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Abstract: Reinforcement learning has emerged as a promising approach for adaptive cancer therapy due to its ability to 

optimize sequential treatment decisions under uncertainty. While studies have demonstrated the potential of 

reinforcement learning to improve simulated treatment outcomes, most evaluations rely primarily on average 

performance metrics obtained through direct simulation rollouts. Such evaluation practices provide limited insight into 

uncertainty, robustness, and worst-case behavior, which are critical considerations in safety-sensitive clinical domains. 

This study proposes a standardized, risk-aware, and uncertainty-sensitive evaluation framework for reinforcement 

learning based adaptive cancer therapy using simulated tumor environments. A Deep Q Network policy is evaluated 

against clinically interpretable baselines using multiple performance perspectives, including mean outcomes, worst-case 

metrics, and tail risk measures based on Conditional Value at Risk. Robustness is further assessed under parameter 

perturbations and distribution shifts representing aggressive tumor dynamics. Experimental results demonstrate that 

adaptive reinforcement learning policies achieve tumor control comparable to maximum dose therapy while maintaining 

controlled risk exposure and stable performance under uncertainty. The findings emphasize that rigorous, risk-sensitive 

evaluation is essential for drawing reliable conclusions about reinforcement learning based treatment strategies before any 

real-world deployment. 
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I. INTRODUCTION 

 

Reinforcement learning has gained significant attention 

as a framework for sequential decision making in healthcare, 
where treatment decisions must adapt over time in response 

to evolving patient states. Unlike supervised learning 

approaches, reinforcement learning explicitly optimizes long-

term outcomes under uncertainty, making it well-suited for 

dynamic treatment regimens such as drug dosing, therapy 

scheduling, and intervention timing. As a result, 

reinforcement learning has been explored for clinical 

decision support in critical care, chronic disease 

management, and personalized medicine. 

 

Among healthcare domains, oncology has emerged as a 
compelling application area for reinforcement learning. 

Cancer treatment is sequential, with therapeutic decisions 

influencing tumor evolution, resistance development, and 

patient toxicity over extended time horizons. Recent studies 

have demonstrated that reinforcement learning can discover 

adaptive treatment strategies that outperform fixed or 

heuristic dosing schedules in simulated cancer environments. 

These findings suggest that reinforcement learning has strong 
potential to support adaptive cancer therapy, a paradigm that 

seeks to control tumor burden while delaying resistance 

rather than pursuing maximum tolerated dosing. 

 

A notable example is the work by Eastman et al., which 

demonstrated that reinforcement learning-derived 

chemotherapy schedules can outperform classical optimal 

control approaches and remain robust to patient-specific 

parameter variations in simulated tumor growth models. Such 

studies establish reinforcement learning as a promising 

methodological tool for adaptive cancer therapy and provide 
a foundation for further research in this area. However, 

despite growing methodological sophistication and 

encouraging simulation results, the translation of 

reinforcement learning into high-stakes clinical domains such 
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as oncology remains limited. A central barrier repeatedly 
identified in the literature is the lack of rigorous, 

standardized, and reliable evaluation methodologies for 

healthcare reinforcement learning policies. This issue is 

particularly acute in cancer therapy, where unsafe or overly 

optimistic policy recommendations could have severe 

consequences. 

 

Although reinforcement learning has been widely 

applied to adaptive cancer therapy, current evaluation 

practices remain insufficiently standardized, risk-aware, and 

uncertainty sensitive, which limits the reliability and 
interpretability of reported results. Most existing studies 

evaluate reinforcement learning policies through direct 

rollout in simulated environments, reporting aggregate 

metrics such as average tumor burden, survival time, or 

cumulative reward. While insightful, such rollout-based 

evaluation provides only a partial assessment of policy 

quality, as it does not quantify uncertainty, assess worst-case 

outcomes, or capture inconsistencies across patient 

subpopulations. 

 

Prior work in healthcare reinforcement learning has 

demonstrated that different evaluation approaches, including 
on-policy simulation, off-policy evaluation, and model-based 

estimation, can lead to different conclusions about policy 

effectiveness. Moreover, commonly used off-policy 

evaluation methods are known to suffer from high variance, 

bias, and sensitivity to distribution shift, especially in 

complex and nonlinear clinical environments. Despite these 

challenges, no widely accepted evaluation framework exists 

for reinforcement learning in adaptive cancer therapy. 

Oncology-focused studies often adopt evaluation strategies in 

an ad hoc manner, without systematically examining policy 

robustness, tail risk, or safety under uncertainty. As a result, 
it remains unclear whether reported performance gains reflect 

genuine therapeutic improvements or artifacts of evaluation 

methodology. 

 

Motivated by these limitations, this study focuses not 

on proposing a new reinforcement learning algorithm, but on 

how reinforcement learning policies for adaptive cancer 

therapy are evaluated. The aim is to develop and assess a 

standardized, risk-aware, and uncertainty-sensitive evaluation 

framework for reinforcement learning algorithms in adaptive 

cancer therapy using simulated cancer environments as a 

controlled yet realistic testbed. Specifically, the study 
examines off-policy evaluation methods to assess estimator 

behavior, applies on-policy rollout evaluation as a reliable 

performance baseline, characterizes policy performance 

beyond average outcomes using worst-case and risk-sensitive 

metrics such as Conditional Value at Risk, and evaluates 

robustness under parameter perturbations and clinically 

relevant distribution shifts. 

 

II. RELATED WORKS 

 

 Background 
Reinforcement learning involves learning a mapping 

from situations to actions to maximize a scalar reward or 

reinforcement signal. The learner is not told which action to 

take, as in most forms of machine learning, but instead must 
discover which actions yield the highest reward by trying 

them [1]. Reinforcement learning (RL) has emerged as a 

powerful paradigm for solving sequential decision-making 

problems, where actions influence future system dynamics 

and outcomes. Unlike supervised learning approaches that 

rely on static input-output mappings, RL explicitly models 

temporal dependencies and long-term objectives, making it 

suitable for healthcare applications involving dynamic 

treatment regimens (DTRs), where treatment decisions must 

adapt over time in response to patient evolution [7], [14]. 

 
 Reinforcement Learning in Healthcare 

Over the past decade, RL has been investigated as a 

tool for clinical decision support across various healthcare 

domains, including critical care, chronic disease 

management, and personalized medicine. Recent surveys 

have highlighted that RL methods are well-aligned with 

clinical scenarios that require balancing short-term 

interventions against long-term patient outcomes, such as 

medication dosing, treatment sequencing, and intervention 

timing [17], [3], [5]. 

 

Systematic reviews published in the last few years 
emphasize that RL has demonstrated promise in learning 

adaptive treatment strategies that outperform fixed or 

guideline-based policies in simulated or retrospective settings 

[9], [8]. These studies consistently report that RL can capture 

patient heterogeneity and temporal dynamics more 

effectively than traditional rule-based or regression-based 

approaches. However, despite these advances, the same 

reviews repeatedly note persistent challenges related to 

policy evaluation, safety, interpretability, and clinical trust. In 

particular, most healthcare RL studies rely on retrospective or 

simulated data and lack standardized procedures for assessing 
the reliability and robustness of learned policies [3], [9]. This 

limitation becomes critical in high-risk domains such as 

oncology. 

 

 Reinforcement Learning in Oncology and Cancer 

Treatment 

Oncology represents a natural and compelling 

application area for RL due to the sequential nature of cancer 

treatment. Chemotherapy, radiotherapy, and targeted 

therapies are administered over extended periods, with each 

treatment decision influencing tumor evolution, resistance 

development, and patient toxicity. Consequently, optimal 
cancer treatment planning can be naturally framed as a 

Markov decision process, where states represent patient or 

tumor conditions, actions correspond to treatment choices, 

and rewards encode clinical objectives such as tumor 

suppression and toxicity minimization [12]. 

 

Early work applying RL to chemotherapy scheduling 

demonstrated that even relatively simple algorithms, such as 

Q-learning, could discover dosing policies that outperform 

static treatment schedules in simulated tumor models [11]. 

These studies established proof-of-concept evidence that RL 
could adaptively balance efficiency and toxicity over time. 
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Subsequent research extended these ideas using more 
sophisticated modeling assumptions and learning techniques. 

Several studies incorporated biologically motivated tumor 

growth models, continuous state spaces, and more realistic 

toxicity dynamics, showing that RL-based approaches could 

derive patient-specific or robust dosing strategies under 

parameter uncertainty [16], [13]. 

 

These works collectively reinforced the potential of RL 

as a decision-support tool for adaptive cancer therapy. 

 

Despite methodological progress, the evaluation 
strategies employed across oncology-focused RL studies 

remain performance-oriented. Most works assess learned 

policies by directly implementing them in simulation 

environments and reporting aggregate metrics, such as 

average tumor reduction, survival time, or cumulative 

reward. While such evaluations demonstrate feasibility, they 

do not provide insight into the reliability, risk profile, or 

uncertainty associated with policy recommendations, factors 

that are critical for any potential clinical translation. 

 

 Adaptive Cancer Therapy and Robust RL Policies 

Adaptive therapy has gained attention as an alternative 
to maximum-tolerated-dose strategies, particularly in the 

context of treatment resistance. Rather than aggressively 

eliminating tumor cells, adaptive therapy aims to control 

tumor burden while delaying or preventing the emergence of 

resistant populations [6]. This paradigm naturally aligns with 

RL, which can optimize long-term objectives under 

uncertainty. 

 

A representative and influential study in this area is 

Reinforcement learning derived chemotherapeutic schedules 

for robust patient-specific therapy [1]. In this work, the 
authors formulate chemotherapy scheduling as an RL 

problem using a mechanistic tumor growth model and 

demonstrate that RL-derived policies outperform classical 

optimal control strategies across a range of simulated patient 

parameter variations. 

 

In this study, robustness refers specifically to the 

stability of policy performance under parameter perturbations 

and distribution shifts in simulated patient dynamics, rather 

than formal guarantees derived from robust Markov decision 
process theory. 

 

The study highlights the robustness of RL policies to 

model perturbations, positioning RL as a promising approach 

for patient-specific adaptive therapy. The strength of this 

work lies in its rigorous simulation design, biologically 

interpretable modeling assumptions, and comparative 

evaluation against established control methods. As such, it 

serves as a strong anchor for subsequent research on RL-

based adaptive cancer therapy. However, its evaluation 

methodology, like most of the existing literature, focuses 
primarily on mean performance metrics obtained via 

simulator rollouts. The study does not examine alternative 

evaluation methodologies, quantify uncertainty in policy 

performance, or assess worst-case or risk-sensitive outcomes. 

This pattern is consistent across much of the adaptive cancer 

therapy literature: RL is validated primarily through direct 

simulation outcomes, implicitly assuming that rollout-based 

evaluation provides a reliable estimate of policy quality. 

While reasonable in controlled settings, this assumption 

becomes problematic when considering offline learning, 

limited data coverage, or safety-critical decision-making. 

 
 Evaluation Challenges in Healthcare Reinforcement 

Learning 

Parallel to the growth of RL applications in healthcare, 

a separate body of literature has emerged that highlights the 

fundamental challenges in policy evaluation, particularly in 

offline settings where interaction with the real environment is 

not possible. Off-policy evaluation (OPE) methods such as 

importance sampling, weighted importance sampling, and 

doubly robust estimators are commonly used to estimate the 

value of learned policies from logged data [10], [4]. 

 
Recent studies, however, demonstrate that OPE 

methods can exhibit high variance, bias, and sensitivity to 

data distribution shift, especially in complex, high-

dimensional healthcare environments [15], [3]. Critical 

analyses show that different evaluation methods can produce 

contradictory conclusions about which policy is optimal, 

raising concerns about over-optimistic or misleading 

performance claims [2]. Table 1 summarizes Reinforcement 

Learning Studies in Adaptive Cancer Therapy. 

 

Table 1 Summary of RL Studies 

Study Environment Reinforcement Learning 

Method 

Evaluation Approach Risk/ 

Uncertainty 

Shen et al. (2017) Simulated tumor Q-learning On-policy rollout No 

Eastman et al. (2021) Mechanistic tumor model RL + optimal control Rollout Limited 

Sun et al. (2023) Simulated oncology Deep RL Rollout No 

This study Simulated heterogeneous 

tumors 

DQN Rollout + CVaR + 

stress testing 

Yes 

 

 Synthesis and Research Gap 

The literature establishes three key points. First, 

reinforcement learning is widely recognized as a suitable and 

powerful framework for adaptive treatment planning in 

healthcare and oncology. Second, simulated cancer therapy 

environments have enabled meaningful progress in 

demonstrating the feasibility and potential benefits of RL-

based adaptive therapy. Third, and critically, evaluation 

practices have not kept pace with methodological advances, 

remaining fragmented, performance-centric, and 

insufficiently aligned with safety-critical clinical 

requirements. 
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Anchored by influential studies such as [1], which 
demonstrate the promise of RL for robust adaptive cancer 

therapy, this work argues that the next necessary step is a 

systematic examination of how RL policies are evaluated. 

Specifically, there is a clear need for a standardized 

evaluation framework that integrates multiple evaluation 

perspectives, including uncertainty quantification and risk-

sensitive metrics, while leveraging the availability of ground-

truth outcomes in simulated cancer environments. 

 

Addressing this gap is important not only for improving 

the reliability and comparability of future research but also 
for preventing over-optimistic conclusions that could restrict 

the responsible translation of reinforcement learning into 

clinical oncology. 

III. METHODOLOGY 
 

This section describes the methodology used to 

evaluate reinforcement learning policies for adaptive cancer 

therapy. A simulation-based experimental design is adopted 

to enable controlled and reproducible comparison of multiple 

policy evaluation approaches. The methodology emphasizes 

robustness, uncertainty, and risk-sensitive assessment to 

reflect the safety-critical nature of clinical decision support. 

 

A modular research framework is employed that 

integrates simulation, learning, evaluation, and reporting. The 
overall architecture of the framework is illustrated in Fig. 1. 

 

 
Fig 1 Architectural Diagram 

 

The framework consists of three interacting layers. The 

learning layer represents the reinforcement learning agent, 

which selects chemotherapy dosing actions based on 

observed tumor states and toxicity levels. A Deep Q Network 

architecture is used, incorporating experience replay and 

target networks to stabilize learning. The simulation layer 

models tumor dynamics, resistance evolution, drug effects, 
and cumulative toxicity. Patient heterogeneity is introduced 

by sampling biological parameters from clinically plausible 

distributions. The evaluation layer assesses learned policies 

using both on-policy rollouts and off-policy evaluation 

methods, robustness testing under parameter perturbations, 

and uncertainty quantification using risk-sensitive metrics. 

Outputs from the evaluation process are summarized into 

interpretable measures such as mean performance, worst-case 

outcomes, and tail-risk indicators. 

 

Adaptive cancer therapy is formulated as a discrete-

time Markov Decision Process defined by the tuple (S, A, P, 

R, γ). At each time step, the agent observes the current state, 

selects a treatment action, receives a reward, and transitions 
to a new state. The state vector captures clinically relevant 

tumor and treatment information and is defined as: 

 

sₜ = [Tₛ(t), Tᵣ(t), C(t), t]  eq.                               (1) 

 

Where Tₛ(t) and Tᵣ(t) denote the populations of drug-

sensitive and drug-resistant tumor cells, respectively, C(t) 

represents cumulative drug exposure or toxicity, and t is the 
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treatment time index. This formulation enables explicit 
modeling of resistance dynamics and aligns with prior 

adaptive therapy studies. 

 

The action space represents discrete chemotherapy 

dosing decisions and is defined as: 

 

A = {0, d₁, d₂}  eq.                                              (2) 

 

Corresponding to no treatment, low-dose treatment, and 

high-dose treatment. Discrete actions are selected to reflect 

clinical decision constraints and to maintain comparability 
with existing literature. 

 

Tumor evolution follows biologically motivated growth 

dynamics. For a two-population tumor model, the 

continuous-time dynamics are given by: 

 

 
 

 
 

Where rₛ and rᵣ are growth rates, K is the carrying 

capacity, dₛ is drug sensitivity, and aₜ denotes the 

administered dose. Discrete-time transitions are obtained 

through numerical integration. 

 

The reward function balances tumor suppression and 

toxicity minimization and is defined as: 

 

rₜ = −α(Tₛ(t) + Tᵣ(t)) − βaₜ − λC(t)   eq.                 (5) 

Where α, β, and λ control the trade-off between tumor 
suppression, treatment intensity, and cumulative toxicity. 

 

A simulated cancer therapy environment is constructed 

to emulate patient-specific tumor dynamics. Each episode 

corresponds to a complete treatment course over a fixed time 

horizon. Patient heterogeneity is introduced by sampling 

biological parameters from clinically plausible distributions, 

with each parameter set representing a distinct virtual patient. 

 

A Deep Q Network is employed as a representative 

value-based reinforcement learning algorithm. The policy 
selects actions according to the maximum estimated action-

value, and learning is performed using the standard Q-

learning update rule with neural network function 

approximation. Experience replay is used to reduce temporal 

correlation between samples, and a target network is 

periodically synchronized to improve training stability. 

 

Training proceeds episodically through interaction 

between the agent and the simulated environment. At the 

start of each episode, a new virtual patient profile is sampled. 

The agent selects actions using an ε-greedy exploration 

strategy, and observed transitions are stored in a replay 
buffer. Mini-batches are sampled from the buffer to update 

the network parameters. Training is conducted across 

multiple patient profiles and random seeds to promote 

robustness and generalization. After training, the learned 

policy is fixed and evaluated using the proposed risk-aware 

evaluation framework. The training process is illustrated in 

Fig. 2. 

 

 
Fig 2 The Training Process 
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IV. RESULTS AND DISCUSSION 
 

This section presents the empirical evaluation of the 

proposed risk-aware reinforcement learning framework for 

adaptive cancer therapy. A Deep Q Network (DQN) policy is 

evaluated against two clinically interpretable baselines: no 

treatment and maximum tolerated dose (MTD) therapy. 

Performance is assessed under standard patient conditions 

and under a distribution shift representing more aggressive 

tumor dynamics. To ensure clinical relevance, both expected 

performance and risk-sensitive metrics are reported, 

including worst-case outcomes and Conditional Value at Risk 
(CVaR). 

 

All results are obtained from simulations across 50 

heterogeneous virtual patients, providing a balance between 

computational feasibility and distributional coverage 
consistent with prior simulation-based oncology studies. 

Although multiple off-policy evaluation methods were 

implemented, including importance sampling, weighted 

importance sampling, and doubly robust estimation, their 

numerical results are not emphasized due to high variance 

under limited trajectory coverage. Instead, off-policy 

evaluation methods are used diagnostically to assess 

estimator stability, while primary conclusions are drawn from 

controlled on-policy rollouts where ground-truth outcomes 

are available. 

 
Under standard patient conditions, the DQN policy is 

compared against no treatment and MTD therapy using 

mean, median, worst-case, and CVaR₀.₁ final tumor burden 

metrics, as summarized in Table 2. 

 

Table 2 Final Tumor Burden (Standard) 

Policy Final Tumor Burden (Standard Evaluation)  

Mean Median Worst-case CvaR0, 1 

No Treatment 1.22×108 2.33×10 7.38×108 5.82×108 

Max Dose (MTD) 2.31×106 6.99×105 1.79×107 1.31×107 

DQN 3.00×106 7.49×105 1.89×107 1.46×107 

 

Relative to no treatment, both MTD and DQN achieve 

substantial tumor suppression. Mean tumor burden is reduced 

by approximately 98.1% under MTD and 97.5% under DQN. 

Worst-case tumor burden is similarly reduced by 97.6% and 

97.4%, respectively. These results confirm that active 
treatment is essential and that both policies effectively 

control tumor growth. 

 

When comparing DQN to MTD, the learned policy 

exhibits a 29.8% higher mean tumor burden, while the 

median tumor burden is only 7.2% higher. Worst-case 

outcomes increase by approximately 5.4%, and CVaR₀.₁ 

increases by 11.3%. Despite these increases, all metrics 

remain within the same order of magnitude, indicating that 

the DQN policy performs comparably to aggressive fixed-

dose therapy. This reflects a fundamental trade-off: the DQN 

adapts dosing over time rather than consistently applying 

maximum intensity, which reduces cumulative exposure and 

potential toxicity. 
 

Distributional analysis further highlights these 

differences. The no-treatment policy exhibits extreme right 

skew and heavy tails, corresponding to catastrophic outcomes 

in a subset of patients. In contrast, both MTD and DQN 

produce tightly concentrated outcome distributions. The 

DQN distribution shows slightly greater variance, consistent 

with adaptive decision-making. This behavior is illustrated in 

Fig. 3. 

 

 
Fig 3 Distribution of Final Tumor Burden Under Standard Conditions 
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Tail-risk analysis using CVaR confirms that no 
treatment carries catastrophic risk, while both MTD and 

DQN substantially mitigate extreme outcomes. Although 

DQN incurs a modest increase in CVaR₀.₁ relative to MTD, it 
avoids the severe tail behavior observed under no treatment, 

as shown in Fig. 4. 

 

 
Fig 4 CVaR₀.₁ Comparison Under Standard Conditions. 

 

The relationship between expected performance and 

worst-case outcomes further illustrates this trade-off. The 

DQN policy lies close to the Pareto frontier defined by MTD, 

demonstrating that near-optimal worst-case performance can 

be achieved without uniform maximal dosing. This is 

visualized in Fig. 5. 

 

 
Fig 5 Mean Versus Worst-Case Final Tumor Burden (Standard Conditions) 

 

To assess robustness, all policies are evaluated under a distribution shift representing more aggressive tumor dynamics. 

Results are summarized in Table 3. 
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Table 3 Final Tumor Burden (Aggressive) 

Policy Final Tumor Burden (Aggressive Tumors)  

Mean Median Subhead Subhead 

No Treatment 2.45×108 4.66×107 1.48×109 1.16×109 

Max Dose (MTD) 5.36×106 9.36×105 3.26×107 2.60×107 

DQN 5.76×106 9.87×105 3.54×107 2.78×107 

 
Under this shift, mean tumor burden increases by 132% 

for MTD and 92% for DQN, while worst-case outcomes 

increase by 82% and 88%, respectively. CVaR₀.₁ 

approximately doubles for both active treatment strategies. 

Despite this degradation, both MTD and DQN maintain 

tumor burdens that are two orders of magnitude lower than 

no treatment. 

 

Relative to MTD under aggressive tumor dynamics, the 

DQN policy exhibits a 7.4% higher mean tumor burden, a 

5.5% higher median, an 8.6% higher worst-case outcome, 

and a 7.0% higher CVaR₀.₁. These small margins indicate 

that the learned policy generalizes well beyond its training 

distribution. Distributional analysis shows a modest widening 

of the DQN outcome distribution under shift, but without 

catastrophic tail expansion, demonstrating robustness to 

parameter uncertainty (Fig. 6). 

 

 
Fig 6 Distribution of Final Tumor Burden Under Aggressive Tumor Dynamics 

 

Risk-sensitive analysis confirms that while tail risk increases for all policies, the DQN maintains controlled risk exposure 

under stress (Fig. 7). 
 

 
Fig 7 CVaR₀, ₁ Comparison Under Aggressive Tumors 
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The mean versus worst-case performance under distribution shift further shows that the learned policy continues to occupy a 
favorable region of the performance-risk space (Fig. 8). 

 

 
Fig 8 Mean Versus Worst-Case Tumor Burden Under Aggressive Conditions 

 

Overall, the results highlight three key trade-offs. First, 
aggressiveness versus adaptivity: MTD achieves marginally 

superior tumor suppression at the cost of continuous high-

intensity dosing, while DQN accepts a 5-30% increase in 

tumor burden to enable adaptive control. Second, expected 

performance versus tail risk: the DQN exhibits slightly 

higher CVaR but remains within 10-12% of MTD, indicating 

strong risk control. Third, optimality versus robustness: under 

distribution shift, the DQN shows less than 9% degradation 

relative to MTD, demonstrating resilience to unseen tumor 

dynamics. Together, these findings support the viability of 

reinforcement learning for adaptive cancer therapy when 

evaluated through a risk-aware lens. 
 

From a clinical perspective, the results support the 

hypothesis that adaptive therapy can achieve competitive 

tumor control while avoiding continuous maximal dosing. 

The findings emphasize that reinforcement learning policies 

should be assessed as decision-support tools rather than 

black-box optimizers, and that risk-aware evaluation is 

essential for safety-critical applications. From a 

methodological standpoint, the study highlights the 

importance of reporting distributional metrics rather than 

single averages, stress-testing policies under adverse 
conditions, and designing evaluation frameworks that are 

reusable and extensible. These principles extend beyond 

oncology to other high-stakes healthcare domains. 

 

Despite these contributions, several limitations remain. 

The tumor model is simplified and does not capture spatial 

heterogeneity, immune response, or multi-drug interactions. 

Chemotherapy dosing is discretized, whereas real-world 

dosing decisions are continuous and constrained by 
pharmacokinetics. All experiments are conducted in 

simulation, limiting immediate clinical applicability. Finally, 

the study focuses on a DQN policy, leaving other 

reinforcement learning paradigms unexplored. These 

limitations motivate future research. 

 

V. CONCLUSION AND FUTURE WORK 

 

This study addressed a critical gap in reinforcement 

learning research for adaptive cancer therapy: the absence of 

standardized, risk-aware, and uncertainty-sensitive evaluation 

frameworks. Rather than proposing a new control algorithm 
in isolation, the work focused on how reinforcement learning 

policies should be evaluated to support clinically meaningful 

and safety-aware conclusions. 

 

A modular simulation-based evaluation framework was 

developed using a biologically grounded two-population 

tumor growth model. The framework supports heterogeneous 

patient sampling, controlled distribution shifts, and 

reproducible experimentation. Beyond expected performance 

metrics, the study incorporated worst-case outcomes and 

Conditional Value at Risk to characterize tail-risk behavior, 
an aspect largely absent from prior reinforcement learning 

studies in oncology. Policies were evaluated under both 

standard and aggressive tumor dynamics to assess robustness 

and generalization. 

 

Empirical results demonstrate that a Deep Q Network 

policy achieves tumor suppression comparable to maximum 

tolerated dose therapy, reducing tumor burden by over 97% 
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relative to no treatment and matching the same order of 
magnitude as aggressive fixed-dose strategies. This 

performance is achieved without constant maximal dosing, 

highlighting the ability of adaptive policies to exploit tumor 

dynamics while potentially reducing cumulative treatment 

exposure. Although the learned policy exhibits slightly 

higher mean and worst-case outcomes than maximum-dose 

therapy, increases in Conditional Value at Risk remain 

consistently below 12% across all evaluation settings, 

indicating controlled risk exposure. 

 

Under distribution shift, all policies experience 
performance degradation; however, the relative gap between 

the adaptive policy and maximum-dose therapy remains 

below 9%, demonstrating strong robustness to unseen tumor 

dynamics and parameter uncertainty. These findings 

reinforce the central insight of this work: expected 

performance alone is insufficient for assessing clinical 

viability. Risk-sensitive and distribution-aware evaluation is 

essential for responsible reinforcement learning in safety-

critical healthcare domains. 

 

Overall, this study demonstrates that reinforcement 

learning-based adaptive chemotherapy can achieve 
competitive tumor control while maintaining acceptable risk 

profiles and robustness to uncertainty. More importantly, it 

establishes that how reinforcement learning policies are 

evaluated is as critical as how they are trained. By 

introducing a clinically aligned, risk-aware evaluation 

framework, this work contributes a necessary methodological 

foundation for advancing reinforcement learning in oncology 

and beyond. The reported results are obtained under 

controlled simulation settings and do not imply direct clinical 

safety or efficacy in real-world practice. 

 
Several directions for future research emerge from this 

work. Incorporating robust reinforcement learning or 

distributionally robust optimization techniques could 

explicitly optimize worst-case and CVaR objectives. 

Extending the framework to multi-objective reinforcement 

learning would enable joint optimization of tumor 

suppression, toxicity, quality of life, and treatment cost. 

Greater clinical realism could be achieved by adopting 

continuous dosing actions and integrating pharmacokinetic-

pharmacodynamic models. Introducing partial observability 

and noisy tumor state measurements would allow 

investigation of reinforcement learning under realistic 
clinical uncertainty. 
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