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Abstract: Global food production is increasingly challenged by rapid population growth, climate change, declining soil
fertility, and limited arable land, particularly in developing regions. These challenges have intensified interest in soilless
farming systems such as hydroponics, which offer improved resource efficiency and controlled growing environments. When
integrated with sensors, Internet of Things (IoT) technologies, and automation, hydroponic systems evolve into smart
hydroponic systems in which machine learning (ML) enables data-driven monitoring, prediction, and autonomous control.
However, existing studies are often fragmented, focusing on isolated algorithms or narrow applications, with limited
attention to scalability, robustness, and hybrid learning strategies. The aim of this paper is to systematically review and
critically examine machine learning techniques applied in smart hydroponic farming systems. A PRISMA 2020-guided
systematic review methodology was adopted, covering peer-reviewed studies published between 2010 and 2025 and retrieved
from major scientific databases. Eligible studies were screened, quality assessed, and analyzed using structured data
extraction methods. The findings show that classical supervised models such as Decision Trees, Random Forests, and
Support Vector Machines perform effectively in sensor-based monitoring and control tasks, achieving accuracies of up to
98%. Deep learning models, particularly Convolutional and Deep Neural Networks, consistently outperform classical
approaches in image-based applications, with reported accuracies reaching 99.7%. Hybrid ML frameworks that integrate
multiple models with loT-enabled automation demonstrate enhanced adaptability and operational efficiency. This paper
concludes that while machine learning substantially improves the intelligence and performance of smart hydroponic systems,
the adoption of robust hybrid frameworks, comprehensive environmental monitoring, and standardized evaluation metrics
is essential for scalable, sustainable, and real-world deployment.
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I INTRODUCTION Machine learning approaches are commonly categorized
into supervised, unsupervised, and semi-supervised learning

Machine Learning (ML) is a core subfield of artificial
intelligence concerned with the development of algorithms that
enable computer systems to learn patterns from data and
improve performance on specific tasks without explicit rule-
based programming (Mitchell, 1997; Buczak & Guven, 2016).
ML techniques leverage statistical inference, optimization, and
computational learning theory to model complex, nonlinear
relationships, making them particularly suitable for data-
intensive and dynamic domains such as agriculture and
controlled environment farming (Jordan & Mitchell, 2015).
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paradigms. Supervised learning relies on labeled datasets to
train predictive models for classification or regression tasks and
has been widely adopted in agricultural applications due to its
high predictive accuracy when sufficient labeled data are
available (Shahreza et al., 2011; Brownlee, 2016). Typical
supervised models applied in smart agriculture include
Artificial Neural Networks (ANN), Support Vector Machines
(SVM), Decision Trees (DT), Random Forests (RF), and k-
Nearest Neighbors (k-NN) (Li & Dong, 2014; Khodadadi et al.,
2016). Unsupervised learning operates on unlabeled datasets
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and focuses on discovering inherent data structures, such as
clusters or anomalies, using techniques including k-means
clustering, hierarchical clustering, and principal component
analysis (Parmar & Patel, 2017). Semi-supervised learning
integrates both labeled and unlabeled data, offering a
compromise between predictive accuracy and data acquisition
cost, which is particularly relevant in agricultural systems
where labeled datasets are often scarce or incomplete (Omar et
al., 2013).

The adoption of ML in smart agriculture has accelerated
in recent years due to advances in sensor technologies, Internet
of Things (loT) infrastructures, cloud computing, and data
analytics platforms (Wolfert et al., 2017). ML models have
been successfully applied to crop yield prediction, irrigation
scheduling, nutrient management, pest and disease detection,
climate impact assessment, and decision support systems
(Kamilaris & Prenafeta-Bold, 2018). In controlled
environment agriculture, including greenhouses and soilless
systems, ML techniques such as ANN, SVVM, Random Forests,
and deep learning architectures, particularly Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) have been used for image-based plant disease
detection, plant growth modeling, and time-series prediction of
environmental variables (Ferentinos, 2018; Alipio et al., 2020).

Despite these technological advancements, global food
systems remain under severe pressure. Food security continues
to be a major global challenge, particularly in developing
regions, due to rapid population growth, climate change,
environmental degradation, urbanization, and socio-economic
instability (FAO, 2010; Godfray et al., 2010). Climate change
has intensified agricultural vulnerability through rising
temperatures, altered precipitation patterns, extreme weather
events, salinity intrusion, and increased pest and disease
prevalence, all of which negatively affect crop productivity
(FAO, 2020; IPCC, 2022). In sub-Saharan Africa, including
Nigeria, food insecurity is further exacerbated by land scarcity,
insecurity, population displacement, poverty, and disruptions
to agricultural supply chains (Mudo et al., 2020).
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Conventional soil-based agriculture is increasingly
constrained by declining soil fertility, limited arable land,
inefficient water use, and environmental pollution, particularly
in urban and peri-urban areas (Panwar et al., 2011). These
constraints have intensified the need for alternative food
production systems that are resource-efficient, climate-
resilient, and adaptable to space-limited environments. As a
result, soilless farming techniques have gained increasing
attention as viable solutions for sustainable food production.

Hydroponic farming is a soilless cultivation technique in
which plants are grown in nutrient-enriched aqueous solutions,
allowing precise control over nutrient delivery and root-zone
conditions (Resh, 2013). Compared to conventional
agriculture, hydroponic systems offer higher water-use
efficiency, reduced fertilizer losses, elimination of soil-borne
diseases, and increased crop yields per unit area (Savvas &
Gruda, 2018). These advantages make hydroponics particularly
suitable for urban agriculture, arid regions, and areas with
degraded or contaminated soils.

The integration of hydroponic farming with digital and
automation technologies has led to the emergence of Smart
Hydroponic Systems (SHS). A hydroponic system is
considered “smart” when it incorporates sensors, actuators,
communication networks, and intelligent data-processing
algorithms to enable real-time monitoring, analysis, and
autonomous control of the growing environment (Singh et al.,
2016; Baras, 2018). Smart hydroponic systems continuously
monitor key parameters such as temperature, relative humidity,
pH, electrical conductivity, nutrient concentration, light
intensity, and dissolved oxygen, and dynamically adjust system
operations to optimize plant growth (Chinnasamy et al., 2021).
loT technologies facilitate real-time data acquisition and
remote system management, while ML algorithms transform
raw sensor data into actionable insights for predictive
modeling, anomaly detection, and adaptive control (Borgia,
2014; Wolfert et al., 2017).
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Fig 1: Overview of Typical Smart Hydroponic System (Alipio et al, 20200

Machine learning therefore constitutes a critical
intelligence layer in smart hydroponic systems, enabling
predictive analytics, optimization, and autonomous decision-
making. ML techniques have been applied to nutrient
optimization, yield forecasting, disease and stress detection,
sensor fault diagnosis, and adaptive environmental control in
hydroponic environments (Khodadadi et al., 2016; Alipio etal.,
2020). However, existing studies often focus on individual
algorithms or narrowly defined tasks, with limited attention to
model generalizability, robustness to noisy data, scalability,
real-time deployment constraints, and integration of multiple
learning paradigms.  Supervised, unsupervised, semi-
supervised, and hybrid ML approaches exhibit varying
strengths and limitations depending on data availability, system
complexity, and operational objectives (Brownlee, 2016; Omar
etal., 2013).

This paper presents a systematic review of machine
learning techniques applied in smart hydroponic farming
systems. The review critically examines existing ML models,
their application domains, performance metrics, and inherent
limitations. By synthesizing current research trends and
identifying methodological gaps, this study aims to provide
insights toward the development of robust hybrid machine
learning frameworks capable of enhancing the efficiency,
adaptability, and sustainability of smart hydroponic systems in
addressing global food security challenges.
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The rest of this paper is organized as follows: Section Il
describes the methodology employed for this systematic
review, including the search strategy, selection criteria, data
extraction, and quality assessment of the included studies.
Section I presents the results and discussion, synthesizing the
application of machine learning models in smart hydroponic
systems, analyzing performance trends, and critically
evaluating the advantages and limitations of supervised,
unsupervised, semi-supervised, and hybrid approaches.
Finally, Section IV concludes the study by summarizing the
key findings, highlighting practical and research implications,
and providing recommendations for the development of robust
hybrid machine learning frameworks in smart hydroponic
farming.

1. METHODOLOGY

This study employed a systematic review approach to
critically analyze the application of machine learning (ML)
techniques in smart hydroponic systems, with a particular
focus on hybrid machine learning frameworks. The review
followed the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines to ensure
methodological rigor, transparency, and reproducibility (Page
et al., 2021). The primary objective was to identify,
synthesize, and evaluate empirical studies that applied ML
models for monitoring, prediction, optimization, and control
in smart hydroponic environments.
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A. Search Strategy

A comprehensive literature search was conducted across
multiple electronic databases, including Scopus, Web of
Science, IEEE Xplore, Google Scholar, ScienceDirect, and
Springer, covering publications from 2010 to 2025. Keywords
were carefully selected to capture relevant studies and
combined using Boolean operators to optimize retrieval. Terms
such as “machine learning,” “artificial intelligence,”
“predictive modeling,” “smart hydroponics,” “controlled
environment agriculture,” “soilless farming,” and “hybrid”
were used in various combinations. Additionally, reference
lists of selected articles were manually screened to identify
further studies not captured in the database search. Only peer-
reviewed studies published in English were considered to
maintain methodological rigor and accessibility.

B. Eligibility Criteria

Studies were included if they reported the application of
machine learning models—whether supervised, unsupervised,
semi-supervised, or hybrid—in hydroponic or controlled-
environment agriculture systems. Inclusion required sufficient
methodological detail regarding the dataset, ML models
employed, and evaluation metrics, as well as reported outcomes
such as predictive accuracy, yield optimization, nutrient
management, disease detection, or environmental control.
Excluded studies comprised review articles, editorials,
commentaries, and studies focusing exclusively on soil-based
agriculture without hydroponic or controlled-environment
applications.  Additionally, studies lacking adequate
methodological detail or performance results were excluded.

C. Study Selection Process

The study selection followed the PRISMA 2020 flow
diagram framework, incorporating searches across databases,
registers, and other sources (Page et al., 2021). Initially,
duplicates were removed from the retrieved records. The
remaining articles were screened by title and abstract to identify
potentially relevant studies. Full-text screening was
subsequently conducted to assess eligibility based on the
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criteria outlined above. Discrepancies during the selection
process were resolved through discussion and consensus
among the reviewers (U.J.O, O.U.A & E.F). The selection
process is summarized in a PRISMA 2020 flow diagram (Fig.
2), showing the number of records identified, screened,
excluded, and included in the final analysis.

D. Data Extraction

For each included study, data were extracted using a
structured narrative approach, capturing bibliographic
information, type of hydroponic system, crop species, machine
learning  paradigms applied, dataset characteristics,
performance metrics, application domains, and reported
limitations. The extraction process aimed to ensure consistency
and comparability across studies, enabling a detailed synthesis
of ML techniques, trends, and methodological gaps.

E. Quality Assessment

The methodological quality of the included studies was
evaluated using a modified Critical Appraisal Skills
Programme (CASP) checklist suitable for quantitative and
computational studies. Quality assessment focused on the
clarity of objectives, appropriateness of ML model selection,
dataset description, evaluation metrics, reproducibility of
results, and consideration of limitations. Each study was
categorized as high, moderate, or low quality, providing a
framework for interpreting findings and assessing the
reliability of conclusions drawn from the review.

1. RESULTS AND DISCUSSIONS

A. Results

Table 1 summarizes the application of machine learning
models in smart hydroponic systems as reported in the
reviewed studies.

Fig. 3 illustrates a comparison of the reported accuracy
of different machine learning models applied in smart
hydroponic systems.
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Fig. 2: PRISMA 2020 flow diagram for the study which included searches of databases, registers and other sources.

Fig. 2 presents a total of 12 studies published between
2017 and 2024 were reviewed to evaluate the application of
machine learning (ML) in smart hydroponic systems. The
studies span various ML paradigms, including classical

(Source: Page et al., 2021)

Table 1: Summary of Machine Learning Models Applied in Smart Hydroponic Systems

supervised learning algorithms, deep learning architectures,
and hybrid frameworks, applied to tasks such as plant growth
prediction, disease detection, nutrient optimization, and
automated environmental control.

Study Hydroponic ML Dataset Applicatio | Performan Key Findings Limitation
System Model(s) n ce Metrics S
Wongpatikase | Hydroponic Decision Image data Freshness Accuracy: DT Limited to
ree et al., vegetables Tree detection 98.12% outperformed image-
2018 (J48), (DT best) others in based
Naive detecting fresh freshness,
Bayes, vs. withered no yield
MLP, vegetables optimizatio
Deep NN n
Alipioetal., Smart Bayesian | Sensor values | Automated Yield: BN minimized CO: & O
2017 hydroponics | Network | (pH, EC, temp, | environmen | +66.67% vs sensor not
with sensors RH, light) tal control manual fluctuations, controlled,
& actuators improved yield limited
security &
traceability
Asy’ari et al., Hydroponic ARIMA Time-series Plant RMSE: ARIMA Short data
2023 farm (2,2,1) data, 8 days growth 0.97, MAE: provided collection
forecasting 0.94, accurate growth | period, no
MAPE: forecasts external
0.04
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factors
considered
Raju etal., | AI-SHES with Deep Sensor & image Nutrient Accuracy: High C02/02 not
2022 loT CNN data prediction, | 99.29%, F- | performance in controlled,
disease measure: | disease detection | high energy
detection 99.23%, & nutrient consumptio
Precision: prediction n, security
99.38%, concerns
Recall:
98.58%
Rajkumar & Automated Decision Sensor data Environmen | Maintained Autonomous Accuracy
Chachadi, hydroponic Tree tal control pH, EC, remote not
2021 farm Temp, monitoring reported,
Humidity effective intrusion &
disease
detection
not
considered
Bulut & Smart SVM, K- | Sensor database Plant DNN: DNN Yield,
Hacibeyoglu, hydroponics NN, growth 99.7% outperformed intrusion,
2023 using Naive monitoring other methods, | and disease
water/wastew Bayes, >80% accuracy detection
ater data Logistic overall not
Regressi addressed
on, DT,
DNN,
CNN,
ANN,
RNN
Rajkunwar et Hydroponic CNN Image dataset Disease & Accuracy: Real-time No real-
al., 2024 plant disease (16,504 train; nutrient 96% supervision & time
& nutrient 2,064 val, deficiency disease, intervention environmen
detection 2,070 test) detection 87% tal control
nutrient
Tambakhe & Hydroponic SVR, Sensor & Crop RF: 95% Real-time Limited to
Gulhane, spinach Linear, growth data growth accuracy, continuous spinach,
2022 Lasso, monitoring DT: monitoring CO./0:z not
DT, R2=0.86, effective monitored
Ridge, SVR:
RF MAE=12.6
5,
RMSE=21.
31, Lasso:
MSE=4.51
Idoje et al., Smart DT, RF, Sensor data Plant Not Provided Yield
2023 hydroponic SVM, growth explicitly insights on optimizatio
farm ANN prediction reported algorithm n&
strengths/limitati | environmen
ons tal control
not
addressed
Mehra et al., loT DNN Sensor data via | Real-time Accuracy: DNN improved | Compared
2018 hydroponic Arduino/Raspb growth 88% growth control only with
tomato farm erry Pi control efficiency BN, limited
crop types
Devi et al., loT ML Real-time Optimal Not Enhanced yield, Specific
2024 hydroponics | algorithm sensor data condition explicitly sustainable performanc
system s (not prediction reported resource use e metrics
specified & not
) automated reported
nutrient/wat
er control
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Table 1 highlights the type of hydroponic system,
machine  learning  algorithms  employed,  dataset
characteristics, application domains, and reported
performance metrics such as accuracy, precision, recall, and
F-measure. Classical supervised models including Decision
Trees, Random Forests, and Support Vector Machines were
widely used for environmental control, growth monitoring,
and plant growth prediction. Deep learning models,
particularly Convolutional Neural Networks (CNNs) and
Deep Neural Networks (DNNs), were predominantly applied

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1052

for image-based tasks such as plant disease detection, nutrient
deficiency recognition, and crop quality assessment. Hybrid
approaches integrating machine learning with loT-based
monitoring and automation demonstrated enhanced
operational efficiency and predictive performance compared
to standalone models. The table also identifies limitations
reported by the studies, including unmonitored critical
parameters (e.g., COz and O2), energy consumption, security
and traceability issues, and limited generalizability across crop

types.

120 4

Fig. 3: Accuracy Comparison of Machine Learning Models in Reviewed Smart Hydroponic Systems.

Figure 3 showed that classical algorithms such as
Decision Trees, Random Forests, and SVM achieved accuracy
values ranging between 80% and 98%, while deep learning
models, including CNNs and DNNSs, generally outperformed
classical models, reaching accuracies of 96% to 99.7%. The
figure emphasizes that hybrid and deep learning-based
approaches tend to offer superior predictive performance,
particularly in tasks involving complex or image-based
datasets. It also highlights that several studies did not report
accuracy metrics for their models, reflecting gaps in reporting
standards and comparability

B. Discussion of Findings

The reviewed works provide a comprehensive overview
of the application of machine learning (ML) in smart
hydroponic systems (Fig. 2). These studies span classical
supervised learning models, deep learning architectures, and
hybrid frameworks, applied to tasks such as plant growth
prediction, disease detection, nutrient optimization, and
automated environmental control. The review highlights the
increasing integration of ML with Internet of Things (loT)-
enabled  hydroponic  systems,  demonstrating  the

IJISRT26JAN1052

transformative potential of data-driven approaches in
precision agriculture (Kamilaris & Prenafeta-Boldl, 2018;
Wolfert et al., 2017).

> Performance of Classical Machine Learning Models

Classical supervised learning algorithms, including
Decision Trees (DT), Random Forests (RF), and Support
Vector Machines (SVM), were widely applied in structured
sensor-based hydroponic systems. Wongpatikaseree et al.
(2018) reported that a Decision Tree classifier achieved the
highest accuracy (98.12%) in detecting fresh versus withered
vegetables, outperforming Naive Bayes, MLP, and shallow
deep neural networks. Tambakhe and Gulhane (2022)
similarly demonstrated that Random Forest achieved 95%
accuracy for crop growth monitoring, with complementary
metrics provided by SVR, Lasso, and Decision Tree
Regression. These findings reinforce the robustness and
reliability of classical ML algorithms for structured data tasks
where environmental variables are clearly defined (Shahreza
etal.,, 2011; Li & Dong, 2014).
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» Performance of Deep Learning Models

Deep learning models, particularly Convolutional Neural
Networks (CNNs) and Deep Neural Networks (DNNs),
consistently outperformed classical approaches in high-
dimensional and image-based applications. Raju et al. (2022)
achieved 99.29% accuracy using a deep CNN for disease
detection and nutrient prediction, with precision, recall, and F-
measure all exceeding 98%. Bulut and Hacibeyoglu (2023)
reported a DNN accuracy of 99.7% for plant growth
monitoring, outperforming classical algorithms. Rajkunwar et
al. (2024) used CNNs to detect plant diseases and nutrient
deficiencies with accuracies of 96% and 87%, respectively.
These findings demonstrate the strength of deep learning in
capturing nonlinear relationships, extracting complex features,
and enabling real-time monitoring in image-rich hydroponic
systems (Ferentinos, 2018; Alipio et al., 2020).

» Hybrid Machine Learning Approaches

Hybrid approaches that integrate multiple ML models or
combine ML with loT-based monitoring and automation
exhibited superior operational efficiency and predictive
performance. Alipio et al. (2017) employed a Bayesian
Network with automated actuators and sensors to optimize
environmental parameters, achieving a 66.67% higher crop
yield compared to manual control. Devi et al. (2024)
demonstrated that hybrid ML with loT-enabled nutrient and
water management improved yield, resource efficiency, and
sustainability. These findings are consistent with recent
evidence that hybrid ML frameworks often outperform single-
model approaches, providing enhanced robustness,
generalizability, and adaptive control in complex, dynamic
agricultural environments (Ukoba et al., 2025; Kamilaris &
Prenafeta-Bold(, 2018).

» Comparison of Model Accuracy

Figure 3 provides a comparison of reported accuracies
across ML models in smart hydroponic systems. Classical
algorithms such as DT, RF, and SVM achieved 80-98%
accuracy, whereas deep learning and hybrid models
consistently reached 96-99.7%. The figure clearly shows that
hybrid and deep learning-based approaches offer superior
predictive performance, particularly for image-based and
complex sensor datasets. However, several studies did not
report accuracy metrics, highlighting inconsistencies in
performance reporting and the need for standardized
benchmarking across studies (Brownlee, 2016; Omar et al.,
2013).

» ldentified Limitations and Research Gaps

Despite the high accuracy of ML models, several
limitations were identified. Critical environmental parameters
such as CO: and oxygen were frequently unmonitored,
limiting optimal growth and yield (Alipio et al., 2017; Raju et
al., 2022). Security, traceability, and energy efficiency were
rarely considered in loT-integrated systems, potentially
affecting long-term sustainability. Moreover, most studies
focused on short-term experiments or single-crop setups,
restricting generalizability across hydroponic crops and
environments. The inconsistent reporting of standard
performance metrics, particularly in hybrid and loT-enabled
systems, further hampers cross-study comparisons.
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» Implications for Smart Hydroponic Systems

The findings demonstrate that ML significantly enhances
monitoring, prediction, and control capabilities in smart
hydroponic systems. Classical algorithms are effective for
structured, quantitative tasks; deep learning models excel in
image-based and high-dimensional datasets; and hybrid ML
frameworks integrating multiple models with 10T enable the
highest operational efficiency. Addressing gaps such as multi-
parameter monitoring, energy-efficient operations, security,
and generalizability will be critical for advancing scalable,
real-world smart hydroponic systems capable of contributing
to sustainable food production and food security (FAO, 2020;
Wolfert et al., 2017; Ukaoba et al., 2025).

V. CONCLUSION AND RECOMMENDATION

This systematic review highlights the transformative
potential of machine learning (ML) in smart hydroponic
systems for precision agriculture. The reviewed studies,
spanning classical supervised algorithms, deep learning
architectures, and hybrid frameworks integrated with 1oT-
enabled monitoring, demonstrate that ML can effectively
support plant growth prediction, disease and nutrient
deficiency detection, environmental control, and vyield
optimization. Classical algorithms such as Decision Trees,
Random Forests, and Support Vector Machines performed
well in structured sensor-based tasks, achieving accuracies up
to 98%. Deep learning models, particularly Convolutional
Neural Networks (CNNs) and Deep Neural Networks (DNNs),
consistently outperformed classical models in image-based
applications, with accuracies ranging from 96% to 99.7%.
Hybrid ML approaches integrating multiple algorithms with
loT-enabled automation provided the highest operational
efficiency, predictive performance, and adaptability to
dynamic hydroponic environments (Kamilaris & Prenafeta-
Boldu, 2018; Ukaoba et al., 2025).

Despite these achievements, several limitations and gaps
were identified. Critical environmental parameters such as
CO: and oxygen are often unmonitored, potentially
compromising yield optimization. Security, traceability, and
energy efficiency remain largely unaddressed in loT-enabled
systems, raising concerns about long-term sustainability and
scalability. Furthermore, many studies focused on single crops
or short-term datasets, limiting the generalizability of ML
models across different hydroponic setups. Inconsistent
reporting of standard performance metrics, particularly for
hybrid frameworks, complicates benchmarking and hinders
reproducibility. Addressing these gaps is essential for
advancing ML-enabled smart hydroponic systems from
controlled experimental setups to practical, large-scale
applications.

Based on the findings of this review, several
recommendations are proposed:
> Integration of Critical Environmental Monitoring: Future
systems should incorporate real-time monitoring and
control of essential parameters such as CO, oxygen, and
nutrient concentrations to maximize plant growth and
yield.
> Security and Energy Efficiency: loT-enabled hydroponic
systems must prioritize cybersecurity, data traceability,
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and energy-efficient operations to ensure sustainable and
resilient smart farming solutions.

» Hybrid and Adaptive ML Frameworks: Researchers
should develop and validate hybrid ML models that
combine the strengths of classical and deep learning
algorithms. Such models can improve prediction accuracy,
robustness, and generalizability across diverse hydroponic
crops and environmental conditions.

» Standardized Performance Reporting: Adoption of
standardized performance metrics, including accuracy,
precision, recall, F-measure, and energy/resource
efficiency, will facilitate comparability and reproducibility
of ML applications in hydroponics.

» Scalability and Multi-Crop Studies: There is a need for
long-term, multi-crop studies that evaluate ML models
under varying environmental conditions to enhance the
scalability and practical applicability of smart hydroponic
systems.
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