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Abstract: Global food production is increasingly challenged by rapid population growth, climate change, declining soil 

fertility, and limited arable land, particularly in developing regions. These challenges have intensified interest in soilless 

farming systems such as hydroponics, which offer improved resource efficiency and controlled growing environments. When 

integrated with sensors, Internet of Things (IoT) technologies, and automation, hydroponic systems evolve into smart 

hydroponic systems in which machine learning (ML) enables data-driven monitoring, prediction, and autonomous control. 

However, existing studies are often fragmented, focusing on isolated algorithms or narrow applications, with limited 

attention to scalability, robustness, and hybrid learning strategies. The aim of this paper is to systematically review and 

critically examine machine learning techniques applied in smart hydroponic farming systems. A PRISMA 2020-guided 

systematic review methodology was adopted, covering peer-reviewed studies published between 2010 and 2025 and retrieved 

from major scientific databases. Eligible studies were screened, quality assessed, and analyzed using structured data 

extraction methods. The findings show that classical supervised models such as Decision Trees, Random Forests, and 

Support Vector Machines perform effectively in sensor-based monitoring and control tasks, achieving accuracies of up to 

98%. Deep learning models, particularly Convolutional and Deep Neural Networks, consistently outperform classical 

approaches in image-based applications, with reported accuracies reaching 99.7%. Hybrid ML frameworks that integrate 

multiple models with IoT-enabled automation demonstrate enhanced adaptability and operational efficiency. This paper 
concludes that while machine learning substantially improves the intelligence and performance of smart hydroponic systems, 

the adoption of robust hybrid frameworks, comprehensive environmental monitoring, and standardized evaluation metrics 

is essential for scalable, sustainable, and real-world deployment. 
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I. INTRODUCTION  
 

Machine Learning (ML) is a core subfield of artificial 

intelligence concerned with the development of algorithms that 

enable computer systems to learn patterns from data and 

improve performance on specific tasks without explicit rule-

based programming (Mitchell, 1997; Buczak & Guven, 2016). 

ML techniques leverage statistical inference, optimization, and 

computational learning theory to model complex, nonlinear 

relationships, making them particularly suitable for data-

intensive and dynamic domains such as agriculture and 

controlled environment farming (Jordan & Mitchell, 2015). 

Machine learning approaches are commonly categorized 

into supervised, unsupervised, and semi-supervised learning 

paradigms. Supervised learning relies on labeled datasets to 

train predictive models for classification or regression tasks and 

has been widely adopted in agricultural applications due to its 

high predictive accuracy when sufficient labeled data are 

available (Shahreza et al., 2011; Brownlee, 2016). Typical 

supervised models applied in smart agriculture include 

Artificial Neural Networks (ANN), Support Vector Machines 

(SVM), Decision Trees (DT), Random Forests (RF), and k-

Nearest Neighbors (k-NN) (Li & Dong, 2014; Khodadadi et al., 

2016). Unsupervised learning operates on unlabeled datasets 
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and focuses on discovering inherent data structures, such as 

clusters or anomalies, using techniques including k-means 

clustering, hierarchical clustering, and principal component 

analysis (Parmar & Patel, 2017). Semi-supervised learning 

integrates both labeled and unlabeled data, offering a 
compromise between predictive accuracy and data acquisition 

cost, which is particularly relevant in agricultural systems 

where labeled datasets are often scarce or incomplete (Omar et 

al., 2013). 

 

The adoption of ML in smart agriculture has accelerated 

in recent years due to advances in sensor technologies, Internet 

of Things (IoT) infrastructures, cloud computing, and data 

analytics platforms (Wolfert et al., 2017). ML models have 

been successfully applied to crop yield prediction, irrigation 

scheduling, nutrient management, pest and disease detection, 

climate impact assessment, and decision support systems 
(Kamilaris & Prenafeta-Boldú, 2018). In controlled 

environment agriculture, including greenhouses and soilless 

systems, ML techniques such as ANN, SVM, Random Forests, 

and deep learning architectures, particularly Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs) have been used for image-based plant disease 

detection, plant growth modeling, and time-series prediction of 

environmental variables (Ferentinos, 2018; Alipio et al., 2020). 

 

Despite these technological advancements, global food 

systems remain under severe pressure. Food security continues 
to be a major global challenge, particularly in developing 

regions, due to rapid population growth, climate change, 

environmental degradation, urbanization, and socio-economic 

instability (FAO, 2010; Godfray et al., 2010). Climate change 

has intensified agricultural vulnerability through rising 

temperatures, altered precipitation patterns, extreme weather 

events, salinity intrusion, and increased pest and disease 

prevalence, all of which negatively affect crop productivity 

(FAO, 2020; IPCC, 2022). In sub-Saharan Africa, including 

Nigeria, food insecurity is further exacerbated by land scarcity, 

insecurity, population displacement, poverty, and disruptions 

to agricultural supply chains (Mudo et al., 2020). 

Conventional soil-based agriculture is increasingly 

constrained by declining soil fertility, limited arable land, 

inefficient water use, and environmental pollution, particularly 

in urban and peri-urban areas (Panwar et al., 2011). These 

constraints have intensified the need for alternative food 
production systems that are resource-efficient, climate-

resilient, and adaptable to space-limited environments. As a 

result, soilless farming techniques have gained increasing 

attention as viable solutions for sustainable food production. 

 

Hydroponic farming is a soilless cultivation technique in 

which plants are grown in nutrient-enriched aqueous solutions, 

allowing precise control over nutrient delivery and root-zone 

conditions (Resh, 2013). Compared to conventional 

agriculture, hydroponic systems offer higher water-use 

efficiency, reduced fertilizer losses, elimination of soil-borne 

diseases, and increased crop yields per unit area (Savvas & 
Gruda, 2018). These advantages make hydroponics particularly 

suitable for urban agriculture, arid regions, and areas with 

degraded or contaminated soils. 

 

The integration of hydroponic farming with digital and 

automation technologies has led to the emergence of Smart 

Hydroponic Systems (SHS). A hydroponic system is 

considered “smart” when it incorporates sensors, actuators, 

communication networks, and intelligent data-processing 

algorithms to enable real-time monitoring, analysis, and 

autonomous control of the growing environment (Singh et al., 
2016; Baras, 2018). Smart hydroponic systems continuously 

monitor key parameters such as temperature, relative humidity, 

pH, electrical conductivity, nutrient concentration, light 

intensity, and dissolved oxygen, and dynamically adjust system 

operations to optimize plant growth (Chinnasamy et al., 2021). 

IoT technologies facilitate real-time data acquisition and 

remote system management, while ML algorithms transform 

raw sensor data into actionable insights for predictive 

modeling, anomaly detection, and adaptive control (Borgia, 

2014; Wolfert et al., 2017). 
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Fig 1: Overview of Typical Smart Hydroponic System (Alipio et al, 20200 

 

Machine learning therefore constitutes a critical 

intelligence layer in smart hydroponic systems, enabling 

predictive analytics, optimization, and autonomous decision-

making. ML techniques have been applied to nutrient 

optimization, yield forecasting, disease and stress detection, 

sensor fault diagnosis, and adaptive environmental control in 
hydroponic environments (Khodadadi et al., 2016; Alipio et al., 

2020). However, existing studies often focus on individual 

algorithms or narrowly defined tasks, with limited attention to 

model generalizability, robustness to noisy data, scalability, 

real-time deployment constraints, and integration of multiple 

learning paradigms. Supervised, unsupervised, semi-

supervised, and hybrid ML approaches exhibit varying 

strengths and limitations depending on data availability, system 

complexity, and operational objectives (Brownlee, 2016; Omar 

et al., 2013). 

 

This paper presents a systematic review of machine 
learning techniques applied in smart hydroponic farming 

systems. The review critically examines existing ML models, 

their application domains, performance metrics, and inherent 

limitations. By synthesizing current research trends and 

identifying methodological gaps, this study aims to provide 

insights toward the development of robust hybrid machine 

learning frameworks capable of enhancing the efficiency, 

adaptability, and sustainability of smart hydroponic systems in 

addressing global food security challenges. 

 

 
 

The rest of this paper is organized as follows: Section II 

describes the methodology employed for this systematic 

review, including the search strategy, selection criteria, data 

extraction, and quality assessment of the included studies. 

Section III presents the results and discussion, synthesizing the 

application of machine learning models in smart hydroponic 
systems, analyzing performance trends, and critically 

evaluating the advantages and limitations of supervised, 

unsupervised, semi-supervised, and hybrid approaches. 

Finally, Section IV concludes the study by summarizing the 

key findings, highlighting practical and research implications, 

and providing recommendations for the development of robust 

hybrid machine learning frameworks in smart hydroponic 

farming. 

 

II. METHODOLOGY 

 

This study employed a systematic review approach to 
critically analyze the application of machine learning (ML) 

techniques in smart hydroponic systems, with a particular 

focus on hybrid machine learning frameworks. The review 

followed the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines to ensure 

methodological rigor, transparency, and reproducibility (Page 

et al., 2021). The primary objective was to identify, 

synthesize, and evaluate empirical studies that applied ML 

models for monitoring, prediction, optimization, and control 

in smart hydroponic environments. 
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A. Search Strategy 

A comprehensive literature search was conducted across 

multiple electronic databases, including Scopus, Web of 

Science, IEEE Xplore, Google Scholar, ScienceDirect, and 

Springer, covering publications from 2010 to 2025. Keywords 
were carefully selected to capture relevant studies and 

combined using Boolean operators to optimize retrieval. Terms 

such as “machine learning,” “artificial intelligence,” 

“predictive modeling,” “smart hydroponics,” “controlled 

environment agriculture,” “soilless farming,” and “hybrid” 

were used in various combinations. Additionally, reference 

lists of selected articles were manually screened to identify 

further studies not captured in the database search. Only peer-

reviewed studies published in English were considered to 

maintain methodological rigor and accessibility. 

 

B. Eligibility Criteria 
Studies were included if they reported the application of 

machine learning models—whether supervised, unsupervised, 

semi-supervised, or hybrid—in hydroponic or controlled-

environment agriculture systems. Inclusion required sufficient 

methodological detail regarding the dataset, ML models 

employed, and evaluation metrics, as well as reported outcomes 

such as predictive accuracy, yield optimization, nutrient 

management, disease detection, or environmental control. 

Excluded studies comprised review articles, editorials, 

commentaries, and studies focusing exclusively on soil-based 

agriculture without hydroponic or controlled-environment 
applications. Additionally, studies lacking adequate 

methodological detail or performance results were excluded. 

 

C. Study Selection Process 

The study selection followed the PRISMA 2020 flow 

diagram framework, incorporating searches across databases, 

registers, and other sources (Page et al., 2021). Initially, 

duplicates were removed from the retrieved records. The 

remaining articles were screened by title and abstract to identify 

potentially relevant studies. Full-text screening was 

subsequently conducted to assess eligibility based on the 

criteria outlined above. Discrepancies during the selection 

process were resolved through discussion and consensus 

among the reviewers (U.J.O, O.U.A & E.F). The selection 

process is summarized in a PRISMA 2020 flow diagram (Fig. 

2), showing the number of records identified, screened, 
excluded, and included in the final analysis. 

 

D. Data Extraction 

For each included study, data were extracted using a 

structured narrative approach, capturing bibliographic 

information, type of hydroponic system, crop species, machine 

learning paradigms applied, dataset characteristics, 

performance metrics, application domains, and reported 

limitations. The extraction process aimed to ensure consistency 

and comparability across studies, enabling a detailed synthesis 

of ML techniques, trends, and methodological gaps. 

 
E. Quality Assessment 

The methodological quality of the included studies was 

evaluated using a modified Critical Appraisal Skills 

Programme (CASP) checklist suitable for quantitative and 

computational studies. Quality assessment focused on the 

clarity of objectives, appropriateness of ML model selection, 

dataset description, evaluation metrics, reproducibility of 

results, and consideration of limitations. Each study was 

categorized as high, moderate, or low quality, providing a 

framework for interpreting findings and assessing the 

reliability of conclusions drawn from the review. 
 

III. RESULTS AND DISCUSSIONS 

 

A. Results 

Table 1 summarizes the application of machine learning 

models in smart hydroponic systems as reported in the 

reviewed studies.  

 

Fig. 3 illustrates a comparison of the reported accuracy 

of different machine learning models applied in smart 

hydroponic systems. 
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Fig. 2: PRISMA 2020 flow diagram for the study which included searches of databases, registers and other sources.   

(Source: Page et al., 2021) 

 

Fig. 2 presents a total of 12 studies published between 

2017 and 2024 were reviewed to evaluate the application of 
machine learning (ML) in smart hydroponic systems. The 

studies span various ML paradigms, including classical 

supervised learning algorithms, deep learning architectures, 

and hybrid frameworks, applied to tasks such as plant growth 
prediction, disease detection, nutrient optimization, and 

automated environmental control.  

 

Table 1: Summary of Machine Learning Models Applied in Smart Hydroponic Systems

Study Hydroponic 

System 

ML 

Model(s) 

Dataset Applicatio

n 

Performan

ce Metrics 

Key Findings Limitation

s 

Wongpatikase

ree et al., 

2018 

Hydroponic 

vegetables 

Decision 

Tree 

(J48), 

Naive 

Bayes, 

MLP, 

Deep NN 

Image data Freshness 

detection 

Accuracy: 

98.12% 

(DT best) 

DT 

outperformed 

others in 

detecting fresh 

vs. withered 

vegetables 

Limited to 

image-

based 

freshness, 

no yield 

optimizatio

n 

Alipio et al., 

2017 

Smart 

hydroponics 
with sensors 

& actuators 

Bayesian 

Network 

Sensor values 

(pH, EC, temp, 
RH, light) 

Automated 

environmen
tal control 

Yield: 

+66.67% vs 
manual 

BN minimized 

sensor 
fluctuations, 

improved yield 

CO₂ & O₂ 

not 
controlled, 

limited 

security & 

traceability 

Asy’ari et al., 

2023 

Hydroponic 

farm 

ARIMA 

(2,2,1) 

Time-series 

data, 8 days 

Plant 

growth 

forecasting 

RMSE: 

0.97, MAE: 

0.94, 

MAPE: 

0.04 

ARIMA 

provided 

accurate growth 

forecasts 

Short data 

collection 

period, no 

external 
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factors 

considered 

Raju et al., 

2022 

AI-SHES with 

IoT 

Deep 

CNN 

Sensor & image 

data 

Nutrient 

prediction, 

disease 

detection 

Accuracy: 

99.29%, F-

measure: 

99.23%, 

Precision: 
99.38%, 

Recall: 

98.58% 

High 

performance in 

disease detection 

& nutrient 

prediction 

CO₂/O₂ not 

controlled, 

high energy 

consumptio

n, security 
concerns 

Rajkumar & 

Chachadi, 

2021 

Automated 

hydroponic 

farm 

Decision 

Tree 

Sensor data Environmen

tal control 

Maintained 

pH, EC, 

Temp, 

Humidity 

Autonomous 

remote 

monitoring 

effective 

Accuracy 

not 

reported, 

intrusion & 

disease 

detection 

not 

considered 

Bulut & 

Hacıbeyoğlu, 

2023 

Smart 

hydroponics 

using 
water/wastew

ater data 

SVM, K-

NN, 

Naive 
Bayes, 

Logistic 

Regressi

on, DT, 

DNN, 

CNN, 

ANN, 

RNN 

Sensor database Plant 

growth 

monitoring 

DNN: 

99.7% 

DNN 

outperformed 

other methods, 
>80% accuracy 

overall 

Yield, 

intrusion, 

and disease 
detection 

not 

addressed 

Rajkunwar et 

al., 2024 

Hydroponic 

plant disease 

& nutrient 

detection 

CNN Image dataset 

(16,504 train; 

2,064 val; 

2,070 test) 

Disease & 

nutrient 

deficiency 

detection 

Accuracy: 

96% 

disease, 

87% 
nutrient 

Real-time 

supervision & 

intervention 

No real-

time 

environmen

tal control 

Tambakhe & 

Gulhane, 

2022 

Hydroponic 

spinach 

SVR, 

Linear, 

Lasso, 

DT, 

Ridge, 

RF 

Sensor & 

growth data 

Crop 

growth 

monitoring 

RF: 95% 

accuracy, 

DT: 

R²=0.86, 

SVR: 

MAE=12.6

5, 

RMSE=21.

31, Lasso: 

MSE=4.51 

Real-time 

continuous 

monitoring 

effective 

Limited to 

spinach, 

CO₂/O₂ not 

monitored 

Idoje et al., 

2023 

Smart 

hydroponic 
farm 

DT, RF, 

SVM, 
ANN 

Sensor data Plant 

growth 
prediction 

Not 

explicitly 
reported 

Provided 

insights on 
algorithm 

strengths/limitati

ons 

Yield 

optimizatio
n & 

environmen

tal control 

not 

addressed 

Mehra et al., 

2018 

IoT 

hydroponic 

tomato farm 

DNN Sensor data via 

Arduino/Raspb

erry Pi 

Real-time 

growth 

control 

Accuracy: 

88% 

DNN improved 

growth control 

efficiency 

Compared 

only with 

BN, limited 

crop types 

Devi et al., 

2024 

IoT 

hydroponics 

system 

ML 

algorithm

s (not 

specified

) 

Real-time 

sensor data 

Optimal 

condition 

prediction 

& 

automated 
nutrient/wat

er control 

Not 

explicitly 

reported 

Enhanced yield, 

sustainable 

resource use 

Specific 

performanc

e metrics 

not 

reported 
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Table 1 highlights the type of hydroponic system, 

machine learning algorithms employed, dataset 

characteristics, application domains, and reported 

performance metrics such as accuracy, precision, recall, and 

F-measure. Classical supervised models including Decision 
Trees, Random Forests, and Support Vector Machines were 

widely used for environmental control, growth monitoring, 

and plant growth prediction. Deep learning models, 

particularly Convolutional Neural Networks (CNNs) and 

Deep Neural Networks (DNNs), were predominantly applied 

for image-based tasks such as plant disease detection, nutrient 

deficiency recognition, and crop quality assessment. Hybrid 

approaches integrating machine learning with IoT-based 

monitoring and automation demonstrated enhanced 

operational efficiency and predictive performance compared 
to standalone models. The table also identifies limitations 

reported by the studies, including unmonitored critical 

parameters (e.g., CO₂ and O₂), energy consumption, security 

and traceability issues, and limited generalizability across crop 

types. 

 

 
Fig. 3: Accuracy Comparison of Machine Learning Models in Reviewed Smart Hydroponic Systems. 

 

Figure 3 showed that classical algorithms such as 

Decision Trees, Random Forests, and SVM achieved accuracy 

values ranging between 80% and 98%, while deep learning 

models, including CNNs and DNNs, generally outperformed 
classical models, reaching accuracies of 96% to 99.7%. The 

figure emphasizes that hybrid and deep learning-based 

approaches tend to offer superior predictive performance, 

particularly in tasks involving complex or image-based 

datasets. It also highlights that several studies did not report 

accuracy metrics for their models, reflecting gaps in reporting 

standards and comparability 

 

B. Discussion of Findings 

The reviewed works provide a comprehensive overview 

of the application of machine learning (ML) in smart 
hydroponic systems (Fig. 2). These studies span classical 

supervised learning models, deep learning architectures, and 

hybrid frameworks, applied to tasks such as plant growth 

prediction, disease detection, nutrient optimization, and 

automated environmental control. The review highlights the 

increasing integration of ML with Internet of Things (IoT)-

enabled hydroponic systems, demonstrating the 

transformative potential of data-driven approaches in 

precision agriculture (Kamilaris & Prenafeta-Boldú, 2018; 

Wolfert et al., 2017). 

 
 Performance of Classical Machine Learning Models 

Classical supervised learning algorithms, including 

Decision Trees (DT), Random Forests (RF), and Support 

Vector Machines (SVM), were widely applied in structured 

sensor-based hydroponic systems. Wongpatikaseree et al. 

(2018) reported that a Decision Tree classifier achieved the 

highest accuracy (98.12%) in detecting fresh versus withered 

vegetables, outperforming Naive Bayes, MLP, and shallow 

deep neural networks. Tambakhe and Gulhane (2022) 

similarly demonstrated that Random Forest achieved 95% 

accuracy for crop growth monitoring, with complementary 
metrics provided by SVR, Lasso, and Decision Tree 

Regression. These findings reinforce the robustness and 

reliability of classical ML algorithms for structured data tasks 

where environmental variables are clearly defined (Shahreza 

et al., 2011; Li & Dong, 2014). 
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 Performance of Deep Learning Models 

Deep learning models, particularly Convolutional Neural 

Networks (CNNs) and Deep Neural Networks (DNNs), 

consistently outperformed classical approaches in high-

dimensional and image-based applications. Raju et al. (2022) 
achieved 99.29% accuracy using a deep CNN for disease 

detection and nutrient prediction, with precision, recall, and F-

measure all exceeding 98%. Bulut and Hacıbeyoğlu (2023) 

reported a DNN accuracy of 99.7% for plant growth 

monitoring, outperforming classical algorithms. Rajkunwar et 

al. (2024) used CNNs to detect plant diseases and nutrient 

deficiencies with accuracies of 96% and 87%, respectively. 

These findings demonstrate the strength of deep learning in 

capturing nonlinear relationships, extracting complex features, 

and enabling real-time monitoring in image-rich hydroponic 

systems (Ferentinos, 2018; Alipio et al., 2020). 

 
 Hybrid Machine Learning Approaches 

Hybrid approaches that integrate multiple ML models or 

combine ML with IoT-based monitoring and automation 

exhibited superior operational efficiency and predictive 

performance. Alipio et al. (2017) employed a Bayesian 

Network with automated actuators and sensors to optimize 

environmental parameters, achieving a 66.67% higher crop 

yield compared to manual control. Devi et al. (2024) 

demonstrated that hybrid ML with IoT-enabled nutrient and 

water management improved yield, resource efficiency, and 

sustainability. These findings are consistent with recent 
evidence that hybrid ML frameworks often outperform single-

model approaches, providing enhanced robustness, 

generalizability, and adaptive control in complex, dynamic 

agricultural environments (Ukoba et al., 2025; Kamilaris & 

Prenafeta-Boldú, 2018). 

 

 Comparison of Model Accuracy 

Figure 3 provides a comparison of reported accuracies 

across ML models in smart hydroponic systems. Classical 

algorithms such as DT, RF, and SVM achieved 80–98% 

accuracy, whereas deep learning and hybrid models 

consistently reached 96–99.7%. The figure clearly shows that 
hybrid and deep learning-based approaches offer superior 

predictive performance, particularly for image-based and 

complex sensor datasets. However, several studies did not 

report accuracy metrics, highlighting inconsistencies in 

performance reporting and the need for standardized 

benchmarking across studies (Brownlee, 2016; Omar et al., 

2013). 

 

 Identified Limitations and Research Gaps 

Despite the high accuracy of ML models, several 

limitations were identified. Critical environmental parameters 
such as CO₂ and oxygen were frequently unmonitored, 

limiting optimal growth and yield (Alipio et al., 2017; Raju et 

al., 2022). Security, traceability, and energy efficiency were 

rarely considered in IoT-integrated systems, potentially 

affecting long-term sustainability. Moreover, most studies 

focused on short-term experiments or single-crop setups, 

restricting generalizability across hydroponic crops and 

environments. The inconsistent reporting of standard 

performance metrics, particularly in hybrid and IoT-enabled 

systems, further hampers cross-study comparisons. 

 

 Implications for Smart Hydroponic Systems 

The findings demonstrate that ML significantly enhances 

monitoring, prediction, and control capabilities in smart 

hydroponic systems. Classical algorithms are effective for 

structured, quantitative tasks; deep learning models excel in 
image-based and high-dimensional datasets; and hybrid ML 

frameworks integrating multiple models with IoT enable the 

highest operational efficiency. Addressing gaps such as multi-

parameter monitoring, energy-efficient operations, security, 

and generalizability will be critical for advancing scalable, 

real-world smart hydroponic systems capable of contributing 

to sustainable food production and food security (FAO, 2020; 

Wolfert et al., 2017; Ukoba et al., 2025). 

 

IV. CONCLUSION AND RECOMMENDATION 

 

This systematic review highlights the transformative 
potential of machine learning (ML) in smart hydroponic 

systems for precision agriculture. The reviewed studies, 

spanning classical supervised algorithms, deep learning 

architectures, and hybrid frameworks integrated with IoT-

enabled monitoring, demonstrate that ML can effectively 

support plant growth prediction, disease and nutrient 

deficiency detection, environmental control, and yield 

optimization. Classical algorithms such as Decision Trees, 

Random Forests, and Support Vector Machines performed 

well in structured sensor-based tasks, achieving accuracies up 

to 98%. Deep learning models, particularly Convolutional 
Neural Networks (CNNs) and Deep Neural Networks (DNNs), 

consistently outperformed classical models in image-based 

applications, with accuracies ranging from 96% to 99.7%. 

Hybrid ML approaches integrating multiple algorithms with 

IoT-enabled automation provided the highest operational 

efficiency, predictive performance, and adaptability to 

dynamic hydroponic environments (Kamilaris & Prenafeta-

Boldú, 2018; Ukoba et al., 2025). 

 

Despite these achievements, several limitations and gaps 

were identified. Critical environmental parameters such as 

CO₂ and oxygen are often unmonitored, potentially 
compromising yield optimization. Security, traceability, and 

energy efficiency remain largely unaddressed in IoT-enabled 

systems, raising concerns about long-term sustainability and 

scalability. Furthermore, many studies focused on single crops 

or short-term datasets, limiting the generalizability of ML 

models across different hydroponic setups. Inconsistent 

reporting of standard performance metrics, particularly for 

hybrid frameworks, complicates benchmarking and hinders 

reproducibility. Addressing these gaps is essential for 

advancing ML-enabled smart hydroponic systems from 

controlled experimental setups to practical, large-scale 
applications. 

 

Based on the findings of this review, several 

recommendations are proposed: 

 Integration of Critical Environmental Monitoring: Future 

systems should incorporate real-time monitoring and 

control of essential parameters such as CO₂, oxygen, and 

nutrient concentrations to maximize plant growth and 

yield. 

 Security and Energy Efficiency: IoT-enabled hydroponic 

systems must prioritize cybersecurity, data traceability, 



Volume 11, Issue 1, January – 2026                                International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                                           https://doi.org/10.38124/ijisrt/26jan1052 

 

 

IJISRT26JAN1052                                                              www.ijisrt.com                                                                                          3386            

and energy-efficient operations to ensure sustainable and 

resilient smart farming solutions. 

 Hybrid and Adaptive ML Frameworks: Researchers 

should develop and validate hybrid ML models that 

combine the strengths of classical and deep learning 
algorithms. Such models can improve prediction accuracy, 

robustness, and generalizability across diverse hydroponic 

crops and environmental conditions. 

 Standardized Performance Reporting: Adoption of 

standardized performance metrics, including accuracy, 

precision, recall, F-measure, and energy/resource 

efficiency, will facilitate comparability and reproducibility 

of ML applications in hydroponics. 

 Scalability and Multi-Crop Studies: There is a need for 

long-term, multi-crop studies that evaluate ML models 

under varying environmental conditions to enhance the 

scalability and practical applicability of smart hydroponic 
systems. 
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