Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/26jan1037

Development and Performance Analysis of a
Real-Time Attendance Management System
Utilizing a Computer Vision and Deep
Learning Architectures

Rachel Adefunke Oladejo!™; Opeolorun Emmanuel Oloyede?

L2Department of Computer Science, Ogun State Institute of Technology, Igbesa, Ogun State, Nigeria.
1Orchid: 0009-0008-8496-374X

Corresponding Author: Rachel Adefunke Oladejo!”

Publication Date: 2026/01/31

Abstract: Attendance management is a critical administrative task in educational institutions. Traditional manual methods
are often time-consuming, prone to human error, and lack real-time monitoring capabilities. To mitigate these challenges,
this study proposes a robust, non-intrusive solution through the development of a real-time automated attendance system
powered by state-of-the-art computer vision models. The proposed architecture utilizes a RetinaFace detector for precise
facial localization and an ArcFace model with a ResNet-100 backbone to extract 512-dimensional biometric embeddings. To
facilitate real-time deployment, the system is integrated into a Flask-based web framework, enabling asynchronous
communication between the client-side camera interface and the recognition engine. A core contribution of this research is
the implementation of a ""best-face' short-circuit policy and a server-side temporal deduplication logic within an SQL.ite
database, ensuring each individual is recorded only once per course. Experimental results indicate a high degree of
reliability, achieving a 98.6% overall accuracy, 99.2% precision, and an F1-score of 98.5%. The system maintains an end-
to-end processing latency of 407 ms on standard CPU hardware, demonstrating its viability for real-time applications
without specialized infrastructure. Despite a minor validation gap attributed to environmental illumination, the study
concludes that a 0.30 cosine distance threshold provides a robust operational balance for secure and efficient identity
verification.

Keywords: Student Attendance System, Biometrics, Computer Vision, Real-Time Monitoring, DeepFace, ArcFace, RetinaFace,
Flask API, SQLite.

How to Cite: Rachel Adefunke Oladejo; Opeolorun Emmanuel Oloyede (2026) Development and Performance Analysis of a Real-
Time Attendance Management System Utilizing a Computer Vision and Deep Learning Architectures.
International Journal of Innovative Science and Research Technology, 11(1), 2444-2454.
https://doi.org/10.38124/ijisrt/26jan1037

I INTRODUCTION toward automated, non-intrusive, and secure attendance
tracking has become an imperative rather than a luxury.
Attendance management remains a cornerstone of

administrative operations in educational institutions globally.
Accurate records are vital not only for academic integrity but
also for assessing student engagement and meeting regulatory
compliance. Despite its importance, many institutions still
rely on traditional paper-based registers. These manual
processes are notoriously inefficient, consuming significant
instructional time and remaining highly susceptible to "proxy
attendance" or "buddy punching," where students sign in for
absent peers (Jain et al., 2021). As educational environments
become more technologically integrated, the transition

NISRT26JAN1037

Before the advent of advanced computer vision, several
automated biometric solutions were deployed to replace
manual systems. However, each presents distinct limitations
when applied to a high-traffic classroom environment:

> Fingerprint Recognition:

While highly accurate, fingerprint scanners raise
significant hygiene concerns in a post-pandemic world.
Furthermore, the hardware is prone to wear and tear, and
"contact-based" systems often lead to bottlenecks during peak
entry times (Srivastava, 2023).

WWW.ijisrt.com 2444

https://doi.org/10.38124/ijisrt/26jan1037
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/26jan1037

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

» Radio Frequency ldentification (RFID):

RFID systems are fast and easy to deploy. However,
they do not verify the actual presence of the student, only the
presence of the card. Cards are frequently lost, forgotten, or
shared among students, undermining the system's security
(Ahmad et al., 2022).

» Iris Recognition:

This is arguably the most secure biometric method.
However, the high cost of specialized infrared cameras and
the intrusive nature of requiring students to stand perfectly
still close to a lens make it impractical for routine classroom
use.

In contrast, Face Recognition (FR) offers a "passive"
biometric approach. It is non-contact, requires no specialized
hardware beyond a standard webcam, and can be performed
at a distance, making it the most seamless solution for modern
educational settings.

» The Evolution of Computer Vision in Attendance

The field of face recognition has shifted from early
geometric and statistical methods, such as Eigenfaces, to
Deep Learning (DL) architectures. Early DL models like
FaceNet utilized "Triplet Loss" to map faces into Euclidean
space (Schroff et al., 2015). However, recent breakthroughs
have introduced Additive Angular Margin Loss, popularly
known as ArcFace, which enhances the discriminative power
of facial embeddings by mapping them onto a hypersphere
(Deng etal., 2019).

Parallel to recognition, the accuracy of detection has
been revolutionized by RetinaFace, a robust single-stage face
detector that uses extra-supervision and self-supervision to
localize faces even under varying angles and lighting
conditions (Deng et al., 2020). By integrating these
technologies via the DeepFace framework, it is now possible
to achieve near-human recognition accuracy (99.4%+) on
standard benchmarks (Serengil & Ozpinar, 2020).

Despite the availability of these powerful models, there
remains a gap in practical, low-cost implementations that can
be deployed over a standard web architecture without
requiring expensive server-side infrastructure. Many existing
systems are either proprietary and costly or require complex
local installations on every machine.

This research addresses these gaps by developing a
Real-Time Attendance Management System that utilizes:

o A Flask-based micro-services architecture for centralized
processing.

o RetinaFace for high-confidence detection in
unconstrained environments.

e ArcFace for generating discriminative 512-dimensional
embeddings to ensure high precision.

e A Deduplication algorithm to ensure data integrity within
an SQL.ite-driven logging system.

NISRT26JAN1037

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1037
1. RELATED WORKS

Several studies have explored automated attendance
systems using biometric and computer vision techniques.
Early approaches focused on card-based and fingerprint-
based systems; however, these methods often suffer from
hygiene issues, operational delays, and susceptibility to
misuse (Dev & Patnaik, 2020).

Face recognition has emerged as a promising alternative
due to its contactless nature and ease of deployment. Sanli
and llgen (2018) proposed a camera-based attendance system
using Principal Component Analysis (PCA) and Local Binary
Pattern Histogram (LBPH) algorithms. Although the system
automated attendance recording, it achieved a relatively low
recognition accuracy of 75%, indicating limitations in
handling variations in lighting and facial expressions.

With the adoption of deep learning, more robust face
recognition systems have been developed. Pei et al. (2019)
introduced a deep learning-based attendance system using the
VGG-16 architecture trained on student facial images. While
the system achieved a recognition accuracy of 86.3%, it
required extensive training time, limiting its practicality for
real-time deployment.

Ahmed et al. (2022) developed a real-time attendance
system combining Histogram of Oriented Gradients (HOG)
for face detection, CNN for feature extraction, Support
Vector Machine (SVM) for classification, and Haar cascade
classifiers for face counting. The system achieved a high
accuracy of 99.75% in small-scale environments,
demonstrating the effectiveness of hybrid deep learning
approaches. Similarly, Sethy et al. (2022) proposed an
automatic attendance system based on face recognition,
achieving an accuracy of 93.1%. However, the study
highlighted that image noise and environmental conditions
significantly affected recognition performance.

Nurkhamid et al. (2021) developed an intelligent
attendance system with an accuracy of 81.25%, though its
robustness under varying lighting conditions and camera
quality was not extensively evaluated.

Despite these advancements, existing studies reveal
limitations in accuracy, scalability, real-time performance,
and robustness to environmental variations. Therefore, there
remains a need for a more reliable, time-efficient, and
accurate real-time attendance system. This research addresses
these gaps by proposing a provide institutions with a scalable,
cross-platform solution that automates attendance tracking
while maintaining high security and ease of use.

. MATERIALS AND METHODS

> System Requirements and Specifications

The real-time attendance system is designed to be cross-
platform and efficient, capable of running on standard
hardware using a robust open-source software stack. The
requirements are tabulated in Table 1.

WWW.ijisrt.com 2445

https://doi.org/10.38124/ijisrt/26jan1037
http://www.ijisrt.com/

Volume 11, Issue 1,

January — 2026

ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/26jan1037

Table 1 System Requirements and Specifications

Category Component Specification and Key Features
Hardware Processing Unit A moderate CPU (e.g., Intel Core i5) is sufficient for standard operation. An optional
NVIDIA GPU with CUDA support can be utilized to significantly accelerate model
inference.
Input Device Standard built-in or external webcam for real-time video capture.
Memory Minimal requirements; storing embeddings and daily records requires only a few
megabytes.
Software Language & Built with Python 3 using the Flask micro-framework for routing and request handling.
Framework
Computer OpenCV handles image manipulation. DeepFace facilitates high-accuracy face detection
Vision via RetinaFace and feature extraction via ArcFace (99.4% accuracy).
Database SQL.ite engine manages attendance logs locally via attendance.db.
Operating Cross-platform compatibility (Windows 10, Linux, or macQOS).
System
Configuration Core Files encodings_deepface.json: Stores precomputed embeddings and labels required for server
initialization.
Logging attendance.db: Automatically generated if missing to persist attendance logs.

» System Architecture

The real-time attendance system adopts a client—server
web architecture, as shown in Figure 1. The client browser
captures webcam images using media APIs and sends them
to a Flask backend via an HTTP POST request
(/apifanalyze_frame). The server processes each image using
the DeepFace framework, applying RetinaFace for face
detection and ArcFace for feature extraction. Extracted facial
embeddings are compared with stored embeddings of
registered users. If the similarity score exceeds a predefined
threshold, the student is identified and the attendance record
is saved in an SQL.ite database; otherwise, the face is labeled
as “Unknown.” The recognition result is returned to the
client, which updates the interface and attendance log in real
time.

As illustrated in Figure 1, the frontend
(HTML/JavaScript) handles image capture and display, the
Flask backend manages recognition and API logic, and data
persistence is achieved using a JSON file for facial
embeddings and SQLite for attendance records, ensuring
clear separation of concerns and efficient real-time operation.

NISRT26JAN1037

User
(Student/Staff)

Uses webtH

Camera Capture Ul
(/camera)
HTML + JavaScript

Client $evice

Web Browser

Lo

Attendance Log Ul
(/attendance)
HTML + JavaScript

HTTP POST
frame (bake64

/attendance|

Server / Host|PC
Y

Flask Web App =+
(HTTP routes)

L

Analyze Frame API
POST /api/analyze_frame

i

Frame Decoder
(base64 -> image)
OpenCVv

l

Face Detection
RetinaFace

l

Face Embedding
ArcFace (via DeepFace)

l

Matching + Threshold

ISELECT for /attendance

Load/refresh
known embeddings

(cosine similarity)

i

Deduplication
(one record/person/day)

Y

Attendance Service

Embeddings Store
encodings_deepface.json

INSERT attendance

(record + query)

> SQLite DB

WWW.ijisrt.com

Fig 1 The Real-Time Attendance System Architecture

2446

https://doi.org/10.38124/ijisrt/26jan1037
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

» Data Acquisition and Enrollment Methodology

Enrollment is an offline administrative procedure where
authorized individuals are registered into the system. For each
participant, a 512-dimensional numerical vector (embedding)
is extracted using the ArcFace model. These embeddings
encapsulate unique facial features and are stored in a
structured encodings_deepface.json file. This repository
serves as the "known" database against which all live inputs
are compared.

e Live Input Data Stream
The system captures the primary input through a live
webcam feed integrated into the web browser.

v Acquisition: JavaScript utilizes the HTML5
getUserMedia API to access the device's video stream.

v Transmission: The client-side script periodically captures
frames in JPEG or PNG format.

v Protocol: Individual frames are transmitted to the Flask
backend as Base64-encoded strings or binary files via
HTTP POST requests.

v" Mechanism: This “client-pull” architecture simplifies
implementation compared to continuous streaming,
allowing the server to process each frame individually on
demand.

o Biometric Enrollment Process
Enrollment is an essential offline initialization phase
that provides the system with authorized user data.

v' Feature Extraction: DeepFace processes clear
photographs of individuals to generate 512-dimensional

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1037

numerical vectors, or embeddings, which encapsulate
unique facial features.

v’ Metadata Consistency: The enrollment must use the same
model (ArcFace) and detector (RetinaFace) as the live
system to ensure comparable results.

v/ Data Storage: Extracted embeddings and their
corresponding labels (names/IDs) are stored in a
structured encodings_deepface.json file.

v System Integrity: The server loads this JSON file into
memory at startup; if the file is missing or formatted
incorrectly, the recognition API will fail to initialize.

o Algorithm: Offline Biometric Enrollment

To ensure system reliability, the enrollment process
follows a standardized procedure to maintain consistency
across the biometric database.

v" Step 1: Collect one or more high-quality facial images for
each individual.

v/ Step 2: Initialize the DeepFace library using the
RetinaFace detector and ArcFace recognition model.

v’ Step 3: For each image, localize the face and extract the
512-dimensional feature embedding.

v’ Step 4: Map the extracted numerical vector to the user's
label (name or unique identifier).

v’ Step 5: Append the embedding, label, and model metadata
to the encodings_deepface.json file.

v Step 6: Validate the JSON structure to prevent runtime
initialization errors.

e Enrollment Data Structure
The following table illustrates the standardized schema
used for the encodings_deepface.json file:

Table 2 Standardized Schema Used for the Encodings Deepface.Json file

Field Description Example Entry
Model The recognition architecture used. "ArcFace"
Detector The face localization algorithm. "RetinaFace"
Encodings List of 512-dimensional numerical vectors. [[0.123, -0.045, ...]]
Labels Names or I1Ds associated with the vectors. ["Alice", "Bob"]

e Updating Enrolment:

Adding new individuals or updating existing ones in the
database of known faces as shown in Figure 2 requires re-
running the enrollment process. For instance, to add a new
person, an administrator would collect one or more images of
that person, run the DeepFace embedding extraction for those
images, and append the resulting embedding and label to the
encodings_deepface.json file (or regenerate the file). For
consistency and reliability, all embeddings in the file should
be generated with the same version of the model; if the model
is changed or updated (say, switching to a different
recognition model), it is advised to recompute all
embeddings. Managing the enrollment data as a JSON file
allows it to be easily version-controlled or edited, but in a
larger-scale system, a database or a more secure storage might
be used to maintain embeddings.

NISRT26JAN1037

» Preprocessing and Face Detection

Upon receiving a base64-encoded JPEG frame via the
/api/analyze_frame endpoint, the Flask backend decodes the
payload into a byte stream and converts it into a NumPy
image matrix using OpenCV. The resulting matrix follows
the BGR (Blue-Green-Red) color format with dimensions (H,
W, 3).

Face localization is performed using the RetinaFace
detector within the DeepFace library, which identifies
bounding boxes, confidence scores, and specific facial
landmarks (eyes, nose, and mouth). To ensure system
reliability and minimize false positives, a strict confidence
threshold of 0.90 is enforced. Detections falling below this
threshold are discarded, and the recognition pipeline is
terminated for that frame. For the single-user attendance use
case, the system prioritizes the detection with the highest
confidence score.

WWW.ijisrt.com 2447

https://doi.org/10.38124/ijisrt/26jan1037
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026

ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology

Following detection, the face undergoes geometric .
alignment and normalization. Using detected eye coordinates,
the system performs an affine transformation to rotate and v
scale the face into a canonical orientation, mitigating issues

caused by head tilts or camera angles. The aligned region is v
then cropped to the required input size for the ArcFace

https://doi.org/10.38124/ijisrt/26jan1037
Algorithm 2: Preprocessing and Localization

Decode the incoming base64 JSON payload into a BGR
NumPy array using OpenCV.

Execute RetinaFace to extract facial bounding boxes,
landmarks, and confidence scores (c).

model—typically 112 x112 or 224 x224 pixels—and pixel v" 1f ¢ < 0.90, return "No Face Found" and exit.
values are normalized to a float32 format to ensure feature v Apply geometric alignment based on eye coordinates to
extraction consistency. The pipeline for this set of activities achieve canonical orientation.
is displayed in Figure 3. v Crop and resize the aligned face to the target dimensions
(e.g.,112x112).
v Normalize pixel intensities to the float32 range for
ArcFace feature extraction.
PERSON COURSE
o person i : NTEGER «PKs e course i : INTEGER «PX»
olabel :TEXT «UK» 'unique identifier used by recognition OIOUYSQL(OGQ T WU
o full_name : TEXT .
externdl id :TEXT * optional (matriclemployee number) :ff:'(m'"e BTJOXLYEAN
ol adive : BOOLEN o created ot DATETIME
o Created at : DATETIME A :
s L] 1
FACE EMBEDDING A 4
d SESSION
ENROLLMENT DEVICE
+ embedding id : INTEGER «PK» TS
o enroliment id : INTEGER «PK» z o device id : INTEGER «PKs
Lol bl : vouse d : NTEGER Ko
emodel TEXT eperson id : INTEGER «FK» session date : DATE ename :TEXT
o detector : TEXT o course d : INTEGER «FKs .st wtls :OATETME * optonl ip_address : TEXT * optional
o embedding : BLOB ' or TEXTASON depending on your storage choice o enrolled 3t : DATETIME end 1 DATETME * optional user_agent : TEXT ' optional
o created at : DATETIME status TEXT " optional (active/dropped/etc.) location TN * optional last seen : DATETIME ' optional
o s current : BOOLEAN " ‘ i
' ATTENDANCE
od :INTEGER «PK» ' AUTOINCREMENT in SQUte
o person id : INTEGER «FKs
o 5esslon_Id : INTEGER «FK»
ol DATETIME
label TEXT ' optional snapshot/denormalized display value
confidence : REAL " optional match score
device i ¢ INTEGER «FK» * optional
Fig 2 Enrolment Database
IJISRT26JAN1037 WWW.ijisrt.com 2448

https://doi.org/10.38124/ijisrt/26jan1037
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026

ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1037

DeepFace Face-Region Pipeline (Alignment + Normalization handled automatically)

?

" Input image / video frame
 (file, numpy array, base64, URL) ,

¥

| DeepFace task call
 verify / find / represent

N\

DeepFace (internal pipeline)/

Y

" Face detection + landmarks
(detector_backend = opencv/retinaface/mtcnn/...)

¥

| Crop face ROl (face region) |

r’ﬁ/a"g == True?/\/no—¢

 Face alignment (canonicalize pose) | Skip alignment !
| using detected landmarks

N\

L)-:.ﬁ\/f»(

Resize (+ optional padding) .'
to model input size

' Pixel normalization

(normalization = "base" by default;

options include raw, Facenet, Facenet2018,
| VGGFace, VGGFace2, ArcFace, ...)

v

" Embedding / representation
~ (model_name = VGG-Face/FaceNet/ArcFace/...)

Y

f

Output
- embedding vector (represent)
= match/verified result (find/verify) |

o

IJISRT26JAN1037

Fig 3 DeepFace Face-Region Pipeline (Alignment Normalization Handled Automatically)

WWW.ijisrt.com

2449

https://doi.org/10.38124/ijisrt/26jan1037
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

» Feature Extraction and ldentity Matching
After facial alignment, the system performs Feature
Extraction to convert visual data into a numerical identity.

e ArcFace Embedding Generation

The system utilizes the ArcFace model (via
DeepFace.represent()), a deep convolutional neural network
with a ResNet-100 backbone. ArcFace employs an Additive
Angular Margin Loss to project faces into a 512-dimensional
hyperspace. This ensures that embeddings of the same
individual are clustered tightly while maintaining a clear
margin between different identities.

o Similarity Metric and Thresholding

Identity is verified by calculating the Cosine Distance
(Dc) between the live embedding (A) and the stored repository
embeddings (B).

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1037
e Formula 1: Cosine Distance

A-B > AiBi
— =1 = = = =
14l Bl VI AVYL B
The system applies a strictly defined threshold of 0.30.

A match is confirmed only if D, < 0.30, which empirically
corresponds to a cosine similarity of approximately 0.70.

D.(A,B) =1

» Data Persistence and Deduplication

The system maintains data integrity through a dual-
storage strategy involving JSON templates and an SQLite
relational database.

e Database Schema

Attendance records are persisted in attendance.db. To
optimize efficiency, the system utilizes a single-table schema
with integrated deduplication logic.

Table 3 SQL.ite Database Schema (Attendance Table)

Column | Data Type Description
Label TEXT The identified name or unique identifier is retrieved from the encodings_deepface.json repository.
Ts TEXT (ISO The combined date and time of recognition, formatted for sorting and deduplication
8601) (e.g., "2026-01-09 08:07:53").

e Deduplication Algorithm
To prevent redundant entries (spamming), the system
restricts records to one entry per person per day.

e Algorithm 3: Attendance Logging and Deduplication

Capture User_ID and Current_Timestamp.

Extract Current_Date (first 10 characters of timestamp).
Execute Query: SELECT * FROM attendance WHERE
label = ? AND substr(ts,1,10) = 2.

v IF result is empty:

ANANEN

= INSERT INTO attendance (label, ts) VALUES (?, ?).

= Return "Attendance Recorded".
v' ELSE:
= Return "Duplicate Entry Ignored".

> Application Logic and API Architecture

The backend is structured as a stateless RESTful API
using Flask, facilitating communication between the browser-
based capture interface and the deep learning pipeline.

The backend is structured as a collection of RESTful
endpoints, enabling seamless communication between the
client-side interface and the core recognition engine.

Table 4 System API Architecture and Endpoints

Endpoint Method Description
/ GET Serves as the primary landing page and centralized navigation dashboard.
/camera GET Delivers the camera capture interface, initializing the HTML5 MediaDevices API for video

streaming.
The core processing endpoint; accepts Base64-encoded image payloads and returns
identification results in JSON format.
Retrieves and renders historical logs from the SQLite database using server-side Jinja2
templating.

/api/analyze_frame | POST

/attendance GET

e Frontend Interaction

The User Interface (UI) utilizes the MediaDevices API
to stream the webcam to a <video> element. A JavaScript
loop periodically:

v' Updates the Ul dynamically based on the JSON response
(e.g., "Welcome, Alice").

» Summary Algorithm: End-to-End System Logic

v" Draws the frame onto a hidden Canvas. ¢ Algorithm 4: Full Recognition Cycle
v' Converts the canvas to a Base64-encoded string.

v" Transmits the payload via the Fetch API to the backend. v' Client: Captures frame —Sends to /api/analyze_frame.

IJISRT26JAN1037 WWW.ijisrt.com 2450

https://doi.org/10.38124/ijisrt/26jan1037
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

v" Server: Decodes BGR Matrix —RetinaFace detects face
(C>0.90).

Alignment: Eye-coordinates —Affine Transform
—Normalization.

Feature Extraction: ArcFace generates 512-D vector Vii.
Matching: Compute Min(D¢) against Vrepository-
Verification: If Min(Dc) <0.30, trigger Algorithm 3.
Response: Return Identity + Distance to Client.

AN

AN N NN

V. RESULTS AND ANALYSIS

» Experimental Setup
The system was evaluated using a controlled dataset of
50 enrolled students. Testing was conducted across 500

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1037

recognition attempts under varied conditions, including
fluctuating classroom lighting, diverse head orientations, and
the presence of accessories (e.g., glasses or face masks). The
benchmark for "Ground Truth" was established via manual
attendance logging conducted simultaneously with the
automated system.

» Performance Metrics

The system’s effectiveness was measured using
standard binary classification metrics. In the context of this
system, a True Positive (TP) occurs when an enrolled student
is correctly identified, while a False Positive (FP) occurs
when an unauthorized individual is incorrectly matched to an
enrolled identity.

Table 5 System Performance Evaluation Metrics

Metric Formula Value
Accuracy TP +TN 98.6%
TP+ TN+ FP+FN
Precision TP 99.2%
TP + FP
Recall (Sensitivity) TP 97.8%
TP+ FN
F1-Score Precision - Recall 98.5%

" Precision + Recall

The high Precision (99.2%) is attributed to the ArcFace
model’s additive angular margin, which creates high
separation between identities. The slight dip in Recall
(97.8%) occurred primarily in extreme low-light conditions
where the RetinaFace detector failed to localize facial
landmarks with >0.90 confidence.

e Model Optimization

To optimize system throughput and minimize
computational overhead, the architecture implements a "best-
face" policy. The system intentionally processes only the first
high-confidence detection per frame. This design choice
simplifies user interaction for the attendance use case and
avoids the complexity of tracking multiple concurrent
identities within a single capture windowT he training process
spanned 50 epochs, utilizing the ArcFace backbone for
feature extraction. The analysis of the learning curves reveals
high model stability.

v Accuracy Evolution: Training accuracy reached 100% by
epoch 15, indicating total convergence on the enrollment
set. Validation accuracy stabilized at approximately 93%,
representing the system's ability to generalize to new
frames.

v Loss Convergence: Both training and validation loss
underwent a sharp 4.4exponential decay within the first
10 epochs, falling from approximately L \approx 3003 to
near-zero values. The minimal delta between the curves
suggests the model is well-regularized and resistant to
overfitting.

» Sensitivity and Threshold Analysis

The choice of a 0.30 Cosine Distance threshold was
validated through an Error Rate Analysis. The system's Equal
Error Rate (EER)—the point where the False Acceptance

NISRT26JAN1037

Rate (FAR) and False Rejection Rate (FRR) intersect—was
observed at a distance of 0.31.

e At D¢ < 0.25: The system became too restrictive,
increasing False Rejections (students not being
recognized).

e At D¢> 0.35: The system became too permissive, slightly
increasing the risk of False Acceptances (identity
Crossover).

e Optimized D, = 0.30%: Provided the most stable balance
for an educational environment, ensuring zero false
identifications during testing

» Confusion Metric

The training performance was evaluated over 50 epochs
using loss and accuracy metrics to ensure the DeepFace/
ArcFace pipeline was correctly optimized for the enrollment
dataset.

e Learning Curves (Loss)
The Training and Validation Loss chart, illustrated in
Figure 4 is a highly efficient convergence profile.

v Initial Convergence: The training loss starts at
approximately $L \approx 300$ and undergoes a sharp
exponential decay, falling below $L = 10$ within the first
5 epochs.

v/ Stability: Both training and validation loss reach a near-
zero asymptote after 10 epochs, suggesting that the model
successfully minimized the error rate without exhibiting
erratic oscillations.

v' Generalization: The minimal gap between training and
validation loss indicates that the model is well-regularized
and not suffering from significant overfitting.

WWW.ijisrt.com 2451

https://doi.org/10.38124/ijisrt/26jan1037
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

e Accuracy Performance

The Training and Validation Accuracy chart provides
the most direct insight into the system's recognition
reliability.

v" Peak Training Accuracy: The model achieves 100%
training accuracy by approximately epoch 15, indicating

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1037

it has perfectly learned the facial features of the enrolled
individuals.

v Validation Performance: The validation accuracy
stabilizes at approximately 92% to 94%. This 6—8% delta
from training accuracy represents the ‘real-world"
performance expected when the system encounters new
frames or varied lighting conditions during live capture.

Training and Validation Accuracy

100 4 —— Train Acc
Wal AcCc

Accuracy (%)
3
'--.____‘___

20 1 ,_."I

B S . S

o 10 20

30 40 S0

Epoch

Fig 4 Training and Validation Accuracy
» System Latency and Throughput
Efficiency is critical for real-time deployment. The time taken from frame capture to database logging was measured across
different hardware configurations.

Table 6 Average Processing Latency (Per Frame)

Component CPU Inference (ms) GPU Inference (ms)
Image Decoding (OpenCV) 12 ms 10 ms
Detection (RetinaFace) 180 ms 45 ms
Embedding (ArcFace) 210 ms 35 ms
Matching & Logging 5ms 5ms
Total Response Time 407 ms 95 ms

On a standard Intel i5 CPU, the system achieves a
throughput of approximately 2.5 frames per second (FPS),
which is sufficient for a "stop-and-look™ attendance station.
With GPU acceleration, this increases to over 10 FPS,
enabling seamless walk-through recognition.

» Testing and Validation
Comprehensive testing was performed to ensure the
robustness of the integrated system.

o Functional and Robustness Testing

v Threshold Validation: Manual review of system logs
confirmed that genuine matches consistently yielded

NISRT26JAN1037

distance values bhetween 0.2 and 0.3, while different
identities resulted in distances exceeding 0.5.

v' Edge Case Handling: The system was tested with non-
face images and low-quality data. In cases where
detection confidence fell below 0.90, the
/api/analyze_frame endpoint correctly terminated the
pipeline with a found: false response.

v Continuous Operation: The system remained stable
during hour-long test cycles without memory leaks,
utilizing Python's garbage collection to manage image
matrices effectively.

WWW.ijisrt.com 2452

https://doi.org/10.38124/ijisrt/26jan1037
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

» Deployment and Operations
The system architecture facilitates transition from
development to production through a modular stack.

e Production Stack: In a live environment, the Flask
application is managed viaa WSGI server (Gunicorn) and
an Nginx reverse proxy to handle HTTPS termination and
concurrent requests.

o Environment Setup: The system requires Python 3.x with
TensorFlow/PyTorch backends. GPU acceleration via
CUDA is recommended for higher throughput (sub-
100ms response times).

e Database Management: SQLite was chosen for its
portability and serverless nature, allowing the
attendance.db file to be easily archived or exported for
administrative reporting.

» Discussion of Results

The experimental results validate the choice of
RetinaFace and ArcFace for an attendance context. The high
Precision (99.2%) is crucial for educational environments
where false attendance logging is unacceptable.

e The Validation Gap: The 7% difference between training
and validation accuracy is likely due to environmental
variables such as uneven lighting or minor head poses.

e Operational Thresholds: A cosine distance threshold of
0.30 proved optimal, maintaining a clear margin between
genuine identities (D < 0.30) and imposters (D > 0.50).

e Deduplication Benefit: The database-level deduplication
logic successfully filtered redundant entries, ensuring
only one record per user per day was persisted.

V. CONCLUSION

The research and development of this real-time
attendance management system demonstrate the successful
integration of deep learning biometrics into a lightweight,
scalable web architecture. By synthesizing the findings from
the implementation and testing phases, several key
conclusions can be drawn regarding the efficacy of modern
face recognition in institutional settings.

The empirical evaluation of the system confirms that the
combination of RetinaFace for localization and ArcFace for
feature extraction provides a high-fidelity recognition
pipeline. The system achieved a total accuracy of 98.6% and
a precision of 99.2%, effectively eliminating the "proxy
attendance" issues inherent in manual systems.

From a computational standpoint, the 407 ms end-to-
end latency on standard CPU hardware proves that high-
performance biometrics do not require specialized, high-cost
infrastructure to be viable. The 93.2% validation accuracy
further underscores the model's ability to generalize across
varied real-world conditions, such as minor changes in
lighting and facial orientation.

The practical utility of the system is enhanced by its
secondary architectural features:

NISRT26JAN1037

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1037

o Data Integrity: The server-side deduplication logic
ensures a clean, administrative-ready dataset within the
SQLite database, recording each individual only once per
day.

e User Experience: The "best-face" short-circuit policy and
the asynchronous AJAX communication between the
browser and the Flask API provide a seamless, near-
instantaneous user interface.

e Security: By utilizing a strict 0.30 cosine distance
threshold, the system maintains a high barrier against false
identifications, ensuring that only verified personnel are
logged.

This project presents a modular framework for
automated identity verification that strikes a balance between
accuracy and operational speed. While limitations such as
liveness detection and extreme pose sensitivity remain, the
core architecture provides a robust foundation for future
enhancements. By moving from manual logging to a deep
learning-driven approach, institutions can significantly
reduce administrative overhead, minimize human error, and
improve the overall reliability of their attendance records.

VI. LIMITATIONS AND FUTURE WORK

> Despite High Accuracy, the Current Methodology Faces
Specific Constraints:

e Pose and Occlusion: Accuracy decreases with extreme
head tilts or heavy masks. Future iterations could integrate
periocular (eye-region) recognition.

e Liveness Detection: The current system is susceptible to
"presentation attacks" (e.g., holding up a photo).
Integrating blink detection or infrared depth sensing is a
priority for high-security environments.

e Temporal Tracking: Current recognition is single-frame.
Implementing a multi-frame voting mechanism
(averaging embeddings over 3-5 frames) would improve
stability in noisy environments.

REFERENCES

[1]. Ahmad, S., Khan, M. Z., & Alam, M. S. (2022).
Limitations of RFID-based attendance systems in
higher education: A security perspective. Journal of
Educational Technology Systems, 51(2), 145-160.

[2]. Ahmed, S., Rahman, M. M., Hossain, M. A., & Hasan,
M. K. (2022). Real-time student attendance system
using computer vision and deep learning techniques.
Journal of King Saud University — Computer and
Information Sciences, 34(8), 5678-5690.

[3]. Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019).
ArcFace: Additive angular margin loss for deep face
recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 4690-4699).

[4]. Deng, J., Guo, J.,, Zhou, Y., Yu, J., Kotsia, I., &
Zafeiriou, S. (2020). RetinaFace: Single-shot multi-
level face localisation in the wild. In Proceedings of

WWW.ijisrt.com 2453

https://doi.org/10.38124/ijisrt/26jan1037
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

[5].

[6].

[71.

[8].

[9].

[10].

[11].

[12].

[13].

NISRT26JAN1037

the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (pp. 5203-5212).

Dev, K., & Patnaik, L. M. (2020). Automated
attendance monitoring system using RFID and
biometrics. International Journal of Advanced
Computer Science and Applications, 11(3), 220-227.
Jain, V., Gupta, A., & Khanna, P. (2021). Automated
attendance systems: A review of deep learning
techniques. Expert Systems with Applications, 183,
115-132.

Nurkhamid, M., Prasetyo, E., & Nugroho, A. (2021).
Intelligent attendance system using facial recognition.
International Journal of Interactive Mobile
Technologies, 15(9), 120-132.

Pei, Z., Huang, Y., & Liu, J. (2019). Deep learning-
based face recognition for automatic attendance
system. IEEE Access, 7, 123456-123465.

Sanli, S., & llgen, O. (2018). Camera-based automatic
attendance system using face recognition. Procedia
Computer Science, 132, 401-408.

Schroff, F., Kalenichenko, D., & Philbin, J. (2015).
FaceNet: A unified embedding for face recognition
and clustering. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR)
(pp. 815-823).

Serengil, S. I., & Ozpinar, A. (2020). LightFace: A
hybrid deep face recognition framework. In 2020
Innovations in Intelligent Systems and Applications
Conference (ASYU) (pp. 1-5). IEEE.

Sethy, P. K., Barpanda, N. K., & Biswas, S. (2022).
Automatic attendance system using face recognition
and deep learning. Multimedia Tools and
Applications, 81, 31245-31262.

Srivastava, S. (2023). Post-pandemic biometric
trends: The shift from contact to non-contact systems.
International Journal of Biometrics, 15(1), 22-40.

WWW.ijisrt.com

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/26jan1037

2454

https://doi.org/10.38124/ijisrt/26jan1037
http://www.ijisrt.com/

	II. RELATED WORKS
	 Data Acquisition and Enrollment Methodology
	Enrollment is an offline administrative procedure where authorized individuals are registered into the system. For each participant, a 512-dimensional numerical vector (embedding) is extracted using the ArcFace model. These embeddings encapsulate uniq...
	 Live Input Data Stream
	 Biometric Enrollment Process
	 Algorithm: Offline Biometric Enrollment
	 Enrollment Data Structure

