

AI + Graphene Based Self-Charging Battery System for EVs and Gadgets

Yashoda D. S.¹; Janardhan L. K.²

^{1,2}Assistant Professor

¹Department of EEE, Sri Siddhartha School of Engineering NH4 Tumakuru 572104

² Department of EEE, Channabasaveshwara Institute of Technology, Gubbi Tumakuru 572216
Tumakuru, India

Publication Date: 2026/01/07

Abstract: The rapid growth of electric vehicles (EVs) and portable electronic devices has increased the demand for high-performance, energy-efficient, and sustainable battery technologies. Conventional lithium-ion batteries suffer from limitations such as long charging time, limited lifespan, thermal instability, and environmental concerns. This paper presents an AI-integrated graphene-based self-charging battery system designed for electric vehicles and electronic gadgets. Graphene, with its exceptional electrical conductivity, high surface area, and thermal stability, enhances battery charging speed, energy density, and lifespan. Artificial Intelligence (AI) is incorporated for smart energy management, predictive monitoring, and optimized charging-discharging cycles. The proposed system also integrates renewable energy harvesting mechanisms such as solar energy to enable self-charging capability. Hardware implementation using microcontrollers, sensors, and IoT modules demonstrates real-time monitoring, safety, and automation. Experimental results indicate improved efficiency, reduced charging dependency, and enhanced system reliability compared to conventional battery systems. The proposed model offers a promising solution for next-generation energy storage with applications in EVs, consumer electronics, and renewable energy systems.

Keywords: Graphene Battery, Self-Charging System, Artificial Intelligence, Electric Vehicles, Renewable Energy.

How to Cite: Yashoda D. S.; Janardhan L. K. (2026) AI + Graphene Based Self-Charging Battery System for EVs and Gadgets. *International Journal of Innovative Science and Research Technology*, 11(1), 87-90. <https://doi.org/10.38124/ijisrt/26jan009>

I. INTRODUCTION

Recent advancements integrate AI algorithms into battery management systems to monitor health parameters, predict degradation, and optimize charging cycles. Renewable energy-based self-charging mechanisms using solar and kinetic energy have also been explored to reduce dependency on external power sources. However, limited research combines graphene batteries, AI-driven management, and self-charging mechanisms into a unified practical system. This work aims to bridge this gap by implementing a complete AI + graphene-based self-charging battery prototype. The increasing adoption of electric vehicles (EVs) and smart electronic gadgets has created a strong demand for advanced energy storage solutions that are efficient, fast-charging, and environmentally sustainable. Traditional lithium-ion batteries, although widely used, face challenges such as long charging duration, limited cycle life, overheating issues, and environmental hazards during disposal. Graphene has emerged as a revolutionary material in energy storage technology due to its extraordinary electrical conductivity, mechanical strength, lightweight nature, and thermal stability.

When combined with Artificial Intelligence (AI), graphene-based batteries can achieve intelligent energy management, predictive maintenance, and optimized charging behavior. This project focuses on the design and implementation of an AI-integrated graphene-based self-charging battery system. The system is capable of harvesting renewable energy, monitoring environmental and battery parameters, and making intelligent decisions to improve battery performance and lifespan. Such a system is highly suitable for EVs, portable gadgets, and smart energy applications, contributing toward a sustainable energy future.

II. LITERATURE SURVEY

Several studies highlight the advantages of graphene-based batteries over conventional lithium-ion batteries. Graphene improves electron mobility, enabling ultra-fast charging and higher power density. Research indicates that graphene batteries exhibit longer lifespan, improved thermal management, and enhanced safety.

Recent advancements integrate AI algorithms into battery management systems to monitor health parameters, predict degradation, and optimize charging cycles. Renewable energy-based self-charging mechanisms using solar and kinetic energy have also been explored to reduce dependency on external power sources.

However, limited research combines graphene batteries, AI-driven management, and self-charging mechanisms into a unified practical system. This work aims to bridge this gap by implementing a complete AI + graphene-based self-charging battery prototype.

III. METHODOLOGY

Before The proposed system integrates renewable energy sources, graphene battery storage, AI-based monitoring, and IoT connectivity. A solar panel generates electrical energy, which is regulated using a buck-boost converter before charging the graphene battery. Sensors continuously monitor voltage, temperature, humidity, and air quality.

An Arduino Nano acts as the main controller, processing sensor data and controlling system components such as relays, buzzers, motors, and displays. An ESP32 camera module provides IoT connectivity and visual monitoring. AI algorithms analyze data patterns to optimize charging, prevent overcharging, and enhance system safety.

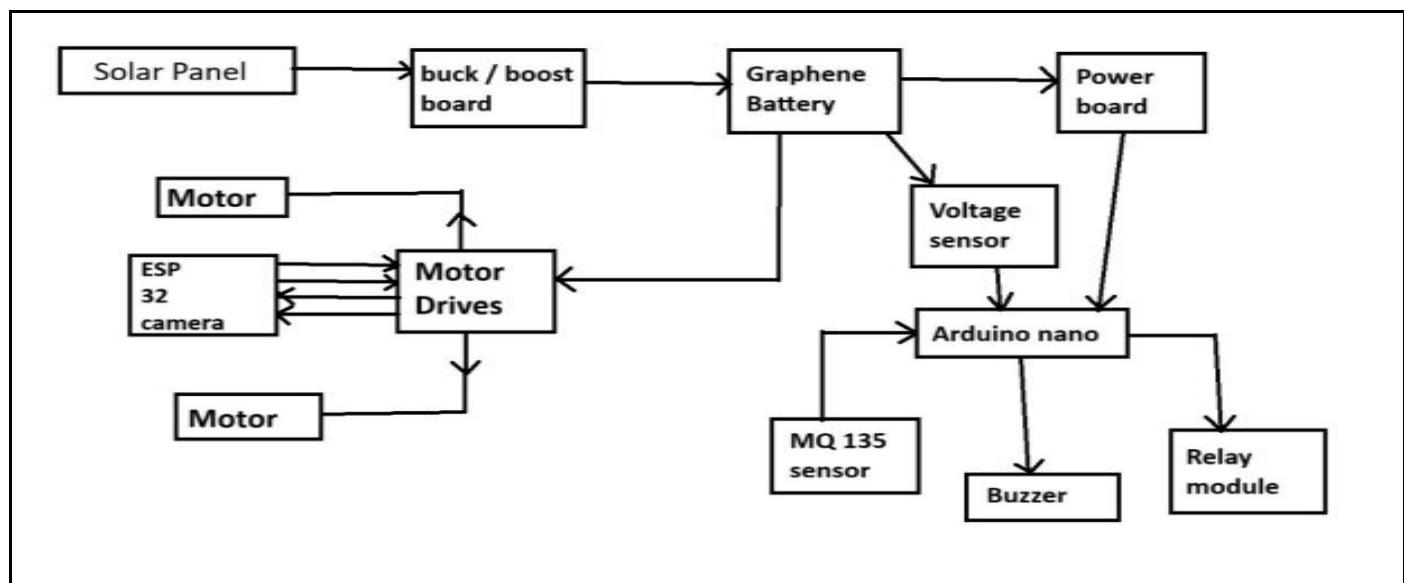


Fig 1 Methodology

IV. HARDWARE DESCRIPTION

➤ Graphene Battery

Graphene batteries use graphene layers as electrode material, offering high electrical conductivity, rapid charge-discharge cycles, higher energy density, and superior thermal management. These properties make them ideal for EVs and portable electronics.

Fig 2 Graphene Battery

➤ Solar Panel

The solar panel converts sunlight into electrical energy using the photovoltaic effect. It serves as the primary renewable energy source for the self-charging mechanism.

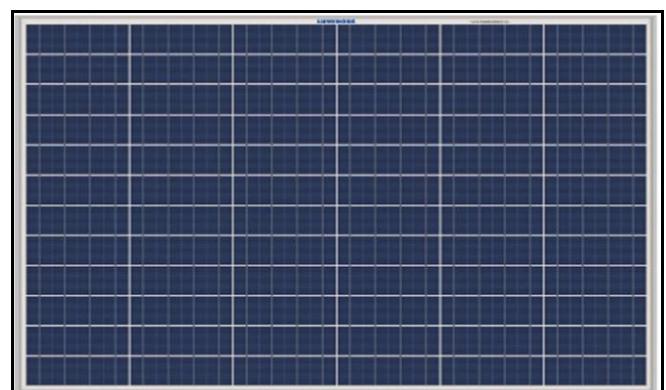


Fig 3 Solar Panel

➤ Voltage Sensor

Voltage sensors monitor battery voltage levels and provide real-time data to the microcontroller for safe operation.

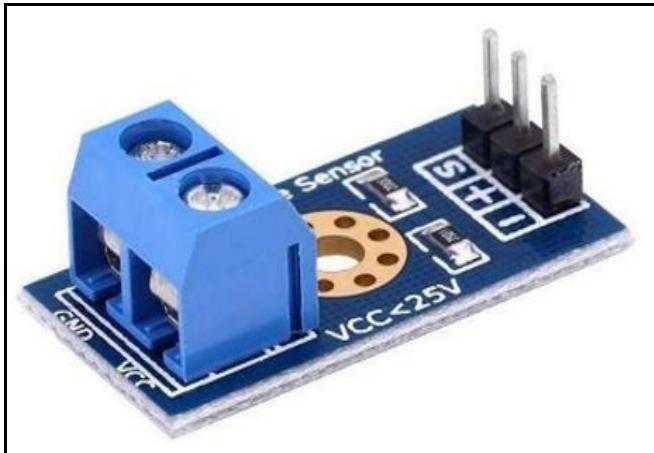


Fig 4 Voltage Sensor

➤ *LCD Display*

A 16×2 LCD display is used to show system parameters such as voltage, temperature, and battery status.

Fig 5 LED Display

➤ *Buzzer and Relay Module*

Buzzers provide audible alerts during abnormal conditions, while relay modules control high-power loads safely.

Fig 6 Buzzer and Relay Module

➤ *Arduino Nano and ESP32 Camera Module*

The Arduino Nano handles sensor data acquisition and control logic. The ESP32 camera module enables IoT-based monitoring and wireless data transmission.

Fig 7 Arduino Nano and ESP32 Camera Module

V. IMPLEMENTATION OF GRAPHENE BATTERY SYSTEM

The graphene battery is implemented by integrating graphene material into the electrode structure to improve conductivity and durability. Renewable energy harvested from the solar panel is regulated and stored in the battery. AI-supported battery management ensures efficient energy utilization, safety, and long-term reliability.

VI. EXPERIMENTAL SETUP

The experimental setup includes a graphene battery, solar panel, buck-boost converter, Arduino Nano, ESP32 camera module, sensors, and display units. The system was tested under varying environmental and load conditions to evaluate charging efficiency, response time, and safety.

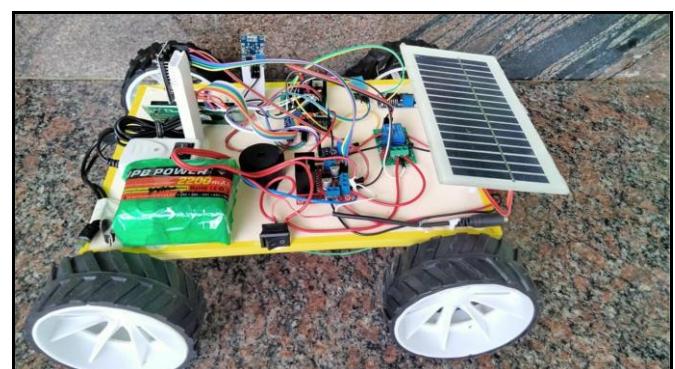


Fig 8 Experimental Setup

VII. APPLICATIONS

- Electric Vehicles (EVs)
- Consumer Electronics
- Renewable Energy Storage Systems
- Medical Devices
- Smart City Transportation
- Defence and Aerospace Systems.

VIII. CONCLUSION AND FUTURE SCOPE

The AI-integrated graphene-based self-charging battery system presents a promising solution to modern energy storage challenges. By combining graphene's superior material properties with AI-driven energy management and renewable energy harvesting, the system achieves improved efficiency, safety, and sustainability.

Future work includes cost reduction through mass production, enhanced AI algorithms for predictive maintenance, integration with smart grids, and large-

REFERENCES

- [1]. L. Liu, X. Zhang, Y. Liu, X. Gong Electrochemical energy storage devices Batteries, super capacitors, and battery–super capacitor hybrid devices,
- [2]. N.Srikrishna, Divya D. Shetty, Chandrakant R.Kini Graphene battery as a viable alternative in electric vehicles for enhanced charging efficiency and thermal management 7
- [3]. Dam, S. Graphene Batteries in Electric Vehicles Batteries Currently Used in EVs Advantages of Graphene Batteries. 1–5 (2022)..
- [4]. Chavan, V. S., Gadkari, A. S., Hanpude, N. N. & Pawar, T. S. Analysis of Different Types of Batteries In Electric Vehicle. Int. Res. J. Eng. Technol. 1198–1203 (2023).