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Abstract: Indian higher education institutions (HEIs) operate as “mini-cities” with substantial electricity, water, mobility,
and material footprints. This paper synthesizes how artificial intelligence (Al) can accelerate campus sustainability through
(i) resource optimization (especially building energy and water), (ii) monitoring and operational reliability (maintenance,
waste, and compliance), and (iii) behavior and mobility nudges (transport and paper reduction). Using a mini-review
approach, we consolidate high-impact, campus-relevant Al applications and outline the measurement logic that links
interventions to auditable sustainability indicators. We then identify key adoption barriers in Indian HEIs, including limited
metering and data interoperability, procurement and skills constraints, governance and privacy concerns, and the
environmental footprint of Al systems themselves. To move from isolated pilots to measurable outcomes, we propose the
KPI-Data-Duty (KDD) framework, which connects a small set of time-bound sustainability KPIs to minimal viable data
architecture, pilot design, and a lightweight Responsible/Green Al duty checklist. The paper contributes an implementation-
oriented roadmap and use-case mapping that can support HEI leaders in planning, governing, and scaling Al-enabled
sustainability initiatives with accountability.
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I INTRODUCTION Artificial intelligence (Al) can strengthen these efforts by
enabling a shift from periodic audits and static interventions to

Indian higher education institutions (HEIs) function as
“mini-cities” that operate energy-intensive buildings
(classrooms, laboratories, libraries, hostels), water and
sanitation systems, transport and mobility services, and large
administrative workflows. As a result, campuses offer a
concentrated setting where sustainability interventions can be
designed, measured, and institutionalized at scale—
contributing to national and global sustainability priorities such
as the UN Sustainable Development Goals (United Nations,
2015). In the Indian context, campus sustainability initiatives
have often been driven through infrastructure upgrades (e.g.,
efficient lighting, solar PV, water reuse systems) and
compliance/rating mechanisms. For example, Indian green
campus guidance emphasizes auditable performance categories
and measurable outcomes across energy, water, waste
management, transportation, and health and well-being—
providing a useful Key Performance Indicator (KPI) structure
for institutional planning and reporting (Indian Green Building
Council, 2024).
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continuous, data-driven optimization. Campus operations
generate regular patterns and predictable loads (timetables,
semester cycles, hostel occupancy, weather-driven cooling
demand), making them suitable for Al-based forecasting,
anomaly detection, and automated control. In particular,
buildings and utilities represent a high-impact starting point
because they are major contributors to campus resource
consumption, and operational improvements can be measured
directly through electricity and water KPIs. Evidence from
systematic reviews indicates that Al-enabled HVAC control
and energy management can reduce consumption by
dynamically adapting to environmental conditions and
occupancy patterns (Aghili et al., 2025). Beyond energy, Al
approaches can support leak detection and consumption
analytics for water conservation, predictive maintenance to
reduce asset failures and wastage, and improved waste
segregation and routing—thereby strengthening operational
reliability while advancing sustainability outcomes.
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However, HEIs face a dual challenge: deploying Al
responsibly while ensuring that Al itself aligns with
sustainability goals. Governance concerns arise because
campus Al can involve sensitive data (e.g., occupancy signals,
mobility traces, or administrative records), requiring clear
policies on privacy, accountability, and human oversight. A
recognized risk-management approach such as the NIST Al
Risk Management Framework provides a structured
vocabulary for documenting risks, controls, and monitoring
throughout the Al lifecycle (National Institute of Standards and
Technology, 2023). At the same time, “Green AI” scholarship
highlights that Al systems have their own energy and carbon
footprint, and argues for prioritizing efficiency and reporting
compute-related costs rather than optimizing accuracy alone—
an important consideration for budget-constrained HEIs
(Schwartz et al., 2020).

Against this backdrop, the present paper (a) synthesizes
campus-relevant Al use-cases for sustainability, (b) identifies
adoption barriers in Indian HEIs, and (c) proposes a practical,
implementation-oriented framework that links sustainability
KPIs to data readiness, pilot design, and responsible
governance—supporting HEI leaders in moving from isolated
pilots to scalable, measurable sustainability outcomes (Indian
Green Building Council, 2024; National Institute of Standards
and Technology, 2023).

1. LITERATURE REVIEW

A. Campus Sustainability Measurement in India: Rating
Frameworks and KPI Logic

Campus sustainability work in India is often
operationalized through auditable categories and measurable
performance targets embedded in green building/campus
rating frameworks. The IGBC Green Campus Rating System
(Version 1.0, July 2024) emphasizes measurable outcomes
across energy, water, waste, transportation, and related
campus systems, providing a practical structure for KPI
selection and reporting (Indian Green Building Council,
2024). In parallel, GRIHA positions itself as a nationally
benchmarked green building rating approach, with criteria
spanning energy and water optimization, waste management,
and operations & maintenance—areas that map cleanly to
campus sustainability interventions (GRIHA Council, n.d.).

A key implication for Al-enabled sustainability is that
successful deployments are rarely “model-first.” Instead, they
follow a measurement logic: (i) define KPI baselines and
targets, (ii) ensure data integrity and instrumentation, and (iii)
implement iterative operational controls and verification
cycles—an approach consistent with energy management
thinking such as 1SO 50001, which focuses on systematic
improvement of energy performance (International
Organization for Standardization, 2018).

B. Al for Building Energy Management: HVAC, Occupancy
Intelligence, and Plug Loads
Buildings typically dominate institutional energy
footprints, making them the most evidence-rich domain for
Al-enabled sustainability. Reviews of Al in HVAC and
building energy management consistently report benefits from
forecasting, anomaly detection, and control optimization that
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adapt to weather and occupancy dynamics. A recent
systematic review synthesizing post-2018 research reports that
Al-driven HVAC strategies can reduce energy use in certain
settings by dynamically adapting to environmental and
occupancy conditions (Aghili et al., 2025).

Occupancy intelligence is central to this literature
because many energy loads in academic buildings are
schedule-driven yet highly variable (class timetables, lab use,
hostels, events). A major review on machine-learning-based
occupancy prediction highlights that occupancy-informed
control can meaningfully reduce energy use while maintaining
comfort, emphasizing the importance of reliable occupancy
sensing or privacy-preserving proxy signals (Zhang et al.,
2022). Complementing HVAC optimization, research on plug-
load prediction shows that incorporating occupant count
improves prediction accuracy, which is valuable for model-
predictive control and operational scheduling (Wang et al.,
2019).

Across this stream, two implementation lessons recur: (1)
performance depends on data quality and instrumentation
(sub-metering, reliable sensors, contextual features), and (2)
operational adoption improves when models are interpretable
and embedded into facility workflows rather than treated as
“black box automation” (Aghili et al., 2025; Zhang et al.,
2022). These insights motivate a KPI-linked, instrumentation-
first deployment pathway.

C. Al for Water Systems: Smart Metering, Anomaly
Detection, and Leakage Analytics

Water conservation and loss reduction are increasingly
addressed through Al-enabled analytics on smart meters,
district/zone metering, and distribution network telemetry. A
systematic review of ML-based anomaly detection in smart
water metering networks (2016-2023 coverage) highlights
how models are used to identify abnormal consumption
patterns, leaks, and operational anomalies, while noting
challenges around ground-truth labeling and generalizability
across sites (Kanyama et al., 2024). Recent work continues to
develop ensemble approaches for anomaly detection in smart
water metering, reinforcing that Al methods support
conservation when paired with adequate sensing and
operational verification protocols (Kanyama et al., 2025).

For HElIs, the literature implies a practical sequencing:
start with zone-level measurement + anomaly detection (to
reduce losses quickly), then move toward richer optimization
(e.g., predictive consumption forecasting), while maintaining
low-friction operator verification to manage false alarms
(Kanyama et al., 2024, 2025).

D. Al for Waste: Segregation Support and Collection
Logistics

In waste management, Al work splits into (i) segregation
support (often computer vision classification) and (ii)
collection/logistics optimization (routing, scheduling, bin fill
prediction). A 2025 study in Knowledge-Based Systems
presents a deep learning—enabled waste classification system
and applies explainable Al methods to support interpretability,
illustrating the direction of high-accuracy classification
pipelines for segregation workflows (Nahiduzzaman et al.,
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2025). On the logistics side, a systematic review and meta-
analysis of loT-enabled routing optimization quantifies
average reductions in waste collection distance, implying
emissions and cost benefits when routing analytics are
integrated with operational systems (Maciel et al., 2025).

For campuses, the research suggests that model
performance alone is insufficient; operational value depends
on workflow redesign (bin placement, segregation incentives,
collection schedules) and governance choices that avoid
intrusive surveillance in public spaces (Maciel et al., 2025;
Nahiduzzaman et al., 2025).

E. Mobility Optimization and Behavioral Change: Routing,
Demand-Responsive Transport, and Nudges

Transport and commuting are prominent categories in
campus  sustainability = frameworks (e.g., IGBC’s
transportation emphasis), and the literature offers multiple Al
levers: shuttle routing, demand estimation, and demand-
responsive service design (IGBC, 2024). At the campus scale,
a study on university shuttle bus optimization uses ML for
travel-time prediction while considering fuel cost and
emissions, showing how predictive analytics can support
routing decisions and monitoring (Noor et al., 2020). At the
broader mobility-systems level, work on demand-responsive
transport integrates mobile data analytics and routing
algorithms to support flexible services that better match
demand while improving efficiency (Melo et al., 2024).

Behavioral interventions complement operational
optimization where user actions shape resource use
(lighting/plug loads, water use, waste segregation). Evidence
from student-accommodation contexts indicates that
informational and competition-based nudges can reduce
energy use, though effect sizes vary and persistence depends
on design (Chen & Lotti, 2025). Longer-term field evidence
comparing “nudges” and ‘“boosts” in residential energy
settings also suggests that intervention mechanisms and
durability matter for sustained outcomes (Paunov & Griine-
Yanoff, 2023).

F. Governance, Privacy, and “Sustainable AI”: Responsible
Al + Green Al

Al-enabled campus sustainability introduces a
governance duality: (i) responsible processing of campus data
and (ii) the environmental footprint of Al itself. On data
protection, India’s Digital Personal Data Protection Act, 2023
establishes obligations relevant to campuses acting as data
fiduciaries—particularly around notice, purpose limitation,
retention, and grievance redressal (Government of India,
2023). The DPDP Rules, 2025 provide the implementation
layer and mark operationalization of compliance expectations
(Ministry of Electronics and Information Technology
[MeitY], 2025; Press Information Bureau, 2025).

In addition, India-specific Responsible Al guidance
emphasizes principles for trust-building and alignment with
societal values—highly relevant where occupancy signals,
camera feeds, or mobility traces may be used (NITI Aayog,
2021a, 2021b). At the risk-governance level, the NIST Al Risk
Management Framework (Al RMF 1.0) provides a widely
used structure for mapping, measuring, and managing risks
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across the Al lifecycle, supporting institutional controls such
as transparency, accountability, security, and human oversight
(National Institute of Standards and Technology, 2023).

On AI’s environmental footprint, Green Al scholarship
argues for reporting and valuing compute/efficiency alongside
accuracy, since resource-intensive model development has
both financial and carbon implications (Schwartz et al., 2020).
A more recent review consolidates green Al research and
reinforces efficiency-oriented approaches as central to
sustainable Al practice (Bolén-Canedo & Moran-Fernandez,
2024). These governance and sustainability concerns align
naturally with an explicit “duty” layer in AI-for-sustainability
implementations.

G. Al Synthesis and Research Gap Motivating the KPI-Data—
Duty Approach

Across domains (energy, water, waste, mobility), the
literature demonstrates a growing toolbox of Al techniques
and a steady expansion of evidence syntheses and applied
studies (Aghili et al., 2025; Kanyama et al., 2024; Maciel et
al., 2025; Melo et al., 2024). However, three gaps remain
especially salient for Indian HEIs:

» KPI-to-Intervention Traceability

e Many studies report algorithmic performance or localized
savings without a standardized, campus-administration-
friendly linkage between sustainability KPIs (baseline —
target — audit) and AI deployment decisions.
IGBC/GRIHA provide KPI categories but do not prescribe
an Al implementation pathway (GRIHA Council, n.d.;
IGBC, 2024).

> Data Readiness as the Constraint:

Repeatedly, outcomes depend less on model
sophistication and more on instrumentation, interoperability,
and operational data pipelines—suggesting a “minimum
viable data stack” mindset before optimization (Zhang et al.,
2022; Wang et al., 2019).

e Governance embedded early: With DPDP obligations,
Responsible Al principles,  NIST-aligned  risk
management, and Green Al concerns, campuses need a
lightweight but explicit governance checklist that travels
with the pilot-to-scale journey rather than being added after
deployment (MeitY, 2025; NIST, 2023; NITI Aayog,
2021a; Schwartz et al., 2020).

Collectively, these gaps justify an implementation-
oriented synthesis that provides a practical, auditable route
from “Al idea” to “measured sustainability outcome.”

1. METHOD: MINI-REVIEW

This study used a mini-review approach to identify and
synthesize campus-relevant Al applications for sustainability,
with emphasis on energy, water, waste, mobility, and
administrative dematerialization (paper reduction). A mini-
review was selected because the objective was not exhaustive
coverage of all Al and sustainability research, but a focused,
decision-oriented synthesis that translates the most relevant
evidence into (i) a campus use-case taxonomy and (ii)
implementation implications suitable for Indian higher

WWW.ijisrt.com 15



Volume 11, Issue 01, January — 2026
ISSN No:-2456-2165

education institutions (HEIs), following established guidance
on planning and reporting literature reviews (Grant & Booth,
2009; Snyder, 2019).

A. Review Scope and Unit of Analysis

The scope was defined around operational sustainability
systems typical to HEIs (e.g., buildings, utilities, campus
services, and mobility) rather than city-scale infrastructure. The
unit of analysis was campus-scale deployment, meaning
applications needed to be plausibly implementable at the level
of individual buildings, hostels, labs, or the campus network
(rather than purely theoretical algorithms without a deployment
context).

B. Search Strategy and Sources
Searches were conducted using combinations of
keywords structured around three blocks:

e Technology block: “AI”, “machine learning”, “deep
learning”, “predictive analytics”, “anomaly detection”,
“optimization”

e Context block: “campus”, “university”,
education”, “smart campus”, “smart building”

e Sustainability block: “energy”, “HVAC”, ‘“building
energy”, “water”, “leakage”, “waste”, “segregation”,
“routing”, “mobility”, “transport”, “paper reduction”,
“administrative processes”

“higher

» Example Query Patterns Included:

e “AIl” AND (“campus” OR “university”’) AND (“energy”
OR “HVAC” OR “smart building”)

e “machine learning” AND (“smart water” OR “smart
metering”) AND (“anomaly detection” OR “leak
detection”)

o “Al” AND (“waste” OR “segregation” OR “routing”)
AND (“IoT” OR “collection™)

e “Al” AND (“mobility” OR “shuttle” OR “demand-
responsive  transport”) AND  (“optimization” OR
“prediction”)

To improve contextual relevance, India-specific terms
were used such as “green campus”, “IGBC green campus”,
“sustainability in Indian universities”, and ‘“campus
sustainability India”, with purposeful attention to practice-
facing documents and standards that define KPI categories
(e.g., Indian Green Building Council, 2024).

C. Selection Priorities and Rationale

Given the mini-review intent, priority was given to
sources most likely to generalize into implementable campus
guidance:

e Review papers and synthesis articles (to consolidate
evidence across multiple studies and reduce over-reliance
on single-case claims) (Grant & Booth, 2009; Snyder,
2019).

e Building energy/HVAC evidence because buildings are
typically the most metered and controllable campus
domain and have mature Al applications (e.g., Aghili et al.,
2025).

e India-relevant sustainability rating frameworks and
guidance to ensure the review remains KPI-compatible
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with local reporting and benchmarking norms (Indian
Green Building Council, 2024).

e Governance and risk frameworks to ensure proposed

implementation guidance explicitly addresses
transparency, accountability, and responsible deployment
(National Institute of Standards and Technology, 2023).

D. Inclusion and Exclusion Criteria
Sources were included if they met all of the following
criteria:

e Application clarity: clear description of an Al technique

and the sustainability application context (e.g., HVAC
control, anomaly detection in water metering, waste
routing).

e Outcome relevance: reported operational outcomes,

measurable impacts, or a credible pathway to KPI
measurement (e.g., KWh savings, reduced downtime, leak
reduction, route distance reduction).

e Campus deployability: plausibility for campus-scale

deployment  (instrumentation requirements  and
implementation context could be reasonably mapped to
HEI conditions).

Sources were excluded if they:

e Focused purely on algorithmic novelty without a

sustainability outcome or deployment context,

e Addressed sustainability at a scale far removed from HEIs

without a clear translation pathway, or

o Lacked sufficient methodological detail to interpret claims.

E. Screening and Data Extraction
Retrieved sources were screened in two stages:

e Stage 1 (title/abstract screening): removal of off-topic

items and non-campus-relevant studies.

e Stage 2 (full-text screening): evaluation against the

inclusion criteria above, with attention to the fit between
technique, instrumentation, and KPI measurability.

A structured extraction template was used to
standardize interpretation across domains. For each
included source, the following information was captured:

e Sustainability domain energy/ water/ waste/ mobility/
admin),

e Al technique family (forecasting, anomaly detection,
classification, optimization/control),

e Required data inputs and instrumentation,

e Reported outcomes and KPI candidates,

e Implementation conditions and constraints (data quality,
integration, human oversight), and

e Transferability to campus settings (what would need to be
in place at an HEI).

F. Synthesis Approach
Evidence was synthesized using a narrative thematic
synthesis consistent with mini-review practice (Grant &
Booth, 2009; Snyder, 2019). Findings were coded into two

complementary outputs:
e Use-case taxonomy: grouping applications by campus
function and technique type (e.g., “HVAC optimization,”

“water anomaly detection,” “waste routing”).
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e Implementation implications: cross-cutting lessons that
determine whether Al translates into measurable outcomes
(e.g., instrumentation readiness, workflow integration,
governance safeguards).

Rather than treating all studies as equally generalizable,
the synthesis emphasized repeatable patterns (e.g.,
instrumentation-first logic, verification loops, integration with
facilities operations) and highlighted where evidence is
context-dependent.

G. Governance Lens for Risk and Responsibility

Since, campus sustainability Al can involve potentially
sensitive signals (occupancy proxies, mobility traces, camera-
adjacent data), governance considerations were integrated
explicitly. Responsible Al and risk guidance was consulted to
ensure that the proposed framework incorporates
transparency, accountability, security, and oversight
mechanisms appropriate for institutional deployment
(National Institute of Standards and Technology, 2023). This
governance lens was operationalized in the synthesis by
identifying “duty” requirements alongside each domain (e.g.,
data minimization, access control, documentation, and human-
in-the-loop verification).

H. Methodological Limitations

As a mini-review, the method prioritizes relevance and
synthesis utility over exhaustive retrieval and formal meta-
analysis. Therefore, results should be interpreted as a
structured, implementation-oriented consolidation rather than
a comprehensive mapping of all published studies.
Nonetheless, the use of explicit search blocks, staged
screening, and standardized extraction improves transparency
and reproducibility in line with literature review guidance
(Grant & Booth, 2009; Snyder, 2019).

Following guidance for transparent review reporting
(Grant & Booth, 2009; Snyder, 2019), the search strategy
across the defined keyword blocks (Al + campus/university +
energy/HVAC/water/waste/mobility/dematerialization, plus
India-specific terms such as “IGBC green campus”) yielded
312 records. After removing duplicates, 254 unique records
remained. Title and abstract screening for campus
deployability and sustainability relevance excluded 186
records, resulting in 68 articles retained for full-text
assessment. Full texts were then evaluated against the
inclusion criteria (clear Al technique and campus context;
operational outcome or KPI measurability; feasible
instrumentation/deployment logic), leading to the exclusion of
35 studies (e.g., insufficient deployment context, limited KPI
linkage, or non-campus scale). The final synthesis included 33
sources, which were coded into (i) a campus use-case
taxonomy and (ii) cross-cutting implementation implications
(instrumentation readiness, workflow integration, verification
cycles), with governance and risk considerations aligned to a
lifecycle risk lens (NIST, 2023) to support transparency,
accountability, and oversight.
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Records identified from databases/registers (n = 312)

l

Records removed before screening
* Duplicate records removed (n = 58)
¢ Records removed for other reasons (n=0)

l

Records screened (title/abstract) (n = 254)

l

Records excluded (n = 186)

!

Full-text reports assessed for eligibility (n = 68)

!

Full-text reports excluded (n = 35), with reasons:

*» Not campus-scale / not deployable in HEI context (n = 12)
« Insufficient KPI/outcome linkage (n = 10)
* Insufficient method/deployment detail (n = 8)
* Overlapping/duplicate evidence or out-of-scope on full text reading
(n=5)

l

Studies included in mini-review synthesis (n = 33)

Fig 1 PRISMA Flow Diagram for the Mini-Review
Al USE-CASES FOR A SUSTAINABLE CAMPUS

A. Resource Optimization

e Smart HVAC and thermal comfort optimization. Al-
enabled HVAC control is consistently highlighted as a
major lever because HVAC loads vary with occupancy,
schedules, and weather. A systematic review of Al
approaches for HYAC energy management reports that Al-
driven control strategies can reduce energy consumption
by dynamically adapting to environmental conditions and
occupancy patterns (Aghili et al., 2025). For Indian HEISs,
where classroom utilization fluctuates by timetable and
season, even incremental optimization can vyield
substantial savings without compromising comfort.

e Lighting and plug-load management. Occupancy-based
control  (sensor-driven) combined with predictive
scheduling (timetables + historical usage) can reduce waste
from lights/fans/AC running in unoccupied rooms.
Evidence from state-of-the-art reviews and empirical
studies shows meaningful energy-saving potential from
occupancy-based lighting control (de Bakker et al., 2017;
de Bakker et al., 2018). In parallel, plug-load prediction
and scheduling research demonstrates  that
occupancy/usage-aware forecasting can support predictive
control and operational savings (Botman et al., 2024;
Wang et al., 2019). These are “low-regret” applications
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because they are explainable and KPI-linked (kWh
reduction).

Renewable integration and demand management.
Campuses with rooftop solar and time-of-day tariffs can
use Al forecasting (load + solar generation) to shape
demand (e.g., shifting non-critical loads), improve self-
consumption, and reduce peak costs. Campus microgrid
research shows that demand-response-oriented energy
management can deliver measurable cost savings and
improve renewable utilization (Bin et al., 2022). Al-based
solar and load forecasting studies further support
optimized scheduling and reliability in renewable-heavy
systems (Bouquet et al., 2024; Rajbhandari et al., 2024).

B. Monitoring, Maintenance, and Compliance

Predictive maintenance for utilities and equipment. Al can
detect anomalies in pumps, chillers, and electrical panels
using sensor/loT time-series data, enabling earlier
interventions that reduce unplanned downtime and
improve operational reliability (Es-sakali et al., 2022;
Murtaza et al., 2024). The sustainability benefit is indirect
but meaningful: fewer failures, reduced wastage, and
longer asset life (Murtaza et al., 2024).

Water leak detection and consumption analytics. Al-based
anomaly detection on smart-meter data can identify
continuous-flow and abnormal-consumption patterns
(Kanyama et al., 2024; Kanyama et al., 2025). India-facing
campus guidance emphasizes measurable water
conservation and reduction targets, making leak analytics
a strong fit for institutional KPIs and compliance reporting
in campus sustainability programs (Indian Green Building
Council, 2024).

Waste segregation support and routing. Computer vision
models can support waste identification/classification for
segregation at source (e.g., canteens/hostels), which can
reduce contamination and improve downstream recovery
(Nahiduzzaman et al., 2025). For internal collection, IoT-
and analytics-enabled route optimization has been
synthesized to reduce collection distance on average,
supporting lower fuel use and emissions (Maciel et al.,
2025). Practical success often depends on workflow design
and incentives in addition to model performance (Maciel
et al., 2025).

Appendix 1 summarizes the identified Al use-cases

mapped to campus KPIs, SDGs, data requirements, and key
risks/controls.

V.

CONSTRAINTS ON ADOPTING AI-ENABLED
SUSTAINABILITY INITIATIVES IN INDIAN
HEIS

Adoption of Al-enabled sustainability initiatives in

Indian higher education institutions (HEISs) is constrained by
multiple, interlinked challenges.

IJISRT26JANO33

First, many campuses still lack consistent metering and
sensing, such as sub-metering for electricity and water,
reliable occupancy sensing, and structured telemetry for
key assets (HVAC plants, pumps, elevators, major plug-
load zones). Where data exist, they are often incomplete,
noisy, or temporally misaligned across systems, which
reduces the feasibility of forecasting, anomaly detection,
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and closed-loop control. Evidence from building energy
management reviews shows that Al performance and
realized savings are strongly contingent on data quality,
coverage, and contextual features (e.g., weather,
schedules, occupancy proxies), not only on model choice
(Aghili et al., 2025; Zhang et al, 2022). When
instrumentation is weak, Al projects risk becoming “pilot
theatre”—producing dashboards and prototypes without
repeatable, auditable KPI improvement.

Second, available data are frequently siloed across facility
teams, contractors, and vendors (BMS, smart meters,
ticketing/CMMS, ERP/procurement, student information
systems), creating interoperability and integration burdens.
Smart-campus 10T deployments illustrate that multi-
vendor environments routinely face integration challenges
(heterogeneous protocols, inconsistent semantics), along
with  scalable  storage/processing and  reliable
visualization—issues that must be addressed before
analytics can be  operationalized campus-wide
(Dominguez-Bolafio et al., 2024). In practice, campuses
often need a “minimum viable data stack” (instrumentation
+ integration + governance) before optimization.

Third, procurement rigidity and limited in-house data
engineering capacity can increase dependence on vendors,
limiting iterative refinement and raising the risk of lock-in
(long contracts, proprietary formats/APIs, restricted
portability). Research on vendor lock-in in cloud migration
highlights how portability and interoperability constraints
can restrict switching options and create long-term
dependence (Opara-Martins et al., 2016). Public ICT
procurement research also documents how tendering
processes can constrain agility (changes are hard after
tender publication), and how large, complex procurements
can unintentionally reinforce lock-in dynamics (Ghezzi &
Mikkonen, 2024). For HEIs, this means that even
technically sound pilots may stall at scale if contracts do
not explicitly protect data access, interoperability, and exit
pathways.

Fourth, governance, privacy, and trust concerns are central
because campus Al can involve potentially sensitive data
(occupancy traces, Wi-Fi logs, CCTV feeds, mobility
patterns, or linked student/staff identifiers). Studies on
smart-campus governance show that students can
experience  “tensions and  imaginaries”  around
surveillance, consent, and institutional power, which can
undermine legitimacy even when the stated purpose is
sustainability (Cheong & Nyaupane, 2022). In India, these
concerns are sharpened by the Digital Personal Data
Protection (DPDP) legal regime: the DPDP Act, 2023 sets
obligations relevant to campuses acting as data fiduciaries,
and the DPDP Rules, 2025 further operationalize
requirements (e.g., governance, notices/consent where
applicable, grievance mechanisms, safeguards, retention
discipline). For implementation, this implies clear policies
for purpose limitation, data minimization, retention
periods, access controls, audit logs, and human
oversight—especially for Al that could be repurposed
beyond sustainability.

Fifth, the sustainability of Al itself must be considered.
Training and deploying models consume compute,
electricity, and associated carbon, and “Green Al” argues
that efficiency and compute cost should be reported and
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valued alongside accuracy. Empirical work on deep
learning also emphasizes that energy and carbon costs can
be material and unequally distributed, with practical
recommendations to reduce compute intensity. For budget-
constrained academic settings, this means prioritizing
lightweight models where feasible, reusing pretrained
components responsibly, and logging compute/energy
metrics for accountability.

Finally, change management and human factors remain
decisive. Facilities teams may resist “black-box” automation,
and campus stakeholders may distrust monitoring unless
benefits are visible and safeguards are explicit. Explainability
research shows that interpretable, instance-level explanations
can improve users’ ability to assess and trust model outputs—
supporting adoption in operational contexts where decisions
must be justified (Ribeiro et al., 2016). Similarly, structured
risk governance frameworks (e.g., NIST Al RMF 1.0) provide
a practical vocabulary for documenting risks and controls
across the lifecycle—helping move from pilot to scale without
eroding trust.

VI. PRACTICAL FRAMEWORK FOR HEIS

The KPI-Data—Duty (KDD) framework guides Indian
HEIs in implementing Al for campus sustainability through a
disciplined pilot-to-scale pathway that prioritizes measurable
outcomes, data readiness, and responsible deployment.

» First, the framework begins with KPI selection (“KPI”):
institutions define 3-5 auditable, time-bound sustainability
KPIs that are meaningful for campus operations and align
with recognized green campus/building categories. For
example, KPI sets can be drawn from structured domains
such as energy, water, waste, transportation/mobility, and
operations & maintenance used in Indian rating and
benchmarking systems (Indian Green Building Council
[IGBC], 2024; GRIHA Council, n.d.). Each KPI is defined
with (i) a clear formula and data source, (ii) a measurement
frequency (daily/weekly/monthly), (iii) a KPIl owner
(facility lead/estate office/hostel admin), and (iv) a
baseline and target window. This KPI discipline ensures Al
pilots are not evaluated only on “model accuracy,” but on
whether they move operational metrics that can be reported
and audited.

» Second, KDD establishes feasibility via a minimum viable
“Data” stack (“Data”), following the principle “instrument
first, optimize second.” This step is a gate: if minimum
instrumentation and integration are absent, the institution
improves data readiness before attempting advanced Al.
Building-energy and HVAC research repeatedly shows
that realized energy benefits depend heavily on data
quality, metering granularity, and contextual variables
(weather, schedules, occupancy proxies), not just
algorithm choice (Aghili et al., 2025; Zhang et al., 2022).
Practically, a minimal stack typically includes:

e Sub-metering at building/zone/end-use level (HVAC
plant, hostels, labs where possible)

e Occupancy proxies (aggregated counts or schedule
signals) to contextualize demand variability (Zhang et al.,
2022)
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e Weather and tariff inputs to normalize performance and
support peak/price-aware decisions

e Maintenance logs / CMMS tickets to connect anomalies to
verified action and closure

o Interoperability basics (timestamps, naming conventions, a
simple data dictionary, and access to APIs/exports),
because multi-vendor campus systems often fail to scale
without integration discipline (Dominguez-Bolafio et al.,
2024).

e Where relevant (e.g., plug loads and internal gains), the
minimum stack may also include occupant-count-linked
signals because occupant count can materially improve
prediction performance and control relevance (Wang et al.,
2019).

» Third, KDD embeds a lightweight governance and
sustainability checklist (“Duty”) to ensure Al is both
responsible and resource-efficient from day one. The Duty
checklist covers:

e Privacy & purpose limitation (what data is collected, why
it is needed, and what it will not be used for), plus retention
and access discipline consistent with India’s DPDP
framework (MeitY, 2023, 2025).

e Transparency & accountability (who approves, who
monitors drift, who handles grievances and exceptions)

e Security controls (role-based access, audit logs, vendor
safeguards)

e Human oversight (Al as decision support, with override
and escalation paths)

e Risk documentation alignment using a recognized
lifecycle vocabulary such as NIST Al RMF 1.0 (National
Institute of Standards and Technology, 2023).

e Green Al logging: track compute intensity, retraining
frequency, and efficiency trade-offs—reflecting “Green
AI” guidance that efficiency should be valued alongside
performance (Schwartz et al., 2020) and evidence that
training large models can have non-trivial energy/carbon
implications (Strubell et al., 2019).

o Interpretability support so facility teams can trust and act
on outputs; explainability methods are widely used to make
predictions more actionable and auditable in operational
settings (Ribeiro et al., 2016).

» Finally, KDD operationalizes learning through an 8-12
week pilot and scale decision. The pilot is implemented in
a limited, well-defined zone (one academic block/hostel
cluster/utility subsystem) with (i) a pre-specified
evaluation  plan, (ii) comparison against a
seasonal/academic-calendar baseline, and (iii) a workflow
that links AI outputs to action (alert — verification —
ticket — fix — KPI update). Baseline—target improvement
logic mirrors systematic performance improvement
thinking used in energy management system practice (1SO,
2018). The framework recommends scaling only when
KPI improvements are demonstrable and Duty controls are
stable, preventing the common failure mode of scaling
prototypes without governance readiness.

Appendix 2 presents the KPI-Data-Duty (KDD)
framework as a concise pilot-to-scale roadmap, enabling HEI
leaders to translate Al ideas into measured sustainability
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outcomes  with traceable KPIs, minimum viable
instrumentation, and embedded responsible/Green Al
safeguards.

VII. DISCUSSION & IMPLICATIONS

For Indian HEIs, the most practical starting point for Al-
enabled campus sustainability is building energy and water.
These domains offer three advantages. First, outcomes are
highly measurable through standard indicators (e.g., kWh,
peak demand, kWh/mz; litres per day, litres per capita,
anomaly/leak events) once minimum metering exists. Second,
interventions are predominantly operational and system-level
(controls, scheduling, maintenance response, leak repair),
reducing the risk that projects are perceived as personal
surveillance. Third, the evidence base is relatively mature: Al
applications for HVAC and building energy management are
widely studied and show that forecasting, fault detection, and
control optimization can reduce energy use when data and
operational integration are adequate (Aghili et al., 2025;
Zhang et al., 2022). Similarly, smart-water anomaly detection
literature indicates that machine learning can support
leak/abnormal-consumption detection when paired with
appropriate sensing and verification routines (Kanyama et al.,
2024).

Campus sustainability rating frameworks provide an
additional institutional lever because they act as a shared
administrative language. In India, the IGBC Green Campus
Rating framework explicitly foregrounds performance
categories such as energy, water, waste, and transportation,
which helps facility teams and administrators align on what
counts as “progress” and how it should be reported (Indian
Green Building Council, 2024). GRIHA’s criteria and
benchmarking orientation similarly reinforce a multi-criterion,
measurable approach to sustainability management (GRIHA
Council, n.d.). These frameworks make it easier to translate Al
work into auditable claims—reducing the likelihood that pilots
remain isolated technology demonstrations.

At the same time, HEIs should avoid treating Al as a
“technology add-on.” The implication of the literature is that
Al value is realized only when it is embedded into a
measurement-and-improvement operating cycle rather than
deployed as a standalone analytics layer. This is why the KDD
framing begins with KPIs and instrumentation and then links
outputs to operational routines such as maintenance
workflows, control actions, and verified closure (ISO, 2018;
Aghili et al., 2025). The key adoption lesson here is socio-
technical: energy/water Al performs best when it becomes part
of how the campus runs—how anomalies become tickets, how
controls are adjusted, how baselines are updated, and how
results are reported.

Governance and trust are not peripheral to sustainability
Al; they are often the conditions for scaling. Even “non-
personal” domains can drift into privacy risk once occupancy
proxies, Wi-Fi counts, access logs, or camera-adjacent data are
introduced.  Embedding  governance  early—through
documentation, access controls, purpose limitation, retention
rules, and human oversight—reduces reputational and
compliance risk and increases stakeholder acceptance. A

IJISRT26JANO33

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan033

useful institutional anchor is a lifecycle risk lens such as the
NIST Al Risk Management Framework (Al RMF 1.0), which
provides a practical vocabulary for “govern—map—measure—
manage” across design, deployment, monitoring, and incident
handling (NIST, 2023). From an implementation perspective,
the governance implication is straightforward: HEIs should
require a lightweight “duty pack” for every pilot (what data is
used, why, who can access it, how long it is kept, how errors
are handled), and scale only when these controls are stable.

A further implication—often overlooked in campus
sustainability discussions—is that the environmental footprint
of Al itself must be managed. “Green AI” argues that
efficiency and compute-related costs should be reported and
valued alongside accuracy and performance (Schwartz et al.,
2020). Related work demonstrates that training and running
models can have meaningful energy and carbon costs, making
efficiency a practical governance concern rather than a purely
ethical one (Strubell et al., 2019). For HElIs, operationalizing
Green Al means preferring efficient models where possible,
avoiding unnecessary retraining, and logging compute and
energy proxies as part of sustainability reporting. Doing so
also aligns with academic values of transparency and
replicability—where methods are documented, claims are
verifiable, and performance trade-offs are explicit (Schwartz
et al., 2020).

A. Practical Implications for HEI Leaders and Facility Teams

e Start where measurement is easiest: prioritize energy and
water pilots with clear KPIs and baseline definitions
(IGBC, 2024; Aghili et al., 2025; Kanyama et al., 2024).

e Build minimum viable instrumentation before “Al”: sub-
metering and reliable logs are often higher ROI than
sophisticated models in low-data environments (Zhang et
al., 2022; 1S0O, 2018).

e Treat Al as decision support: integrate outputs into
maintenance and operations, with clear escalation and
override paths (NIST, 2023).

e Make Green Al a requirement: log compute/efficiency
indicators and justify model complexity relative to
marginal sustainability gains (Schwartz et al., 2020;
Strubell et al., 2019).

B. Research Implications

For researchers, the KDD logic implies that the strongest
contributions will be those that connect models to auditable
KPIs and document the full deployment chain
(instrumentation — model — action — verification). Future
work can strengthen the evidence base by reporting
standardized baselines, seasonal controls, maintenance-
response confounds, and durability of impact beyond pilot
windows—especially in HEI settings where academic
calendars create pronounced demand variability (Zhang et al.,
2022; Aghili et al., 2025).

VIIL. LIMITATIONS & FUTURE WORK

This study adopted a mini-review approach that
prioritizes transferable, campus-relevant Al applications and
standards over exhaustive retrieval, formal risk-of-bias
assessment, or meta-analysis. As such, it should be interpreted
as an implementation-oriented synthesis rather than a full
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systematic review, consistent with the known trade-offs of
review types (Grant & Booth, 2009; Snyder, 2019). While
transparency was strengthened through structured search
blocks and staged screening, the process does not claim
comprehensive coverage comparable to PRISMA-grade
systematic reviews (Page et al., 2021).

A second limitation is context sensitivity of reported
savings. Energy and water outcomes summarized from
reviews can vary substantially by building typology (labs vs
classrooms vs hostels), climate zone, operational schedules,
occupancy volatility, and baseline efficiency. For example, the
building-energy literature shows that Al impacts depend
strongly on instrumentation quality, weather normalization,
and occupancy dynamics, which may differ across campuses
and regions (Aghili et al., 2025; Zhang et al., 2022). Similarly,
anomaly detection in water systems is affected by metering
granularity and ground-truth verification practices, which can
vary widely across institutions (Kanyama et al., 2024).
Therefore, the framework’s pathway is robust, but effect sizes
should not be assumed without local baselines and
verification.

Third, the paper does not introduce a primary dataset or
operational trial results, so claims about feasibility and ROI
are based on synthesized evidence rather than demonstrated
outcomes from Indian HEI deployments. This is important
because campus environments involve socio-technical
constraints (maintenance response capacity, procurement
constraints, stakeholder trust) that can limit real-world
performance even when models work in controlled studies.
Future research can strengthen and validate the KDD
framework in three high-value directions:

e Multi-campus validation across Indian contexts:
Implement coordinated pilots across multiple HEIs (e.g.,
different climate zones, campus sizes, building stock ages)
using shared KPI definitions and standardized reporting, to
test generalizability and isolate which enabling conditions
(metering maturity, governance readiness, O&M capacity)
drive outcomes (Aghili et al., 2025; Zhang et al., 2022).

e Comparative evaluation of Green Al choices
(energy/compute cost vs accuracy vs KPI gain): Conduct
head-to-head comparisons of model families (lightweight
statistical baselines, tree-based models, deep learning,
hybrid control) while explicitly reporting
compute/efficiency and retraining requirements. This
aligns with Green Al arguments that efficiency should be
valued and reported alongside performance (Schwartz et
al., 2020) and with evidence that model
development/training can have non-trivial energy and
carbon costs (Strubell et al., 2019). More recent syntheses
can be used to build standardized reporting templates for
Al footprint and efficiency trade-offs (Verdecchia et al.,
2023; Bolon-Canedo & Morén-Fernandez, 2024).

e Governance and acceptability research on monitoring
boundaries in HEIs: Empirically examine what levels of
monitoring (occupancy proxies, access logs, mobility
traces, camera-adjacent systems) are considered
acceptable by students, staff, and administrators; what
consent/notice designs increase legitimacy; and how
governance mechanisms shape adoption. Smart campus
work shows that perceived surveillance and data
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governance tensions materially affect legitimacy and trust
(Cheong & Nyaupane, 2022). These studies should be
linked to practical lifecycle controls and documentation
frameworks (NIST, 2023) and to evolving legal
obligations under India’s DPDP regime (MeitY, 2023,
2025).

Collectively, these directions would shift the
contribution from a framework grounded in synthesis toward
a validated, benchmarked, and governance-tested
implementation model for Indian HEIs.

IX. CONCLUSION

This article emphasises that Indian higher education
institutions (HEIs) can accelerate campus sustainability
outcomes with Al only when Al is treated as an operational
performance program rather than a technology add-on. Across
energy, water, waste and mobility, the reviewed evidence
shows that AI’s value is typically realized through forecasting,
anomaly detection, and optimization—but the magnitude and
reliability of gains depend less on “model choice” and more
on measurement discipline, data readiness, and workflow
integration (Aghili et al., 2025; Zhang et al., 2022; Kanyama
et al, 2024). In response, the KPI-Data—Duty (KDD)
framework contributes a practical pilot-to-scale roadmap that
starts with 3-5 auditable KPIs, builds a minimum viable data
stack (“instrument first, optimize second”), and embeds a Duty
layer to ensure Responsible and Green Al practices (privacy,
accountability, security, transparency, and efficiency logging)
aligned with lifecycle risk governance expectations (NIST,
2023; Schwartz et al., 2020). The framework also emphasizes
disciplined evaluation through an 8-12 week pilot with
seasonal baselines and scale decisions tied to demonstrated
KPI improvement and stable governance controls.

For practice, the implications are immediate: HEIs
should begin with building energy and water, where impacts
are measurable and interventions are operational, while
ensuring that procurement protects interoperability and avoids
lock-in. For scholarship, the paper highlights the need for
future studies that report standardized baselines, multi-campus
validations, and explicit Green Al trade-offs to strengthen
generalizability and replicability (Schwartz et al., 2020;
Strubell et al., 2019). Overall, KDD reframes Al-enabled
sustainability as a trustworthy, auditable, and resource-
efficient operating model—one that can help Indian campuses
convert pilots into measurable environmental performance
gains while maintaining legitimacy and accountability.
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APPENDIX 1

Table 1: Al use-cases mapped to SDGs, campus KPIs, and key risks

pumps/chillers

. Al use-case . SDG Main risks &
Campus domain (example) Primary KPI linkage Key data needed controls
oﬁli rr|-1| i\zlfﬁ\ign Metering Over-automation
- kWh, peak demand, | SDG 7, 11, ' — human
Energy (buildings) (occupancy + comfort hours 13 occupancy proxy, override: model
weather adaptive weather drift
control)
Energy Predictive - Sensor privacy —
(lighting/plug scheduling + kWh per m? SDG 7, 13 PIRém'egLI%rsoxy’ minimize &
loads) occupancy sensing aggregate
Leak/anomaly False alarms —
Water detection on smart L/capita, leak rate SDG 6, 11 Z\gﬁi\rﬁtfgs’s thresholds +
meters 9 verification
Vision-assisted PTSA . Surveillance
Waste segregation + bin fill conq[;\ﬁ;gi]orﬁate SDG 11, 12 Ci?ne;zgln concerns — avoid
prediction faces; signage
. low-carbon Equity — ensure
Mobility _Shuttle routing + commute %, SDG 11, 13 travel demand, ACCESS ACTOSS
ride-share matching e routes
utilization groups
clalss)soi?iucgt?g; + print volume forms/docs Bias/errors —
Admin/paper workflow process time SBG 12,13 metadata humar_1 FEVIEW,
. audit trails
automation
Predictive . Vendor lock-in —
. . downtime, wastage, | SDG 9, 12, Sensors,
Operations maintenance for energy intensity 13 maintenance logs open standards,

data ownership
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APPENDIX 2

(Pilot-to-Scale Roadmap)

Table 2: KPI-Data—-Duty (KDD) Framework for Implementing Al-Enabled Campus Sustainability in Indian HEIs

Step

What it means

What to do (checklist)

Outputs you should document

Step 1: KPI
(Impact clarity)

Pick 3-5 auditable,
time-bound
sustainability
metrics for the
campus

» Electricity: kWh per student / per m?; peak
demand
» Water: liters per capita; leakage rate

» Waste: segregation rate; landfill diversion

» Mobility: % low-carbon commuting; shuttle
utilization

* Paper: forms digitized; print volume Align

KPIs with structured categories

(transportation, water, energy, waste, health &

well-being)

* KPI definitions + formula
* Baseline period selected
* Target value + timeline
* KPI owner (role/name)

Step 2: Data
(Feasibility &
architecture)

Ensure you have
the minimum
viable data to
measure and

improve the KPI

Minimal viable data stack:
* Sub-metering (hostels, academic blocks,
chilled water plant)
* Occupancy proxies (timetables, Wi-Fi
counts, PIR sensors)
» Weather data + tariff schedule
» Ticketing/maintenance logs

* Data inventory (sources,
frequency, quality)
* Data access + storage plan
« Interoperability notes
(formats/APIs)
* Data governance notes (who can
access what)

Step 3: Duty
(Responsible &
Green Al checks)

Run responsible
Al + Green Al
checks before

deploying

* Privacy: data minimization, access controls,
retention limits
* Transparency: explainable rules/alerts for
operators
* Accountability: named owner, escalation
paths, human override
* Security: secure device/network layer
» Green Al: track compute, choose efficient
models, measure energy cost of inference
* Risk alignment: use recognized Al risk
framework vocabulary + documentation
approach

* Responsible Al checklist
completed
* Risk register (top risks +
mitigations)
* Model/decision documentation
(what, why, limits)
* Green Al logging plan
(compute/inference energy proxy)

Step 4: Pilot —
Scale

Start small, prove
impact, then scale
responsibly

* Pilot 8-12 weeks in one building/hostel
» Compare baseline vs pilot (same season if
possible)
* Scale only after KPI improvement is
demonstrated and governance controls are
stable

* Pilot report (baseline vs pilot
KPI change)

* Lessons learned + adjustments
* Scale plan (sites, timeline,
budget, governance)

* Ongoing monitoring plan (drift,
exceptions, audits)
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