	5	6	7	8	
Rotation Period	Diameter	Radius	(ω)	Mass (M)	$f=(\omega^{0.147}xR^{2})$	Radius	Mass (M) Kg	
of Celestial	(D)Km	R(Km)	Radian/Hr	Kg	M^0.7	₹ (Km)	Condition 2	
bodies						Condition 1		
		2439.5	0.004439	3.30E+23	9.242590682701E-	3114	1.64E+23	
Mercury	4879				11			
59Days								
Venus	12104	6052	0.001078	4.87E+24	7.021588868036E-	8864	1.64E+24	
243Days					11			
Mars	6780	3390	0.254482	6.40E+23	2.035659301876E-	2916	9.84E+23	
24.7Hrs					10			
Jupitar	139822	69911	0.641399	1.90E+27	3.677997301999E-	44741	6.80E+27	
9.8Hrs					10			
Saturn	116464	58232	0.571429	5.70E+26	5.827528694112E-	29606	3.94E+27	
11Hrs					10			

https://doi.org/10.38124/ijisrt/25nov768

Uranus	50724	25362	0.369748	8.68E+25	3.871554069428E-	15820	3.34E+26
17.00Hrs					10		
Neptune	49244	24622	0.392857	1.02E+26	3.288357509432E-	16665	3.11E+26
16Hrs					10		

Table 4 Frequency Factor of Vibration for Satellites of Planets Other Than Earth

1	2	3	4	5	es of Planets Other Tha	7	8
Rotation Period of	Diameter	Radius	(ω)	Mass (M)	$f=(\omega^{0.147}xR^{2})$	Radius R	Mass (M) Kg
Celestial bodies	(D)Km	R(Km)	Radian/Hr	Kg	M^0.7	(Km)	Condition 2
Colestial boales	(2)11111	Tt(TIII)	radian/III	115	111 017	Condition 1	Condition 2
Callisto	4800	2400	0.015693	1.06E+23	2.384944079775E-	1907	2.04E+23
16.689					10		
Days							
Europa	3120	1560	0.073776	4.87E+22	2.180531852003E-	1297	8.26E+22
3.55Days					10		
Ganymede	5262	2640	0.036604	1.49E+23	2.575235366870E-	2019	3.21E+23
7.155Days					10		
Io	3652	1820	0.148052	8.92E+22	2.152476732079E-	1523	1.49E+23
1.769Days					10		
Enceladus	500	250	0.191171	7.40E+19	6.050440148135E-	125	5.39E+20
1.37Days					10		
Umbriel	1190	595	0.063201	1.27E+21	3.981784054163E-	366	5.09E+21
4.144Days					10		
Titania	1610	805	0.030104	3.47E+21	3.233842596256E-	549	1.03E+22
8.7Days					10		
Tethys	1050	525	0.138721	6.26E+20	5.709674626172E-	270	4.20E+21
1.888Days					10		
Dione	1120	560	0.09569	1.05E+21	4.282833869205E-	332	4.67E+21
2.737Days					10		
Rhea	1530	765	0.09569	2.28E+21	4.644683882434E-	436	1.14E+22
2.737Days					10		
Miranda	320	160	0.185223	7.48E+19	2.448273110054E-	126	1.50E+20
1.414Days	1.7.70		0.010.17.1		10		0.447
Oberon	1550	775	0.019454	2.90E+21	3.187190587549E-	533	8.46E+21
13.463Days	1460	720	0.002201	1.025.21	10	526	4.01E 01
Iapetus	1460	730	0.003301	1.93E+21	2.897374092309E-	526	4.91E+21
79.331Days	200	105	0.270021	4.00E - 10	10	00	2.075 . 20
Mimas	390	195	0.278031	4.00E+19	5.982859789539E-	98	2.87E+20
0.942Day	2500	1750	0.044564	5.70E : 22	10	1.422	1.025 - 22
Triton	3500	1750	0.044564	5.70E+22	2.282258803038E-	1422	1.03E+23
5.877Days Titan	5150	2575	0.016903	1.36E+23	10 2.331235498271E-	2070	2.54E+23
	3130	2515	0.010903	1.30E+23		2070	2.34E+23
15.495Days	<u> </u>			<u> </u>	10		

In reference to Table No. (3) and (4), The specified equation doesn't satisfy for frequency factor of vibration(f) as mentioned in column (6) for these satellites. Radius R mentioned in column (7), Mass(M) mentioned in column (8) is calculated for these Planets and satellites considering frequency factor of Sun = 1.506363824110E-10 in similar condition 1 and condition 2 as specified earlier. If value of (R), (ω) and (M) are correct then the same equation is not valid for these satellites.

III. RESULTS & DISCUSSION

The Sun accounts for about 99.8% (*Sarah Frazier*, 2018, www.nasa.gov) of the total mass of the solar system. As we know that tremendous heat is generated in the Sun due to the reaction in which Hydrogen gas which is in plasma state

is converting to Helium gas by fusion process. Due to the continuous reaction in fusion process not only huge amount heat is generated but the whole ball of gas i.e. the Sun vibrates with some frequency. This can't be ignored.

The proposed mathematical model satisfies the angular rotation velocity of the Sun, Moon and Earth. The earth is the planet that sustains life, the Moon is its natural Satellite, and the Sun is the primary source of energy for life on earth. The individual data of the Sun, Moon and Earth are having huge differences except rotation period of the Sun and Moon which is closely equal and still the equation satisfy and indicate nearly same frequency factor of vibration of the Sun, (f)=1.506363824110E-10 that means the relation exists and it can't be a coincidence at least for these three celestial bodies the Sun, Moon and Earth.

IV. CONCLUSION

1)The equation $f=(\omega^0.147xR^2)/M^0.7$ satisfies as per the data available in the website for the Sun, Moon and Earth as mentioned in Table No. (2). The Sun & Moon is visible in the sky in big size. The Earth is the planet where we live in. Data of the Sun, Moon & Earth are more accurate than other planets and their satellites.

V. LIMITATIONS

The equation $f=(\omega^0.147xR^2)/M^0.7$ does not satisfy as per data available in the website for other Celestial bodies and satellites as mentioned in Table No. (3) and Table No. (4).

The equation's inability to satisfy data as available in the website for other Celestial bodies and satellites which are far away from the earth may have various reasons.

➤ Possible Reasons:

- It is very difficult to get 100% accurate data of these object as they look very small.
- Unique physical properties or measurement challenges.

REFERENCES

- [1]. Royal Museums Greenwich Solar-System-Data.
- [2]. Cole G.H.A., Connell H.J. 1987, *Satellites of the Solar System*, 97 (4), 225-227
- [3]. Scherrer D.,2013, Our-Solar-System-Book.pdf. solar-center.stanford.edu
- [4]. Sarah Frazier, 2018, The Sun accounts for about 99.8% of the total mass of the solar system