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Abstract: Indian higher education institutions (HEIs) operate as “mini-cities” with substantial electricity, water, mobility, 

and material footprints. This paper synthesizes how artificial intelligence (AI) can accelerate campus sustainability through 

(i) resource optimization (especially building energy and water), (ii) monitoring and operational reliability (maintenance, 

waste, and compliance), and (iii) behavior and mobility nudges (transport and paper reduction). Using a mini-review 

approach, we consolidate high-impact, campus-relevant AI applications and outline the measurement logic that links 

interventions to auditable sustainability indicators. We then identify key adoption barriers in Indian HEIs, including limited 

metering and data interoperability, procurement and skills constraints, governance and privacy concerns, and the 

environmental footprint of AI systems themselves. To move from isolated pilots to measurable outcomes, we propose the 

KPI–Data–Duty (KDD) framework, which connects a small set of time-bound sustainability KPIs to minimal viable data 

architecture, pilot design, and a lightweight Responsible/Green AI duty checklist. The paper contributes an implementation-

oriented roadmap and use-case mapping that can support HEI leaders in planning, governing, and scaling AI-enabled 

sustainability initiatives with accountability. 
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I. INTRODUCTION 

 

Indian higher education institutions (HEIs) function as 

“mini-cities” that operate energy-intensive buildings 

(classrooms, laboratories, libraries, hostels), water and 

sanitation systems, transport and mobility services, and large 

administrative workflows. As a result, campuses offer a 
concentrated setting where sustainability interventions can be 

designed, measured, and institutionalized at scale—

contributing to national and global sustainability priorities such 

as the UN Sustainable Development Goals (United Nations, 

2015). In the Indian context, campus sustainability initiatives 

have often been driven through infrastructure upgrades (e.g., 

efficient lighting, solar PV, water reuse systems) and 

compliance/rating mechanisms. For example, Indian green 

campus guidance emphasizes auditable performance categories 

and measurable outcomes across energy, water, waste 

management, transportation, and health and well-being—

providing a useful Key Performance Indicator (KPI) structure 
for institutional planning and reporting (Indian Green Building 

Council, 2024). 

Artificial intelligence (AI) can strengthen these efforts by 

enabling a shift from periodic audits and static interventions to 

continuous, data-driven optimization. Campus operations 

generate regular patterns and predictable loads (timetables, 

semester cycles, hostel occupancy, weather-driven cooling 

demand), making them suitable for AI-based forecasting, 

anomaly detection, and automated control. In particular, 
buildings and utilities represent a high-impact starting point 

because they are major contributors to campus resource 

consumption, and operational improvements can be measured 

directly through electricity and water KPIs. Evidence from 

systematic reviews indicates that AI-enabled HVAC control 

and energy management can reduce consumption by 

dynamically adapting to environmental conditions and 

occupancy patterns (Aghili et al., 2025). Beyond energy, AI 

approaches can support leak detection and consumption 

analytics for water conservation, predictive maintenance to 

reduce asset failures and wastage, and improved waste 

segregation and routing—thereby strengthening operational 
reliability while advancing sustainability outcomes. 
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However, HEIs face a dual challenge: deploying AI 

responsibly while ensuring that AI itself aligns with 

sustainability goals. Governance concerns arise because 

campus AI can involve sensitive data (e.g., occupancy signals, 

mobility traces, or administrative records), requiring clear 
policies on privacy, accountability, and human oversight. A 

recognized risk-management approach such as the NIST AI 

Risk Management Framework provides a structured 

vocabulary for documenting risks, controls, and monitoring 

throughout the AI lifecycle (National Institute of Standards and 

Technology, 2023). At the same time, “Green AI” scholarship 

highlights that AI systems have their own energy and carbon 

footprint, and argues for prioritizing efficiency and reporting 

compute-related costs rather than optimizing accuracy alone—

an important consideration for budget-constrained HEIs 

(Schwartz et al., 2020). 

 
Against this backdrop, the present paper (a) synthesizes 

campus-relevant AI use-cases for sustainability, (b) identifies 

adoption barriers in Indian HEIs, and (c) proposes a practical, 

implementation-oriented framework that links sustainability 

KPIs to data readiness, pilot design, and responsible 

governance—supporting HEI leaders in moving from isolated 

pilots to scalable, measurable sustainability outcomes (Indian 

Green Building Council, 2024; National Institute of Standards 

and Technology, 2023). 

 

II. LITERATURE REVIEW 
 

A. Campus Sustainability Measurement in India: Rating 

Frameworks and KPI Logic 

Campus sustainability work in India is often 

operationalized through auditable categories and measurable 

performance targets embedded in green building/campus 

rating frameworks. The IGBC Green Campus Rating System 

(Version 1.0, July 2024) emphasizes measurable outcomes 

across energy, water, waste, transportation, and related 

campus systems, providing a practical structure for KPI 

selection and reporting (Indian Green Building Council, 

2024). In parallel, GRIHA positions itself as a nationally 
benchmarked green building rating approach, with criteria 

spanning energy and water optimization, waste management, 

and operations & maintenance—areas that map cleanly to 

campus sustainability interventions (GRIHA Council, n.d.).  

 

A key implication for AI-enabled sustainability is that 

successful deployments are rarely “model-first.” Instead, they 

follow a measurement logic: (i) define KPI baselines and 

targets, (ii) ensure data integrity and instrumentation, and (iii) 

implement iterative operational controls and verification 

cycles—an approach consistent with energy management 
thinking such as ISO 50001, which focuses on systematic 

improvement of energy performance (International 

Organization for Standardization, 2018).  

 

B. AI for Building Energy Management: HVAC, Occupancy 

Intelligence, and Plug Loads 

Buildings typically dominate institutional energy 

footprints, making them the most evidence-rich domain for 

AI-enabled sustainability. Reviews of AI in HVAC and 

building energy management consistently report benefits from 

forecasting, anomaly detection, and control optimization that 

adapt to weather and occupancy dynamics. A recent 

systematic review synthesizing post-2018 research reports that 

AI-driven HVAC strategies can reduce energy use in certain 

settings by dynamically adapting to environmental and 

occupancy conditions (Aghili et al., 2025).  
 

Occupancy intelligence is central to this literature 

because many energy loads in academic buildings are 

schedule-driven yet highly variable (class timetables, lab use, 

hostels, events). A major review on machine-learning-based 

occupancy prediction highlights that occupancy-informed 

control can meaningfully reduce energy use while maintaining 

comfort, emphasizing the importance of reliable occupancy 

sensing or privacy-preserving proxy signals (Zhang et al., 

2022). Complementing HVAC optimization, research on plug-

load prediction shows that incorporating occupant count 

improves prediction accuracy, which is valuable for model-
predictive control and operational scheduling (Wang et al., 

2019).  

 

Across this stream, two implementation lessons recur: (1) 

performance depends on data quality and instrumentation 

(sub-metering, reliable sensors, contextual features), and (2) 

operational adoption improves when models are interpretable 

and embedded into facility workflows rather than treated as 

“black box automation” (Aghili et al., 2025; Zhang et al., 

2022). These insights motivate a KPI-linked, instrumentation-

first deployment pathway. 
 

C. AI for Water Systems: Smart Metering, Anomaly 

Detection, and Leakage Analytics 

Water conservation and loss reduction are increasingly 

addressed through AI-enabled analytics on smart meters, 

district/zone metering, and distribution network telemetry. A 

systematic review of ML-based anomaly detection in smart 

water metering networks (2016–2023 coverage) highlights 

how models are used to identify abnormal consumption 

patterns, leaks, and operational anomalies, while noting 

challenges around ground-truth labeling and generalizability 

across sites (Kanyama et al., 2024). Recent work continues to 
develop ensemble approaches for anomaly detection in smart 

water metering, reinforcing that AI methods support 

conservation when paired with adequate sensing and 

operational verification protocols (Kanyama et al., 2025).  

 

For HEIs, the literature implies a practical sequencing: 

start with zone-level measurement + anomaly detection (to 

reduce losses quickly), then move toward richer optimization 

(e.g., predictive consumption forecasting), while maintaining 

low-friction operator verification to manage false alarms 

(Kanyama et al., 2024, 2025).  
 

D. AI for Waste: Segregation Support and Collection 

Logistics 

In waste management, AI work splits into (i) segregation 

support (often computer vision classification) and (ii) 

collection/logistics optimization (routing, scheduling, bin fill 

prediction). A 2025 study in Knowledge-Based Systems 

presents a deep learning–enabled waste classification system 

and applies explainable AI methods to support interpretability, 

illustrating the direction of high-accuracy classification 

pipelines for segregation workflows (Nahiduzzaman et al., 
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2025). On the logistics side, a systematic review and meta-

analysis of IoT-enabled routing optimization quantifies 

average reductions in waste collection distance, implying 

emissions and cost benefits when routing analytics are 

integrated with operational systems (Maciel et al., 2025).  
 

For campuses, the research suggests that model 

performance alone is insufficient; operational value depends 

on workflow redesign (bin placement, segregation incentives, 

collection schedules) and governance choices that avoid 

intrusive surveillance in public spaces (Maciel et al., 2025; 

Nahiduzzaman et al., 2025).  

 

E. Mobility Optimization and Behavioral Change: Routing, 

Demand-Responsive Transport, and Nudges  

Transport and commuting are prominent categories in 

campus sustainability frameworks (e.g., IGBC’s 
transportation emphasis), and the literature offers multiple AI 

levers: shuttle routing, demand estimation, and demand-

responsive service design (IGBC, 2024). At the campus scale, 

a study on university shuttle bus optimization uses ML for 

travel-time prediction while considering fuel cost and 

emissions, showing how predictive analytics can support 

routing decisions and monitoring (Noor et al., 2020). At the 

broader mobility-systems level, work on demand-responsive 

transport integrates mobile data analytics and routing 

algorithms to support flexible services that better match 

demand while improving efficiency (Melo et al., 2024).  
 

Behavioral interventions complement operational 

optimization where user actions shape resource use 

(lighting/plug loads, water use, waste segregation). Evidence 

from student-accommodation contexts indicates that 

informational and competition-based nudges can reduce 

energy use, though effect sizes vary and persistence depends 

on design (Chen & Lotti, 2025). Longer-term field evidence 

comparing “nudges” and “boosts” in residential energy 

settings also suggests that intervention mechanisms and 

durability matter for sustained outcomes (Paunov & Grüne-

Yanoff, 2023). 
 

F. Governance, Privacy, and “Sustainable AI”: Responsible 

AI + Green AI 

AI-enabled campus sustainability introduces a 

governance duality: (i) responsible processing of campus data 

and (ii) the environmental footprint of AI itself. On data 

protection, India’s Digital Personal Data Protection Act, 2023 

establishes obligations relevant to campuses acting as data 

fiduciaries—particularly around notice, purpose limitation, 

retention, and grievance redressal (Government of India, 

2023). The DPDP Rules, 2025 provide the implementation 
layer and mark operationalization of compliance expectations 

(Ministry of Electronics and Information Technology 

[MeitY], 2025; Press Information Bureau, 2025).  

 

In addition, India-specific Responsible AI guidance 

emphasizes principles for trust-building and alignment with 

societal values—highly relevant where occupancy signals, 

camera feeds, or mobility traces may be used (NITI Aayog, 

2021a, 2021b). At the risk-governance level, the NIST AI Risk 

Management Framework (AI RMF 1.0) provides a widely 

used structure for mapping, measuring, and managing risks 

across the AI lifecycle, supporting institutional controls such 

as transparency, accountability, security, and human oversight 

(National Institute of Standards and Technology, 2023).  

 

On AI’s environmental footprint, Green AI scholarship 
argues for reporting and valuing compute/efficiency alongside 

accuracy, since resource-intensive model development has 

both financial and carbon implications (Schwartz et al., 2020). 

A more recent review consolidates green AI research and 

reinforces efficiency-oriented approaches as central to 

sustainable AI practice (Bolón-Canedo & Morán-Fernández, 

2024). These governance and sustainability concerns align 

naturally with an explicit “duty” layer in AI-for-sustainability 

implementations. 

 

G. AI Synthesis and Research Gap Motivating the KPI–Data–

Duty Approach 
Across domains (energy, water, waste, mobility), the 

literature demonstrates a growing toolbox of AI techniques 

and a steady expansion of evidence syntheses and applied 

studies (Aghili et al., 2025; Kanyama et al., 2024; Maciel et 

al., 2025; Melo et al., 2024). However, three gaps remain 

especially salient for Indian HEIs: 

 

 KPI-to-Intervention Traceability 

 Many studies report algorithmic performance or localized 

savings without a standardized, campus-administration-

friendly linkage between sustainability KPIs (baseline → 
target → audit) and AI deployment decisions. 

IGBC/GRIHA provide KPI categories but do not prescribe 

an AI implementation pathway (GRIHA Council, n.d.; 

IGBC, 2024).  

 

 Data Readiness as the Constraint:  

Repeatedly, outcomes depend less on model 

sophistication and more on instrumentation, interoperability, 

and operational data pipelines—suggesting a “minimum 

viable data stack” mindset before optimization (Zhang et al., 

2022; Wang et al., 2019).  

 Governance embedded early: With DPDP obligations, 

Responsible AI principles, NIST-aligned risk 

management, and Green AI concerns, campuses need a 

lightweight but explicit governance checklist that travels 

with the pilot-to-scale journey rather than being added after 

deployment (MeitY, 2025; NIST, 2023; NITI Aayog, 

2021a; Schwartz et al., 2020).  

 

Collectively, these gaps justify an implementation-

oriented synthesis that provides a practical, auditable route 

from “AI idea” to “measured sustainability outcome.” 

 

III. METHOD: MINI-REVIEW 
 

This study used a mini-review approach to identify and 

synthesize campus-relevant AI applications for sustainability, 

with emphasis on energy, water, waste, mobility, and 

administrative dematerialization (paper reduction). A mini-

review was selected because the objective was not exhaustive 

coverage of all AI and sustainability research, but a focused, 

decision-oriented synthesis that translates the most relevant 

evidence into (i) a campus use-case taxonomy and (ii) 

implementation implications suitable for Indian higher 
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education institutions (HEIs), following established guidance 

on planning and reporting literature reviews (Grant & Booth, 

2009; Snyder, 2019). 

 

A. Review Scope and Unit of Analysis 
The scope was defined around operational sustainability 

systems typical to HEIs (e.g., buildings, utilities, campus 

services, and mobility) rather than city-scale infrastructure. The 

unit of analysis was campus-scale deployment, meaning 

applications needed to be plausibly implementable at the level 

of individual buildings, hostels, labs, or the campus network 

(rather than purely theoretical algorithms without a deployment 

context). 

 

B. Search Strategy and Sources 

Searches were conducted using combinations of 

keywords structured around three blocks: 

 Technology block: “AI”, “machine learning”, “deep 

learning”, “predictive analytics”, “anomaly detection”, 

“optimization” 

 Context block: “campus”, “university”, “higher 

education”, “smart campus”, “smart building” 

 Sustainability block: “energy”, “HVAC”, “building 

energy”, “water”, “leakage”, “waste”, “segregation”, 

“routing”, “mobility”, “transport”, “paper reduction”, 

“administrative processes” 

 

 Example Query Patterns Included: 

 “AI” AND (“campus” OR “university”) AND (“energy” 

OR “HVAC” OR “smart building”) 

 “machine learning” AND (“smart water” OR “smart 

metering”) AND (“anomaly detection” OR “leak 

detection”) 

 “AI” AND (“waste” OR “segregation” OR “routing”) 

AND (“IoT” OR “collection”) 

 “AI” AND (“mobility” OR “shuttle” OR “demand-

responsive transport”) AND (“optimization” OR 

“prediction”) 

 
To improve contextual relevance, India-specific terms 

were used such as “green campus”, “IGBC green campus”, 

“sustainability in Indian universities”, and “campus 

sustainability India”, with purposeful attention to practice-

facing documents and standards that define KPI categories 

(e.g., Indian Green Building Council, 2024). 

 

C. Selection Priorities and Rationale 

Given the mini-review intent, priority was given to 

sources most likely to generalize into implementable campus 

guidance: 

 Review papers and synthesis articles (to consolidate 

evidence across multiple studies and reduce over-reliance 

on single-case claims) (Grant & Booth, 2009; Snyder, 

2019). 

 Building energy/HVAC evidence because buildings are 

typically the most metered and controllable campus 

domain and have mature AI applications (e.g., Aghili et al., 

2025). 

 India-relevant sustainability rating frameworks and 

guidance to ensure the review remains KPI-compatible 

with local reporting and benchmarking norms (Indian 

Green Building Council, 2024). 

 Governance and risk frameworks to ensure proposed 

implementation guidance explicitly addresses 

transparency, accountability, and responsible deployment 
(National Institute of Standards and Technology, 2023). 

 

D. Inclusion and Exclusion Criteria   

Sources were included if they met all of the following 

criteria: 

 Application clarity: clear description of an AI technique 

and the sustainability application context (e.g., HVAC 

control, anomaly detection in water metering, waste 

routing). 

 Outcome relevance: reported operational outcomes, 

measurable impacts, or a credible pathway to KPI 
measurement (e.g., kWh savings, reduced downtime, leak 

reduction, route distance reduction). 

 Campus deployability: plausibility for campus-scale 

deployment (instrumentation requirements and 

implementation context could be reasonably mapped to 

HEI conditions). 

 

Sources were excluded if they: 

 Focused purely on algorithmic novelty without a 

sustainability outcome or deployment context, 

 Addressed sustainability at a scale far removed from HEIs 

without a clear translation pathway, or 

 Lacked sufficient methodological detail to interpret claims. 

 

E. Screening and Data Extraction  

Retrieved sources were screened in two stages: 

 Stage 1 (title/abstract screening): removal of off-topic 

items and non-campus-relevant studies. 

 Stage 2 (full-text screening): evaluation against the 

inclusion criteria above, with attention to the fit between 

technique, instrumentation, and KPI measurability. 

 

A structured extraction template was used to 
standardize interpretation across domains. For each 

included source, the following information was captured: 

 Sustainability domain energy/ water/ waste/ mobility/ 

admin), 

 AI technique family (forecasting, anomaly detection, 

classification, optimization/control), 

 Required data inputs and instrumentation, 

 Reported outcomes and KPI candidates, 

 Implementation conditions and constraints (data quality, 

integration, human oversight), and 

 Transferability to campus settings (what would need to be 

in place at an HEI). 

 

F. Synthesis Approach 

Evidence was synthesized using a narrative thematic 

synthesis consistent with mini-review practice (Grant & 

Booth, 2009; Snyder, 2019). Findings were coded into two 

complementary outputs: 

 Use-case taxonomy: grouping applications by campus 

function and technique type (e.g., “HVAC optimization,” 

“water anomaly detection,” “waste routing”). 
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 Implementation implications: cross-cutting lessons that 

determine whether AI translates into measurable outcomes 

(e.g., instrumentation readiness, workflow integration, 

governance safeguards). 

 
Rather than treating all studies as equally generalizable, 

the synthesis emphasized repeatable patterns (e.g., 

instrumentation-first logic, verification loops, integration with 

facilities operations) and highlighted where evidence is 

context-dependent. 

 

G. Governance Lens for Risk and Responsibility 

Since, campus sustainability AI can involve potentially 

sensitive signals (occupancy proxies, mobility traces, camera-

adjacent data), governance considerations were integrated 

explicitly. Responsible AI and risk guidance was consulted to 

ensure that the proposed framework incorporates 
transparency, accountability, security, and oversight 

mechanisms appropriate for institutional deployment 

(National Institute of Standards and Technology, 2023). This 

governance lens was operationalized in the synthesis by 

identifying “duty” requirements alongside each domain (e.g., 

data minimization, access control, documentation, and human-

in-the-loop verification). 

 

H. Methodological Limitations 

As a mini-review, the method prioritizes relevance and 

synthesis utility over exhaustive retrieval and formal meta-
analysis. Therefore, results should be interpreted as a 

structured, implementation-oriented consolidation rather than 

a comprehensive mapping of all published studies. 

Nonetheless, the use of explicit search blocks, staged 

screening, and standardized extraction improves transparency 

and reproducibility in line with literature review guidance 

(Grant & Booth, 2009; Snyder, 2019). 

 

Following guidance for transparent review reporting 

(Grant & Booth, 2009; Snyder, 2019), the search strategy 

across the defined keyword blocks (AI + campus/university + 

energy/HVAC/water/waste/mobility/dematerialization, plus 
India-specific terms such as “IGBC green campus”) yielded 

312 records. After removing duplicates, 254 unique records 

remained. Title and abstract screening for campus 

deployability and sustainability relevance excluded 186 

records, resulting in 68 articles retained for full-text 

assessment. Full texts were then evaluated against the 

inclusion criteria (clear AI technique and campus context; 

operational outcome or KPI measurability; feasible 

instrumentation/deployment logic), leading to the exclusion of 

35 studies (e.g., insufficient deployment context, limited KPI 

linkage, or non-campus scale). The final synthesis included 33 
sources, which were coded into (i) a campus use-case 

taxonomy and (ii) cross-cutting implementation implications 

(instrumentation readiness, workflow integration, verification 

cycles), with governance and risk considerations aligned to a 

lifecycle risk lens (NIST, 2023) to support transparency, 

accountability, and oversight. 

 

 
Fig 1 PRISMA Flow Diagram for the Mini-Review 

 

IV. AI USE-CASES FOR A SUSTAINABLE CAMPUS 

 

A. Resource Optimization 

 Smart HVAC and thermal comfort optimization. AI-

enabled HVAC control is consistently highlighted as a 

major lever because HVAC loads vary with occupancy, 

schedules, and weather. A systematic review of AI 

approaches for HVAC energy management reports that AI-

driven control strategies can reduce energy consumption 

by dynamically adapting to environmental conditions and 

occupancy patterns (Aghili et al., 2025). For Indian HEIs, 

where classroom utilization fluctuates by timetable and 
season, even incremental optimization can yield 

substantial savings without compromising comfort. 

 Lighting and plug-load management. Occupancy-based 

control (sensor-driven) combined with predictive 

scheduling (timetables + historical usage) can reduce waste 

from lights/fans/AC running in unoccupied rooms. 

Evidence from state-of-the-art reviews and empirical 

studies shows meaningful energy-saving potential from 

occupancy-based lighting control (de Bakker et al., 2017; 

de Bakker et al., 2018). In parallel, plug-load prediction 

and scheduling research demonstrates that 
occupancy/usage-aware forecasting can support predictive 

control and operational savings (Botman et al., 2024; 

Wang et al., 2019). These are “low-regret” applications 
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because they are explainable and KPI-linked (kWh 

reduction). 

 Renewable integration and demand management. 

Campuses with rooftop solar and time-of-day tariffs can 

use AI forecasting (load + solar generation) to shape 
demand (e.g., shifting non-critical loads), improve self-

consumption, and reduce peak costs. Campus microgrid 

research shows that demand-response-oriented energy 

management can deliver measurable cost savings and 

improve renewable utilization (Bin et al., 2022). AI-based 

solar and load forecasting studies further support 

optimized scheduling and reliability in renewable-heavy 

systems (Bouquet et al., 2024; Rajbhandari et al., 2024).  

 

B. Monitoring, Maintenance, and Compliance 

 Predictive maintenance for utilities and equipment. AI can 

detect anomalies in pumps, chillers, and electrical panels 
using sensor/IoT time-series data, enabling earlier 

interventions that reduce unplanned downtime and 

improve operational reliability (Es-sakali et al., 2022; 

Murtaza et al., 2024). The sustainability benefit is indirect 

but meaningful: fewer failures, reduced wastage, and 

longer asset life (Murtaza et al., 2024).  

 Water leak detection and consumption analytics. AI-based 

anomaly detection on smart-meter data can identify 

continuous-flow and abnormal-consumption patterns 

(Kanyama et al., 2024; Kanyama et al., 2025). India-facing 

campus guidance emphasizes measurable water 
conservation and reduction targets, making leak analytics 

a strong fit for institutional KPIs and compliance reporting 

in campus sustainability programs (Indian Green Building 

Council, 2024).  

 Waste segregation support and routing. Computer vision 

models can support waste identification/classification for 

segregation at source (e.g., canteens/hostels), which can 

reduce contamination and improve downstream recovery 

(Nahiduzzaman et al., 2025). For internal collection, IoT- 

and analytics-enabled route optimization has been 

synthesized to reduce collection distance on average, 
supporting lower fuel use and emissions (Maciel et al., 

2025). Practical success often depends on workflow design 

and incentives in addition to model performance (Maciel 

et al., 2025). 

 

Appendix 1 summarizes the identified AI use-cases 

mapped to campus KPIs, SDGs, data requirements, and key 

risks/controls. 

 

V. CONSTRAINTS ON ADOPTING AI-ENABLED 

SUSTAINABILITY INITIATIVES IN INDIAN 

HEIS 
 

Adoption of AI-enabled sustainability initiatives in 

Indian higher education institutions (HEIs) is constrained by 

multiple, interlinked challenges.  

 First, many campuses still lack consistent metering and 

sensing, such as sub-metering for electricity and water, 

reliable occupancy sensing, and structured telemetry for 

key assets (HVAC plants, pumps, elevators, major plug-

load zones). Where data exist, they are often incomplete, 

noisy, or temporally misaligned across systems, which 

reduces the feasibility of forecasting, anomaly detection, 

and closed-loop control. Evidence from building energy 

management reviews shows that AI performance and 

realized savings are strongly contingent on data quality, 

coverage, and contextual features (e.g., weather, 

schedules, occupancy proxies), not only on model choice 
(Aghili et al., 2025; Zhang et al., 2022). When 

instrumentation is weak, AI projects risk becoming “pilot 

theatre”—producing dashboards and prototypes without 

repeatable, auditable KPI improvement. 

 Second, available data are frequently siloed across facility 

teams, contractors, and vendors (BMS, smart meters, 

ticketing/CMMS, ERP/procurement, student information 

systems), creating interoperability and integration burdens. 

Smart-campus IoT deployments illustrate that multi-

vendor environments routinely face integration challenges 

(heterogeneous protocols, inconsistent semantics), along 

with scalable storage/processing and reliable 
visualization—issues that must be addressed before 

analytics can be operationalized campus-wide 

(Domínguez-Bolaño et al., 2024). In practice, campuses 

often need a “minimum viable data stack” (instrumentation 

+ integration + governance) before optimization. 

 Third, procurement rigidity and limited in-house data 

engineering capacity can increase dependence on vendors, 

limiting iterative refinement and raising the risk of lock-in 

(long contracts, proprietary formats/APIs, restricted 

portability). Research on vendor lock-in in cloud migration 

highlights how portability and interoperability constraints 
can restrict switching options and create long-term 

dependence (Opara-Martins et al., 2016). Public ICT 

procurement research also documents how tendering 

processes can constrain agility (changes are hard after 

tender publication), and how large, complex procurements 

can unintentionally reinforce lock-in dynamics (Ghezzi & 

Mikkonen, 2024). For HEIs, this means that even 

technically sound pilots may stall at scale if contracts do 

not explicitly protect data access, interoperability, and exit 

pathways. 

 Fourth, governance, privacy, and trust concerns are central 
because campus AI can involve potentially sensitive data 

(occupancy traces, Wi-Fi logs, CCTV feeds, mobility 

patterns, or linked student/staff identifiers). Studies on 

smart-campus governance show that students can 

experience “tensions and imaginaries” around 

surveillance, consent, and institutional power, which can 

undermine legitimacy even when the stated purpose is 

sustainability (Cheong & Nyaupane, 2022). In India, these 

concerns are sharpened by the Digital Personal Data 

Protection (DPDP) legal regime: the DPDP Act, 2023 sets 

obligations relevant to campuses acting as data fiduciaries, 

and the DPDP Rules, 2025 further operationalize 
requirements (e.g., governance, notices/consent where 

applicable, grievance mechanisms, safeguards, retention 

discipline). For implementation, this implies clear policies 

for purpose limitation, data minimization, retention 

periods, access controls, audit logs, and human 

oversight—especially for AI that could be repurposed 

beyond sustainability. 

 Fifth, the sustainability of AI itself must be considered. 

Training and deploying models consume compute, 

electricity, and associated carbon, and “Green AI” argues 

that efficiency and compute cost should be reported and 
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valued alongside accuracy. Empirical work on deep 

learning also emphasizes that energy and carbon costs can 

be material and unequally distributed, with practical 

recommendations to reduce compute intensity. For budget-

constrained academic settings, this means prioritizing 
lightweight models where feasible, reusing pretrained 

components responsibly, and logging compute/energy 

metrics for accountability. 

 

Finally, change management and human factors remain 

decisive. Facilities teams may resist “black-box” automation, 

and campus stakeholders may distrust monitoring unless 

benefits are visible and safeguards are explicit. Explainability 

research shows that interpretable, instance-level explanations 

can improve users’ ability to assess and trust model outputs—

supporting adoption in operational contexts where decisions 

must be justified (Ribeiro et al., 2016). Similarly, structured 
risk governance frameworks (e.g., NIST AI RMF 1.0) provide 

a practical vocabulary for documenting risks and controls 

across the lifecycle—helping move from pilot to scale without 

eroding trust.  

 

VI. PRACTICAL FRAMEWORK FOR HEIS 

 

The KPI–Data–Duty (KDD) framework guides Indian 

HEIs in implementing AI for campus sustainability through a 

disciplined pilot-to-scale pathway that prioritizes measurable 

outcomes, data readiness, and responsible deployment. 
 First, the framework begins with KPI selection (“KPI”): 

institutions define 3–5 auditable, time-bound sustainability 

KPIs that are meaningful for campus operations and align 

with recognized green campus/building categories. For 

example, KPI sets can be drawn from structured domains 

such as energy, water, waste, transportation/mobility, and 

operations & maintenance used in Indian rating and 

benchmarking systems (Indian Green Building Council 

[IGBC], 2024; GRIHA Council, n.d.). Each KPI is defined 

with (i) a clear formula and data source, (ii) a measurement 

frequency (daily/weekly/monthly), (iii) a KPI owner 

(facility lead/estate office/hostel admin), and (iv) a 
baseline and target window. This KPI discipline ensures AI 

pilots are not evaluated only on “model accuracy,” but on 

whether they move operational metrics that can be reported 

and audited. 

 Second, KDD establishes feasibility via a minimum viable 

“Data” stack (“Data”), following the principle “instrument 

first, optimize second.” This step is a gate: if minimum 

instrumentation and integration are absent, the institution 

improves data readiness before attempting advanced AI. 

Building-energy and HVAC research repeatedly shows 

that realized energy benefits depend heavily on data 
quality, metering granularity, and contextual variables 

(weather, schedules, occupancy proxies), not just 

algorithm choice (Aghili et al., 2025; Zhang et al., 2022). 

Practically, a minimal stack typically includes: 

 

 Sub-metering at building/zone/end-use level (HVAC 

plant, hostels, labs where possible) 

 Occupancy proxies (aggregated counts or schedule 

signals) to contextualize demand variability (Zhang et al., 

2022)  

 Weather and tariff inputs to normalize performance and 

support peak/price-aware decisions 

 Maintenance logs / CMMS tickets to connect anomalies to 

verified action and closure 

 Interoperability basics (timestamps, naming conventions, a 
simple data dictionary, and access to APIs/exports), 

because multi-vendor campus systems often fail to scale 

without integration discipline (Domínguez-Bolaño et al., 

2024).  

 Where relevant (e.g., plug loads and internal gains), the 

minimum stack may also include occupant-count-linked 

signals because occupant count can materially improve 

prediction performance and control relevance (Wang et al., 

2019).  

 

 Third, KDD embeds a lightweight governance and 
sustainability checklist (“Duty”) to ensure AI is both 

responsible and resource-efficient from day one. The Duty 

checklist covers: 

 Privacy & purpose limitation (what data is collected, why 

it is needed, and what it will not be used for), plus retention 

and access discipline consistent with India’s DPDP 

framework (MeitY, 2023, 2025).  

 Transparency & accountability (who approves, who 

monitors drift, who handles grievances and exceptions) 

 Security controls (role-based access, audit logs, vendor 

safeguards) 

 Human oversight (AI as decision support, with override 

and escalation paths) 

 Risk documentation alignment using a recognized 

lifecycle vocabulary such as NIST AI RMF 1.0 (National 

Institute of Standards and Technology, 2023).  

 Green AI logging: track compute intensity, retraining 

frequency, and efficiency trade-offs—reflecting “Green 

AI” guidance that efficiency should be valued alongside 

performance (Schwartz et al., 2020) and evidence that 

training large models can have non-trivial energy/carbon 

implications (Strubell et al., 2019).  

 Interpretability support so facility teams can trust and act 

on outputs; explainability methods are widely used to make 

predictions more actionable and auditable in operational 

settings (Ribeiro et al., 2016).  

 

 Finally, KDD operationalizes learning through an 8–12 

week pilot and scale decision. The pilot is implemented in 

a limited, well-defined zone (one academic block/hostel 

cluster/utility subsystem) with (i) a pre-specified 

evaluation plan, (ii) comparison against a 

seasonal/academic-calendar baseline, and (iii) a workflow 

that links AI outputs to action (alert → verification → 
ticket → fix → KPI update). Baseline–target improvement 

logic mirrors systematic performance improvement 

thinking used in energy management system practice (ISO, 

2018). The framework recommends scaling only when 

KPI improvements are demonstrable and Duty controls are 

stable, preventing the common failure mode of scaling 

prototypes without governance readiness. 

 

Appendix 2 presents the KPI–Data–Duty (KDD) 

framework as a concise pilot-to-scale roadmap, enabling HEI 

leaders to translate AI ideas into measured sustainability 
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outcomes with traceable KPIs, minimum viable 

instrumentation, and embedded responsible/Green AI 

safeguards. 

 

VII. DISCUSSION & IMPLICATIONS 
 

For Indian HEIs, the most practical starting point for AI-

enabled campus sustainability is building energy and water. 

These domains offer three advantages. First, outcomes are 

highly measurable through standard indicators (e.g., kWh, 

peak demand, kWh/m²; litres per day, litres per capita, 

anomaly/leak events) once minimum metering exists. Second, 

interventions are predominantly operational and system-level 

(controls, scheduling, maintenance response, leak repair), 

reducing the risk that projects are perceived as personal 

surveillance. Third, the evidence base is relatively mature: AI 

applications for HVAC and building energy management are 
widely studied and show that forecasting, fault detection, and 

control optimization can reduce energy use when data and 

operational integration are adequate (Aghili et al., 2025; 

Zhang et al., 2022). Similarly, smart-water anomaly detection 

literature indicates that machine learning can support 

leak/abnormal-consumption detection when paired with 

appropriate sensing and verification routines (Kanyama et al., 

2024). 

 

Campus sustainability rating frameworks provide an 

additional institutional lever because they act as a shared 
administrative language. In India, the IGBC Green Campus 

Rating framework explicitly foregrounds performance 

categories such as energy, water, waste, and transportation, 

which helps facility teams and administrators align on what 

counts as “progress” and how it should be reported (Indian 

Green Building Council, 2024). GRIHA’s criteria and 

benchmarking orientation similarly reinforce a multi-criterion, 

measurable approach to sustainability management (GRIHA 

Council, n.d.). These frameworks make it easier to translate AI 

work into auditable claims—reducing the likelihood that pilots 

remain isolated technology demonstrations. 

 
At the same time, HEIs should avoid treating AI as a 

“technology add-on.” The implication of the literature is that 

AI value is realized only when it is embedded into a 

measurement-and-improvement operating cycle rather than 

deployed as a standalone analytics layer. This is why the KDD 

framing begins with KPIs and instrumentation and then links 

outputs to operational routines such as maintenance 

workflows, control actions, and verified closure (ISO, 2018; 

Aghili et al., 2025). The key adoption lesson here is socio-

technical: energy/water AI performs best when it becomes part 

of how the campus runs—how anomalies become tickets, how 
controls are adjusted, how baselines are updated, and how 

results are reported. 

 

Governance and trust are not peripheral to sustainability 

AI; they are often the conditions for scaling. Even “non-

personal” domains can drift into privacy risk once occupancy 

proxies, Wi-Fi counts, access logs, or camera-adjacent data are 

introduced. Embedding governance early—through 

documentation, access controls, purpose limitation, retention 

rules, and human oversight—reduces reputational and 

compliance risk and increases stakeholder acceptance. A 

useful institutional anchor is a lifecycle risk lens such as the 

NIST AI Risk Management Framework (AI RMF 1.0), which 

provides a practical vocabulary for “govern–map–measure–

manage” across design, deployment, monitoring, and incident 

handling (NIST, 2023). From an implementation perspective, 
the governance implication is straightforward: HEIs should 

require a lightweight “duty pack” for every pilot (what data is 

used, why, who can access it, how long it is kept, how errors 

are handled), and scale only when these controls are stable. 

 

A further implication—often overlooked in campus 

sustainability discussions—is that the environmental footprint 

of AI itself must be managed. “Green AI” argues that 

efficiency and compute-related costs should be reported and 

valued alongside accuracy and performance (Schwartz et al., 

2020). Related work demonstrates that training and running 

models can have meaningful energy and carbon costs, making 
efficiency a practical governance concern rather than a purely 

ethical one (Strubell et al., 2019). For HEIs, operationalizing 

Green AI means preferring efficient models where possible, 

avoiding unnecessary retraining, and logging compute and 

energy proxies as part of sustainability reporting. Doing so 

also aligns with academic values of transparency and 

replicability—where methods are documented, claims are 

verifiable, and performance trade-offs are explicit (Schwartz 

et al., 2020). 

 

A. Practical Implications for HEI Leaders and Facility Teams 

 Start where measurement is easiest: prioritize energy and 

water pilots with clear KPIs and baseline definitions 

(IGBC, 2024; Aghili et al., 2025; Kanyama et al., 2024). 

 Build minimum viable instrumentation before “AI”: sub-

metering and reliable logs are often higher ROI than 

sophisticated models in low-data environments (Zhang et 

al., 2022; ISO, 2018). 

 Treat AI as decision support: integrate outputs into 

maintenance and operations, with clear escalation and 

override paths (NIST, 2023). 

 Make Green AI a requirement: log compute/efficiency 
indicators and justify model complexity relative to 

marginal sustainability gains (Schwartz et al., 2020; 

Strubell et al., 2019). 

 

B. Research Implications  

For researchers, the KDD logic implies that the strongest 

contributions will be those that connect models to auditable 

KPIs and document the full deployment chain 

(instrumentation → model → action → verification). Future 

work can strengthen the evidence base by reporting 

standardized baselines, seasonal controls, maintenance-

response confounds, and durability of impact beyond pilot 
windows—especially in HEI settings where academic 

calendars create pronounced demand variability (Zhang et al., 

2022; Aghili et al., 2025). 

 

VIII. LIMITATIONS & FUTURE WORK 

 

This study adopted a mini-review approach that 

prioritizes transferable, campus-relevant AI applications and 

standards over exhaustive retrieval, formal risk-of-bias 

assessment, or meta-analysis. As such, it should be interpreted 

as an implementation-oriented synthesis rather than a full 
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systematic review, consistent with the known trade-offs of 

review types (Grant & Booth, 2009; Snyder, 2019). While 

transparency was strengthened through structured search 

blocks and staged screening, the process does not claim 

comprehensive coverage comparable to PRISMA-grade 
systematic reviews (Page et al., 2021).  

 

A second limitation is context sensitivity of reported 

savings. Energy and water outcomes summarized from 

reviews can vary substantially by building typology (labs vs 

classrooms vs hostels), climate zone, operational schedules, 

occupancy volatility, and baseline efficiency. For example, the 

building-energy literature shows that AI impacts depend 

strongly on instrumentation quality, weather normalization, 

and occupancy dynamics, which may differ across campuses 

and regions (Aghili et al., 2025; Zhang et al., 2022). Similarly, 

anomaly detection in water systems is affected by metering 
granularity and ground-truth verification practices, which can 

vary widely across institutions (Kanyama et al., 2024). 

Therefore, the framework’s pathway is robust, but effect sizes 

should not be assumed without local baselines and 

verification. 

 

Third, the paper does not introduce a primary dataset or 

operational trial results, so claims about feasibility and ROI 

are based on synthesized evidence rather than demonstrated 

outcomes from Indian HEI deployments. This is important 

because campus environments involve socio-technical 
constraints (maintenance response capacity, procurement 

constraints, stakeholder trust) that can limit real-world 

performance even when models work in controlled studies. 

Future research can strengthen and validate the KDD 

framework in three high-value directions: 

 Multi-campus validation across Indian contexts: 

Implement coordinated pilots across multiple HEIs (e.g., 

different climate zones, campus sizes, building stock ages) 

using shared KPI definitions and standardized reporting, to 

test generalizability and isolate which enabling conditions 

(metering maturity, governance readiness, O&M capacity) 

drive outcomes (Aghili et al., 2025; Zhang et al., 2022).  

 Comparative evaluation of Green AI choices 

(energy/compute cost vs accuracy vs KPI gain): Conduct 

head-to-head comparisons of model families (lightweight 

statistical baselines, tree-based models, deep learning, 

hybrid control) while explicitly reporting 

compute/efficiency and retraining requirements. This 

aligns with Green AI arguments that efficiency should be 

valued and reported alongside performance (Schwartz et 

al., 2020) and with evidence that model 

development/training can have non-trivial energy and 

carbon costs (Strubell et al., 2019). More recent syntheses 
can be used to build standardized reporting templates for 

AI footprint and efficiency trade-offs (Verdecchia et al., 

2023; Bolón-Canedo & Morán-Fernández, 2024).  

 Governance and acceptability research on monitoring 

boundaries in HEIs: Empirically examine what levels of 

monitoring (occupancy proxies, access logs, mobility 

traces, camera-adjacent systems) are considered 

acceptable by students, staff, and administrators; what 

consent/notice designs increase legitimacy; and how 

governance mechanisms shape adoption. Smart campus 

work shows that perceived surveillance and data 

governance tensions materially affect legitimacy and trust 

(Cheong & Nyaupane, 2022). These studies should be 

linked to practical lifecycle controls and documentation 

frameworks (NIST, 2023) and to evolving legal 

obligations under India’s DPDP regime (MeitY, 2023, 
2025). 

 

Collectively, these directions would shift the 

contribution from a framework grounded in synthesis toward 

a validated, benchmarked, and governance-tested 

implementation model for Indian HEIs. 

 

IX. CONCLUSION 

 

This article emphasises that Indian higher education 

institutions (HEIs) can accelerate campus sustainability 

outcomes with AI only when AI is treated as an operational 
performance program rather than a technology add-on. Across 

energy, water, waste and mobility, the reviewed evidence 

shows that AI’s value is typically realized through forecasting, 

anomaly detection, and optimization—but the magnitude and 

reliability of gains depend less on “model choice” and more 

on measurement discipline, data readiness, and workflow 

integration (Aghili et al., 2025; Zhang et al., 2022; Kanyama 

et al., 2024). In response, the KPI–Data–Duty (KDD) 

framework contributes a practical pilot-to-scale roadmap that 

starts with 3–5 auditable KPIs, builds a minimum viable data 

stack (“instrument first, optimize second”), and embeds a Duty 
layer to ensure Responsible and Green AI practices (privacy, 

accountability, security, transparency, and efficiency logging) 

aligned with lifecycle risk governance expectations (NIST, 

2023; Schwartz et al., 2020). The framework also emphasizes 

disciplined evaluation through an 8–12 week pilot with 

seasonal baselines and scale decisions tied to demonstrated 

KPI improvement and stable governance controls. 

 

For practice, the implications are immediate: HEIs 

should begin with building energy and water, where impacts 

are measurable and interventions are operational, while 

ensuring that procurement protects interoperability and avoids 
lock-in. For scholarship, the paper highlights the need for 

future studies that report standardized baselines, multi-campus 

validations, and explicit Green AI trade-offs to strengthen 

generalizability and replicability (Schwartz et al., 2020; 

Strubell et al., 2019). Overall, KDD reframes AI-enabled 

sustainability as a trustworthy, auditable, and resource-

efficient operating model—one that can help Indian campuses 

convert pilots into measurable environmental performance 

gains while maintaining legitimacy and accountability. 
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Table 1: AI use-cases mapped to SDGs, campus KPIs, and key risks 

Campus domain 
AI use-case 

(example) 
Primary KPI 

SDG 

linkage 
Key data needed 

Main risks & 

controls 

Energy (buildings) 

AI HVAC 

optimization 

(occupancy + 
weather adaptive 

control) 

kWh, peak demand, 
comfort hours 

SDG 7, 11, 
13 

Metering, 

occupancy proxy, 
weather 

Over-automation 

→ human 
override; model 

drift 

Energy 

(lighting/plug 

loads) 

Predictive 

scheduling + 

occupancy sensing 

kWh per m² SDG 7, 13 
PIR/Wi-Fi proxy, 

schedules 

Sensor privacy → 

minimize & 

aggregate 

Water 

Leak/anomaly 

detection on smart 
meters 

L/capita, leak rate SDG 6, 11 
Water meters, 

zone-level logs 

False alarms → 

thresholds + 
verification 

Waste 

Vision-assisted 

segregation + bin fill 

prediction 

diversion %, 

contamination rate 
SDG 11, 12 

Camera/bin 

sensors 

Surveillance 

concerns → avoid 

faces; signage 

Mobility 
Shuttle routing + 

ride-share matching 

low-carbon 

commute %, 

utilization 

SDG 11, 13 
travel demand, 

routes 

Equity → ensure 

access across 

groups 

Admin/paper 

Document 
classification + 

workflow 

automation 

print volume, 

process time 
SDG 12, 13 

forms/docs 

metadata 

Bias/errors → 

human review, 

audit trails 

Operations 

Predictive 

maintenance for 

pumps/chillers 

downtime, wastage, 

energy intensity 

SDG 9, 12, 

13 

sensors, 

maintenance logs 

Vendor lock-in → 

open standards, 

data ownership 
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Table 2: KPI–Data–Duty (KDD) Framework for Implementing AI-Enabled Campus Sustainability in Indian HEIs 

(Pilot-to-Scale Roadmap) 

Step What it means What to do (checklist) Outputs you should document 

Step 1: KPI 

(Impact clarity) 

Pick 3–5 auditable, 

time-bound 

sustainability 

metrics for the 

campus 

• Electricity: kWh per student / per m²; peak 

demand  

• Water: liters per capita; leakage rate  

• Waste: segregation rate; landfill diversion  

• Mobility: % low-carbon commuting; shuttle 

utilization  

• Paper: forms digitized; print volume Align 

KPIs with structured categories 

(transportation, water, energy, waste, health & 
well-being) 

• KPI definitions + formula  

• Baseline period selected  

• Target value + timeline  

• KPI owner (role/name) 

Step 2: Data 

(Feasibility & 

architecture) 

Ensure you have 

the minimum 

viable data to 

measure and 

improve the KPI 

Minimal viable data stack:  
• Sub-metering (hostels, academic blocks, 

chilled water plant)  

• Occupancy proxies (timetables, Wi-Fi 

counts, PIR sensors)  

• Weather data + tariff schedule  

• Ticketing/maintenance logs  

 

 

• Data inventory (sources, 

frequency, quality)  

• Data access + storage plan  

• Interoperability notes 

(formats/APIs)  

• Data governance notes (who can 

access what) 

Step 3: Duty 

(Responsible & 

Green AI checks) 

Run responsible 

AI + Green AI 

checks before 

deploying 

• Privacy: data minimization, access controls, 

retention limits  

• Transparency: explainable rules/alerts for 

operators  
• Accountability: named owner, escalation 

paths, human override  

• Security: secure device/network layer  

• Green AI: track compute, choose efficient 

models, measure energy cost of inference  

• Risk alignment: use recognized AI risk 

framework vocabulary + documentation 

approach 

• Responsible AI checklist 

completed  
• Risk register (top risks + 

mitigations)  

• Model/decision documentation 

(what, why, limits)  

• Green AI logging plan 

(compute/inference energy proxy) 

Step 4: Pilot → 

Scale 

Start small, prove 

impact, then scale 
responsibly 

• Pilot 8–12 weeks in one building/hostel  

• Compare baseline vs pilot (same season if 

possible)  

• Scale only after KPI improvement is 
demonstrated and governance controls are 

stable 

• Pilot report (baseline vs pilot 

KPI change)  

• Lessons learned + adjustments  

• Scale plan (sites, timeline, 
budget, governance)  

• Ongoing monitoring plan (drift, 

exceptions, audits) 
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