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Abstract: Reinforcement learning has emerged as a promising approach for adaptive cancer therapy due to its ability to
optimize sequential treatment decisions under uncertainty. While studies have demonstrated the potential of
reinforcement learning to improve simulated treatment outcomes, most evaluations rely primarily on average
performance metrics obtained through direct simulation rollouts. Such evaluation practices provide limited insight into
uncertainty, robustness, and worst-case behavior, which are critical considerations in safety-sensitive clinical domains.
This study proposes a standardized, risk-aware, and uncertainty-sensitive evaluation framework for reinforcement
learning based adaptive cancer therapy using simulated tumor environments. A Deep Q Network policy is evaluated
against clinically interpretable baselines using multiple performance perspectives, including mean outcomes, worst-case
metrics, and tail risk measures based on Conditional Value at Risk. Robustness is further assessed under parameter
perturbations and distribution shifts representing aggressive tumor dynamics. Experimental results demonstrate that
adaptive reinforcement learning policies achieve tumor control comparable to maximum dose therapy while maintaining
controlled risk exposure and stable performance under uncertainty. The findings emphasize that rigorous, risk-sensitive
evaluation is essential for drawing reliable conclusions about reinforcement learning based treatment strategies before any
real-world deployment.
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I INTRODUCTION have demonstrated that reinforcement learning can discover
adaptive treatment strategies that outperform fixed or

Reinforcement learning has gained significant attention
as a framework for sequential decision making in healthcare,
where treatment decisions must adapt over time in response
to evolving patient states. Unlike supervised learning
approaches, reinforcement learning explicitly optimizes long-
term outcomes under uncertainty, making it well-suited for
dynamic treatment regimens such as drug dosing, therapy
scheduling, and intervention timing. As a result,
reinforcement learning has been explored for clinical
decision support in critical care, chronic disease
management, and personalized medicine.

Among healthcare domains, oncology has emerged as a
compelling application area for reinforcement learning.
Cancer treatment is sequential, with therapeutic decisions
influencing tumor evolution, resistance development, and
patient toxicity over extended time horizons. Recent studies
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heuristic dosing schedules in simulated cancer environments.
These findings suggest that reinforcement learning has strong
potential to support adaptive cancer therapy, a paradigm that
seeks to control tumor burden while delaying resistance
rather than pursuing maximum tolerated dosing.

A notable example is the work by Eastman et al., which
demonstrated that reinforcement learning-derived
chemotherapy schedules can outperform classical optimal
control approaches and remain robust to patient-specific
parameter variations in simulated tumor growth models. Such
studies establish reinforcement learning as a promising
methodological tool for adaptive cancer therapy and provide
a foundation for further research in this area. However,
despite  growing methodological sophistication and
encouraging simulation results, the translation of
reinforcement learning into high-stakes clinical domains such
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as oncology remains limited. A central barrier repeatedly
identified in the literature is the lack of rigorous,
standardized, and reliable evaluation methodologies for
healthcare reinforcement learning policies. This issue is
particularly acute in cancer therapy, where unsafe or overly
optimistic policy recommendations could have severe
consequences.

Although reinforcement learning has been widely
applied to adaptive cancer therapy, current evaluation
practices remain insufficiently standardized, risk-aware, and
uncertainty sensitive, which limits the reliability and
interpretability of reported results. Most existing studies
evaluate reinforcement learning policies through direct
rollout in simulated environments, reporting aggregate
metrics such as average tumor burden, survival time, or
cumulative reward. While insightful, such rollout-based
evaluation provides only a partial assessment of policy
quality, as it does not quantify uncertainty, assess worst-case
outcomes, or capture inconsistencies across patient
subpopulations.

Prior work in healthcare reinforcement learning has
demonstrated that different evaluation approaches, including
on-policy simulation, off-policy evaluation, and model-based
estimation, can lead to different conclusions about policy
effectiveness. Moreover, commonly used off-policy
evaluation methods are known to suffer from high variance,
bias, and sensitivity to distribution shift, especially in
complex and nonlinear clinical environments. Despite these
challenges, no widely accepted evaluation framework exists
for reinforcement learning in adaptive cancer therapy.
Oncology-focused studies often adopt evaluation strategies in
an ad hoc manner, without systematically examining policy
robustness, tail risk, or safety under uncertainty. As a result,
it remains unclear whether reported performance gains reflect
genuine therapeutic improvements or artifacts of evaluation
methodology.

Motivated by these limitations, this study focuses not
on proposing a new reinforcement learning algorithm, but on
how reinforcement learning policies for adaptive cancer
therapy are evaluated. The aim is to develop and assess a
standardized, risk-aware, and uncertainty-sensitive evaluation
framework for reinforcement learning algorithms in adaptive
cancer therapy using simulated cancer environments as a
controlled yet realistic testbed. Specifically, the study
examines off-policy evaluation methods to assess estimator
behavior, applies on-policy rollout evaluation as a reliable
performance baseline, characterizes policy performance
beyond average outcomes using worst-case and risk-sensitive
metrics such as Conditional Value at Risk, and evaluates
robustness under parameter perturbations and clinically
relevant distribution shifts.

1. RELATED WORKS
» Background
Reinforcement learning involves learning a mapping

from situations to actions to maximize a scalar reward or
reinforcement signal. The learner is not told which action to
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take, as in most forms of machine learning, but instead must
discover which actions yield the highest reward by trying
them [1]. Reinforcement learning (RL) has emerged as a
powerful paradigm for solving sequential decision-making
problems, where actions influence future system dynamics
and outcomes. Unlike supervised learning approaches that
rely on static input-output mappings, RL explicitly models
temporal dependencies and long-term objectives, making it
suitable for healthcare applications involving dynamic
treatment regimens (DTRs), where treatment decisions must
adapt over time in response to patient evolution [7], [14].

» Reinforcement Learning in Healthcare

Over the past decade, RL has been investigated as a
tool for clinical decision support across various healthcare
domains, including critical care, chronic disease
management, and personalized medicine. Recent surveys
have highlighted that RL methods are well-aligned with
clinical scenarios that require balancing short-term
interventions against long-term patient outcomes, such as
medication dosing, treatment sequencing, and intervention
timing [17], [3], [5]-

Systematic reviews published in the last few years
emphasize that RL has demonstrated promise in learning
adaptive treatment strategies that outperform fixed or
guideline-based policies in simulated or retrospective settings
[9], [8]. These studies consistently report that RL can capture
patient heterogeneity and temporal dynamics more
effectively than traditional rule-based or regression-based
approaches. However, despite these advances, the same
reviews repeatedly note persistent challenges related to
policy evaluation, safety, interpretability, and clinical trust. In
particular, most healthcare RL studies rely on retrospective or
simulated data and lack standardized procedures for assessing
the reliability and robustness of learned policies [3], [9]. This
limitation becomes critical in high-risk domains such as
oncology.

» Reinforcement Learning in Oncology and Cancer
Treatment

Oncology represents a natural and compelling
application area for RL due to the sequential nature of cancer
treatment. Chemotherapy, radiotherapy, and targeted
therapies are administered over extended periods, with each
treatment decision influencing tumor evolution, resistance
development, and patient toxicity. Consequently, optimal
cancer treatment planning can be naturally framed as a
Markov decision process, where states represent patient or
tumor conditions, actions correspond to treatment choices,
and rewards encode clinical objectives such as tumor
suppression and toxicity minimization [12].

Early work applying RL to chemotherapy scheduling
demonstrated that even relatively simple algorithms, such as
Q-learning, could discover dosing policies that outperform
static treatment schedules in simulated tumor models [11].
These studies established proof-of-concept evidence that RL
could adaptively balance efficiency and toxicity over time.
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Subsequent research extended these ideas using more
sophisticated modeling assumptions and learning techniques.
Several studies incorporated biologically motivated tumor
growth models, continuous state spaces, and more realistic
toxicity dynamics, showing that RL-based approaches could
derive patient-specific or robust dosing strategies under
parameter uncertainty [16], [13].

These works collectively reinforced the potential of RL
as a decision-support tool for adaptive cancer therapy.

Despite methodological progress, the evaluation
strategies employed across oncology-focused RL studies
remain performance-oriented. Most works assess learned
policies by directly implementing them in simulation
environments and reporting aggregate metrics, such as
average tumor reduction, survival time, or cumulative
reward. While such evaluations demonstrate feasibility, they
do not provide insight into the reliability, risk profile, or
uncertainty associated with policy recommendations, factors
that are critical for any potential clinical translation.

» Adaptive Cancer Therapy and Robust RL Policies

Adaptive therapy has gained attention as an alternative
to maximum-tolerated-dose strategies, particularly in the
context of treatment resistance. Rather than aggressively
eliminating tumor cells, adaptive therapy aims to control
tumor burden while delaying or preventing the emergence of
resistant populations [6]. This paradigm naturally aligns with
RL, which can optimize long-term objectives under
uncertainty.

A representative and influential study in this area is
Reinforcement learning derived chemotherapeutic schedules
for robust patient-specific therapy [1]. In this work, the
authors formulate chemotherapy scheduling as an RL
problem using a mechanistic tumor growth model and
demonstrate that RL-derived policies outperform classical
optimal control strategies across a range of simulated patient
parameter variations.

In this study, robustness refers specifically to the
stability of policy performance under parameter perturbations
and distribution shifts in simulated patient dynamics, rather
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than formal guarantees derived from robust Markov decision
process theory.

The study highlights the robustness of RL policies to
model perturbations, positioning RL as a promising approach
for patient-specific adaptive therapy. The strength of this
work lies in its rigorous simulation design, biologically
interpretable modeling assumptions, and comparative
evaluation against established control methods. As such, it
serves as a strong anchor for subsequent research on RL-
based adaptive cancer therapy. However, its evaluation
methodology, like most of the existing literature, focuses
primarily on mean performance metrics obtained via
simulator rollouts. The study does not examine alternative
evaluation methodologies, quantify uncertainty in policy
performance, or assess worst-case or risk-sensitive outcomes.
This pattern is consistent across much of the adaptive cancer
therapy literature: RL is validated primarily through direct
simulation outcomes, implicitly assuming that rollout-based
evaluation provides a reliable estimate of policy quality.
While reasonable in controlled settings, this assumption
becomes problematic when considering offline learning,
limited data coverage, or safety-critical decision-making.

» Evaluation Challenges in Healthcare Reinforcement
Learning

Parallel to the growth of RL applications in healthcare,
a separate body of literature has emerged that highlights the
fundamental challenges in policy evaluation, particularly in
offline settings where interaction with the real environment is
not possible. Off-policy evaluation (OPE) methods such as
importance sampling, weighted importance sampling, and
doubly robust estimators are commonly used to estimate the
value of learned policies from logged data [10], [4].

Recent studies, however, demonstrate that OPE
methods can exhibit high variance, bias, and sensitivity to
data distribution shift, especially in complex, high-
dimensional healthcare environments [15], [3]. Critical
analyses show that different evaluation methods can produce
contradictory conclusions about which policy is optimal,
raising concerns about over-optimistic or misleading
performance claims [2]. Table 1 summarizes Reinforcement
Learning Studies in Adaptive Cancer Therapy.

Table 1 Summary of RL Studies

Study Environment Reinforcement Learning | Evaluation Approach Risk/
Method Uncertainty
Shen et al. (2017) Simulated tumor Q-learning On-policy rollout No
Eastman et al. (2021) Mechanistic tumor model RL + optimal control Rollout Limited
Sun et al. (2023) Simulated oncology Deep RL Rollout No
This study Simulated heterogeneous DON Rollout + CVaR + Yes
tumors stress testing

» Synthesis and Research Gap

The literature establishes three key points. First,
reinforcement learning is widely recognized as a suitable and
powerful framework for adaptive treatment planning in
healthcare and oncology. Second, simulated cancer therapy
environments have enabled meaningful progress in
demonstrating the feasibility and potential benefits of RL-
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based adaptive therapy. Third, and critically, evaluation
practices have not kept pace with methodological advances,
remaining fragmented, performance-centric, and
insufficiently  aligned  with  safety-critical  clinical
requirements.
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Anchored by influential studies such as [1], which
demonstrate the promise of RL for robust adaptive cancer
therapy, this work argues that the next necessary step is a
systematic examination of how RL policies are evaluated.
Specifically, there is a clear need for a standardized
evaluation framework that integrates multiple evaluation
perspectives, including uncertainty quantification and risk-
sensitive metrics, while leveraging the availability of ground-
truth outcomes in simulated cancer environments.

Addressing this gap is important not only for improving
the reliability and comparability of future research but also
for preventing over-optimistic conclusions that could restrict
the responsible translation of reinforcement learning into
clinical oncology.
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This section describes the methodology used to
evaluate reinforcement learning policies for adaptive cancer
therapy. A simulation-based experimental design is adopted
to enable controlled and reproducible comparison of multiple
policy evaluation approaches. The methodology emphasizes
robustness, uncertainty, and risk-sensitive assessment to
reflect the safety-critical nature of clinical decision support.

A modular research framework is employed that
integrates simulation, learning, evaluation, and reporting. The
overall architecture of the framework is illustrated in Fig. 1.

Simulated Tumor Environment

(Tumor dynamics, toxicity,

patient Heterogeneity)

State S_t, Act

a tf

RL Agent

(Policy Network, Replay Buffer)

Reward r_t, Ne State S_{t+1}

Evaluation Framework

(Rollouts, OPE, Robustness,
Uncertainty, CvaR)

Reporting & Analysis

(Mean, CI, Worst-case,

Tail-risk, Metrics)

Fig 1 Architectural Diagram

The framework consists of three interacting layers. The
learning layer represents the reinforcement learning agent,
which selects chemotherapy dosing actions based on
observed tumor states and toxicity levels. A Deep Q Network
architecture is used, incorporating experience replay and
target networks to stabilize learning. The simulation layer
models tumor dynamics, resistance evolution, drug effects,
and cumulative toxicity. Patient heterogeneity is introduced
by sampling biological parameters from clinically plausible
distributions. The evaluation layer assesses learned policies
using both on-policy rollouts and off-policy evaluation
methods, robustness testing under parameter perturbations,
and uncertainty quantification using risk-sensitive metrics.
Outputs from the evaluation process are summarized into
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interpretable measures such as mean performance, worst-case
outcomes, and tail-risk indicators.

Adaptive cancer therapy is formulated as a discrete-
time Markov Decision Process defined by the tuple (S, A, P,
R, 7). At each time step, the agent observes the current state,
selects a treatment action, receives a reward, and transitions
to a new state. The state vector captures clinically relevant
tumor and treatment information and is defined as:

sc= [Tu(t), Tu(t), C(t), 1] eq. 1)

Where Ty(t) and T.(t) denote the populations of drug-
sensitive and drug-resistant tumor cells, respectively, C(t)
represents cumulative drug exposure or toxicity, and t is the
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treatment time index. This formulation enables explicit
modeling of resistance dynamics and aligns with prior
adaptive therapy studies.

The action space represents discrete chemotherapy
dosing decisions and is defined as:

A= {0, d, d2} eq. @)

Corresponding to no treatment, low-dose treatment, and
high-dose treatment. Discrete actions are selected to reflect
clinical decision constraints and to maintain comparability
with existing literature.

Tumor evolution follows biologically motivated growth
dynamics. For a two-population tumor model, the
continuous-time dynamics are given by:

dT. T, + T,

d—; =1 T (1—%) —d;a.T, (eq.3)
dT, T, + T,

el 1T (1—T) (eq.4)

Where r, and 1. are growth rates, K is the carrying
capacity, ds is drug sensitivity, and a; denotes the
administered dose. Discrete-time transitions are obtained
through numerical integration.

The reward function balances tumor suppression and
toxicity minimization and is defined as:

re=—a(Ty(t) + T«(1)) — Pac — AC(1) edq. ®)
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Where a, B, and A control the trade-off between tumor
suppression, treatment intensity, and cumulative toxicity.

A simulated cancer therapy environment is constructed
to emulate patient-specific tumor dynamics. Each episode
corresponds to a complete treatment course over a fixed time
horizon. Patient heterogeneity is introduced by sampling
biological parameters from clinically plausible distributions,
with each parameter set representing a distinct virtual patient.

A Deep Q Network is employed as a representative
value-based reinforcement learning algorithm. The policy
selects actions according to the maximum estimated action-
value, and learning is performed using the standard Q-
learning update rule with neural network function
approximation. Experience replay is used to reduce temporal
correlation between samples, and a target network is
periodically synchronized to improve training stability.

Training proceeds episodically through interaction
between the agent and the simulated environment. At the
start of each episode, a new virtual patient profile is sampled.
The agent selects actions using an g-greedy exploration
strategy, and observed transitions are stored in a replay
buffer. Mini-batches are sampled from the buffer to update
the network parameters. Training is conducted across
multiple patient profiles and random seeds to promote
robustness and generalization. After training, the learned
policy is fixed and evaluated using the proposed risk-aware
evaluation framework. The training process is illustrated in
Fig. 2.

Initialize Networks & Replay Buffer

S

Sample Patient Profile

L 2

Reset Cancer Environment

¥

Execute Policy for One Episode

S

Store Transitions in Replay Buffer

¥

Update Network Parameters

L 8

Repeat Across Episodes & Patients

Fig 2 The Training Process
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V. RESULTS AND DISCUSSION

This section presents the empirical evaluation of the
proposed risk-aware reinforcement learning framework for
adaptive cancer therapy. A Deep Q Network (DQN) policy is
evaluated against two clinically interpretable baselines: no
treatment and maximum tolerated dose (MTD) therapy.
Performance is assessed under standard patient conditions
and under a distribution shift representing more aggressive
tumor dynamics. To ensure clinical relevance, both expected
performance and risk-sensitive metrics are reported,
including worst-case outcomes and Conditional Value at Risk
(CVaR).

All results are obtained from simulations across 50
heterogeneous virtual patients, providing a balance between
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computational feasibility and distributional coverage
consistent with prior simulation-based oncology studies.
Although multiple off-policy evaluation methods were
implemented, including importance sampling, weighted
importance sampling, and doubly robust estimation, their
numerical results are not emphasized due to high variance
under limited trajectory coverage. Instead, off-policy
evaluation methods are used diagnostically to assess
estimator stability, while primary conclusions are drawn from
controlled on-policy rollouts where ground-truth outcomes
are available.

Under standard patient conditions, the DQN policy is
compared against no treatment and MTD therapy using
mean, median, worst-case, and CVaRo.: final tumor burden
metrics, as summarized in Table 2.

Table 2 Final Tumor Burden (Standard)

Policy Final Tumor Burden (Standard Evaluation)
Mean Median Worst-case CvaRo, 1
No Treatment 1.22x108 2.33x10 7.38x108 5.82x108
Max Dose (MTD) 2.31x1068 6.99x10° 1.79x107 1.31x107
DQON 3.00x108 7.49x10° 1.89x107 1.46x107

Relative to no treatment, both MTD and DQN achieve
substantial tumor suppression. Mean tumor burden is reduced
by approximately 98.1% under MTD and 97.5% under DQN.
Worst-case tumor burden is similarly reduced by 97.6% and
97.4%, respectively. These results confirm that active
treatment is essential and that both policies effectively
control tumor growth.

When comparing DQN to MTD, the learned policy
exhibits a 29.8% higher mean tumor burden, while the
median tumor burden is only 7.2% higher. Worst-case
outcomes increase by approximately 5.4%, and CVaRo.i
increases by 11.3%. Despite these increases, all metrics
remain within the same order of magnitude, indicating that

the DQN policy performs comparably to aggressive fixed-
dose therapy. This reflects a fundamental trade-off: the DQN
adapts dosing over time rather than consistently applying
maximum intensity, which reduces cumulative exposure and
potential toxicity.

Distributional analysis  further highlights these
differences. The no-treatment policy exhibits extreme right
skew and heavy tails, corresponding to catastrophic outcomes
in a subset of patients. In contrast, both MTD and DQN
produce tightly concentrated outcome distributions. The
DQN distribution shows slightly greater variance, consistent
with adaptive decision-making. This behavior is illustrated in
Fig. 3.
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Fig 3 Distribution of Final Tumor Burden Under Standard Conditions
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Tail-risk analysis using CVaR confirms that no
treatment carries catastrophic risk, while both MTD and
DQN substantially mitigate extreme outcomes. Although
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DQN incurs a modest increase in CVaRo.1 relative to MTD, it
avoids the severe tail behavior observed under no treatment,
as shown in Fig. 4.
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Fig 4 CVaRo.: Comparison Under Standard Conditions.

The relationship between expected performance and
worst-case outcomes further illustrates this trade-off. The
DQN policy lies close to the Pareto frontier defined by MTD,

demonstrating that near-optimal worst-case performance can
be achieved without uniform maximal dosing. This is
visualized in Fig. 5.

108 .

Worst-Case Tumor Burden

MaxdOd

o [lreatment

107

10°%

Mean Tumor Burden

Fig 5 Mean Versus Worst-Case Final Tumor Burden (Standard Conditions)

To assess robustness, all policies are evaluated under a distribution shift representing more aggressive tumor dynamics.

Results are summarized in Table 3.
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Table 3 Final Tumor Burden (Aggressive)
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Policy Final Tumor Burden (Aggressive Tumors)
Mean Median Subhead Subhead
No Treatment 2.45x108 4.66x107 1.48x10° 1.16x10°
Max Dose (MTD) 5.36x10° 9.36x10° 3.26x107 2.60x107
DQN 5.76x10° 9.87x10° 3.54x107 2.78x107

Under this shift, mean tumor burden increases by 132%
for MTD and 92% for DQN, while worst-case outcomes
increase by 82% and 88%, respectively. CVaRo.:
approximately doubles for both active treatment strategies.
Despite this degradation, both MTD and DQN maintain
tumor burdens that are two orders of magnitude lower than
no treatment.

Relative to MTD under aggressive tumor dynamics, the
DQN policy exhibits a 7.4% higher mean tumor burden, a
5.5% higher median, an 8.6% higher worst-case outcome,
and a 7.0% higher CVaRo.i. These small margins indicate
that the learned policy generalizes well beyond its training
distribution. Distributional analysis shows a modest widening
of the DQN outcome distribution under shift, but without
catastrophic tail expansion, demonstrating robustness to
parameter uncertainty (Fig. 6).
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Fig 6 Distribution of Final Tumor Burden Under Aggressive Tumor Dynamics

Risk-sensitive analysis confirms that while tail risk increases for all policies, the DQN maintains controlled risk exposure

under stress (Fig. 7).
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Fig 7 CVaRo, 1 Comparison Under Aggressive Tumors
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The mean versus worst-case performance under distribution shift further shows that the learned policy continues to occupy a

favorable region of the performance-risk space (Fig. 8).
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Fig 8 Mean Versus Worst-Case Tumor Burden Under Aggressive Conditions

Overall, the results highlight three key trade-offs. First,
aggressiveness versus adaptivity: MTD achieves marginally
superior tumor suppression at the cost of continuous high-
intensity dosing, while DQN accepts a 5-30% increase in
tumor burden to enable adaptive control. Second, expected
performance versus tail risk: the DQN exhibits slightly
higher CVaR but remains within 10-12% of MTD, indicating
strong risk control. Third, optimality versus robustness: under
distribution shift, the DQN shows less than 9% degradation
relative to MTD, demonstrating resilience to unseen tumor
dynamics. Together, these findings support the viability of
reinforcement learning for adaptive cancer therapy when
evaluated through a risk-aware lens.

From a clinical perspective, the results support the
hypothesis that adaptive therapy can achieve competitive
tumor control while avoiding continuous maximal dosing.
The findings emphasize that reinforcement learning policies
should be assessed as decision-support tools rather than
black-box optimizers, and that risk-aware evaluation is
essential  for  safety-critical applications. From a
methodological standpoint, the study highlights the
importance of reporting distributional metrics rather than
single averages, stress-testing policies under adverse
conditions, and designing evaluation frameworks that are
reusable and extensible. These principles extend beyond
oncology to other high-stakes healthcare domains.

Despite these contributions, several limitations remain.
The tumor model is simplified and does not capture spatial
heterogeneity, immune response, or multi-drug interactions.
Chemotherapy dosing is discretized, whereas real-world
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dosing decisions are continuous and constrained by
pharmacokinetics. All experiments are conducted in
simulation, limiting immediate clinical applicability. Finally,
the study focuses on a DQN policy, leaving other
reinforcement learning paradigms unexplored. These
limitations motivate future research.

V. CONCLUSION AND FUTURE WORK

This study addressed a critical gap in reinforcement
learning research for adaptive cancer therapy: the absence of
standardized, risk-aware, and uncertainty-sensitive evaluation
frameworks. Rather than proposing a new control algorithm
in isolation, the work focused on how reinforcement learning
policies should be evaluated to support clinically meaningful
and safety-aware conclusions.

A modular simulation-based evaluation framework was
developed using a biologically grounded two-population
tumor growth model. The framework supports heterogeneous
patient sampling, controlled distribution shifts, and
reproducible experimentation. Beyond expected performance
metrics, the study incorporated worst-case outcomes and
Conditional Value at Risk to characterize tail-risk behavior,
an aspect largely absent from prior reinforcement learning
studies in oncology. Policies were evaluated under both
standard and aggressive tumor dynamics to assess robustness
and generalization.

Empirical results demonstrate that a Deep Q Network
policy achieves tumor suppression comparable to maximum
tolerated dose therapy, reducing tumor burden by over 97%
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relative to no treatment and matching the same order of
magnitude as aggressive fixed-dose strategies. This
performance is achieved without constant maximal dosing,
highlighting the ability of adaptive policies to exploit tumor
dynamics while potentially reducing cumulative treatment
exposure. Although the learned policy exhibits slightly
higher mean and worst-case outcomes than maximum-dose
therapy, increases in Conditional Value at Risk remain
consistently below 12% across all evaluation settings,
indicating controlled risk exposure.

Under distribution shift, all policies experience
performance degradation; however, the relative gap between
the adaptive policy and maximum-dose therapy remains
below 9%, demonstrating strong robustness to unseen tumor
dynamics and parameter uncertainty. These findings
reinforce the central insight of this work: expected
performance alone is insufficient for assessing clinical
viability. Risk-sensitive and distribution-aware evaluation is
essential for responsible reinforcement learning in safety-
critical healthcare domains.

Overall, this study demonstrates that reinforcement
learning-based adaptive chemotherapy can achieve
competitive tumor control while maintaining acceptable risk
profiles and robustness to uncertainty. More importantly, it
establishes that how reinforcement learning policies are
evaluated is as critical as how they are trained. By
introducing a clinically aligned, risk-aware evaluation
framework, this work contributes a necessary methodological
foundation for advancing reinforcement learning in oncology
and beyond. The reported results are obtained under
controlled simulation settings and do not imply direct clinical
safety or efficacy in real-world practice.

Several directions for future research emerge from this
work. Incorporating robust reinforcement learning or
distributionally  robust optimization techniques could
explicitly optimize worst-case and CVaR objectives.
Extending the framework to multi-objective reinforcement
learning would enable joint optimization of tumor
suppression, toxicity, quality of life, and treatment cost.
Greater clinical realism could be achieved by adopting
continuous dosing actions and integrating pharmacokinetic-
pharmacodynamic models. Introducing partial observability
and noisy tumor state measurements would allow
investigation of reinforcement learning under realistic
clinical uncertainty.
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