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Abstract: Modern speech-controlled systems rely on Voice Activity Detection (VAD) as the critical gatekeeper in speech 

processing pipelines. Although adversarial attacks on Automatic Speech Recognition (ASR) have been extensively studied, VAD 

security remains largely unexplored, exposing a fundamental vulnerability. This paper introduces Silent Deception, a Universal 

Adversarial Perturbation (UAP) framework designed to force VAD models to misclassify active speech as silence. By targeting 

VAD rather than ASR, the proposed attack achieves effective speech pipeline disruption, creating a silent denial-of-service (DoS) 

condition where downstream components never receive valid input. The UAPs are crafted using gradient-based optimization on 

Silero VAD and WebRTC VAD, maximizing the False Negative Rate (FNR) while strictly preserving perceptual quality. 

Evaluation demonstrates a 90% bypass success rate and significant ASR degradation, measured via Word Error Rate (WER). 

This work highlights the urgent need for adversarial robustness in VAD systems as a primary defense capability in next-

generation speech pipelines. 
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I. INTRODUCTION 

 
Speech-based interfaces have become central to human-

machine interaction, powering voice assistants, call centers, 

transcription services, and IoT ecosystems. These systems 

operate through sequential pipelines where Voice Activity 

Detection (VAD) identifies speech regions, and Automatic 

Speech Recognition (ASR) converts them to text. Although 

ASR has received substantial attention in adversarial machine 

learning research, VAD being the front-end gatekeeper        

remains significantly understudied. 

 

This creates a critical vulnerability: if VAD fails, the 
entire downstream pipeline collapses, regardless of ASR 

robustness. Attackers who suppress VAD activation prevent 

speech from reaching the recognizer, causing a silent denial-of-

service (DoS). Unlike ASR attacks, which often require large 

perturbations or specific phrases, VAD suppression only 

requires shifting activation thresholds, making it simpler and 

more covert. 

 

VAD systems enabled with AI analyze short audio frames 

to identify speech. They enable real-time segmentation, wake-

word activation (“Hey Siri”, “OK Google”), bandwidth 

optimization, and noise suppression in communication systems. 
Because VAD determines whether speech is processed at all, it 

represents a single point of failure for ASR-powered solutions. 

 

VAD systems face several operational challenges 

including interference from traffic, machinery, or crowd 

environments; speaker variability in accent, pitch, and speaking 

rate; short or fragmented speech that can easily be 

misclassified; and resource constraints for embedded devices. 

These inherent limitations create opportunities for adversarial 

exploitation. 

 
The motivation for this research stems from a fundamental 

observation: adversarial attacks on ASR manipulate 

transcriptions, but still rely on VAD triggering. However, a 

powerful attack completely suppresses VAD, blocking the 

pipeline before transcription begins. This represents a paradigm 

shift in audio adversarial attacks: rather than corrupting the 

output, the attack prevents any processing from occurring. 

 

This paper addresses this gap by introducing Silent 

Deception, a universal adversarial attack framework designed 

to suppress VAD across diverse inputs using imperceptible 
Universal Adversarial Perturbations (UAPs). The attack 

demonstrates how minimal structured noise causes VAD to 

misclassify speech as silence, effectively creating a silent DoS 

condition. 

 

 Contributions: 

 Introduction of Silent Deception: A universal, imperceptible 

perturbation consistently suppressing VAD activation 

across diverse speech inputs and acoustic conditions. 

 Gradient-based UAP Methodology: A generation 

methodology targeting False Negative Rate (FNR) 
maximization while maintaining perceptual quality 

constraints. 

 Cross-Model Transferability: A comprehensive analysis 

using industry-standard VAD systems including Silero 

VAD and WebRTC VAD. 

 End-to-End Evaluation: A demonstration of significant 

ASR degradation measured via Word Error Rate (WER) 

under VAD suppression conditions. 

 Security Implications: Critical insights highlighting the 

urgent need for VAD hardening in modern speech systems 

and establishing VAD as a primary attack surface. 
 

II. LITERATURE REVIEW 

 

Adversarial attacks on speech systems have primarily 

focused on ASR manipulation, with limited attention to VAD 

vulnerabilities. Schönherr et al. [1] introduced psychoacoustic 

hiding strategies to craft imperceptible adversarial audio for 

ASR systems, demonstrating that perturbations constrained 

below human auditory thresholds can still mislead ASR models. 

Their results showed high attack success rates with minimal 

perceptual distortion, but exclusively targeted ASR 
manipulation without investigating vulnerabilities in VAD. 

 

Carlini and Wagner  proposed [2] influential white-box 

audio attacks by applying iterative, gradient-based optimization 

directly on raw waveforms for DeepSpeech models, achieving 

near-perfect attack success with minimal perceptual distortion. 

Yuan et al. [3] presented CommanderSong, embedding 

malicious commands within songs to enable practical over-the-

air ASR attacks while maintaining viability through speakers 

and microphones. However, both approaches targeted ASR 

command recognition rather than speech boundary detection 

mechanisms. 
 

Schönherr et al. [4] proposed IMPERIO, using Room 

Impulse Responses (RIRs) to simulate diverse acoustic settings 

during attack generation, improving transferability across 

unknown environments. Du et al. [5] developed SirenAttack, an 

adversarial audio attack leveraging frequency manipulation for 

real-time acoustic systems, evaluated in both black-box and 

white-box scenarios. These works continued to focus on ASR 

deception without considering VAD vulnerabilities. 

 

Ettenhofer et al. [6] proposed a combined psychoacoustic 
and RIR-based method for generating robust adversarial audio, 

significantly improving stealth and transferability. Li et al. [7] 

introduced real-time, inaudible perturbations that manipulate 

ASR outputs during live speech, demonstrating dynamic 

attacks for streaming audio applications. However, neither 

explored disrupting VAD during live speech interaction. 

 

Neekhara et al. [8] pioneered Universal Adversarial 

Perturbations for speech recognition, enabling a single 
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perturbation to deceive a wide range of inputs, drastically 

reducing per-sample attack generation effort. Qin et al. [9] 
developed imperceptible, robust, and targeted adversarial 

examples for ASR systems, balancing perceptual quality, 

robustness, and attack effectiveness. Qi et al. [10] introduced 

TransAudio, learning contextualized perturbations to improve 

transferability across different ASR models. Sun et al. [11] 

proposed CommanderUAP, demonstrating practical and 

transferable universal adversarial attacks with focus on 

command injection scenarios. 

 

Wang et al. [12] introduced diffusion-based adversarial 

attacks to ASR systems, leveraging generative models to create 
more natural-sounding adversarial examples. Zhang et al. [13] 

demonstrated LaserAdv, showing that laser-based signal 

injection into microphones can bypass voice authentication 

systems, though requiring physical equipment and proximity. 

Chen et al. [14] investigated adversarial examples in speaker 

recognition systems, revealing fundamental security 

vulnerabilities that parallel those found in speech processing 

pipelines. 

 

A. Limitations of Existing Studies 

Prior literature overwhelmingly focuses on attacking ASR 

models, while VAD has been largely neglected as an 
adversarial target. The research community has implicitly 

assumed that ASR represents the primary attack surface in 

speech systems, overlooking the critical role of VAD as a 

gatekeeper. No existing work systematically investigates UAP-

based suppression of VAD to indirectly break ASR pipelines. 
 

Current research assumes ASR is the primary 

vulnerability, overlooking that disabling VAD prevents any 

speech from reaching ASR, regardless of downstream 

robustness. By targeting VAD, attackers can achieve denial-of-

service without the complexity of manipulating ASR outputs. 

Furthermore, VAD suppression is inherently stealthier; while 

ASR attacks produce incorrect transcriptions that may alert 

users, VAD suppression simply results in silence, which can be 

attributed to legitimate causes like microphone issues. 

 
This work addresses these gaps by treating VAD as the 

critical vulnerability in speech-processing pipelines and 

demonstrating that pipeline-level attacks can be more effective 

than component-level attacks on ASR alone. 

 

III. METHODOLOGY 

 

A. System Architecture 

The proposed system operates as a modular adversarial 

speech pipeline designed to suppress VAD using UAPs and 

evaluate the downstream impact on ASR. The architecture 

comprises three primary stages: (1) adversarial perturbation 
synthesis, (2) attack validation on VAD and ASR systems, and 

(3) UAP refinement and optimization, as illustrated in Fig. 1. 

 

 
Fig 1. System Architecture Showing the Three-Stage Workflow: Adversarial Perturbation Synthesis, Attack Validation, and UAP 

Refinement 

 

Clean speech data from publicly available corpora, 

including LibriSpeech and CommonVoice, is collected and 

preprocessed using Python-based audio processing tools 

(Librosa, NumPy, SciPy). As depicted in Fig. 1, the first stage 

involves preprocessing, which includes resampling to 16 kHz 

to match standard speech processing rates, normalization for 

consistent amplitude levels, silence trimming to remove non-

speech segments, and segmentation into short frames (typically 

20–30 ms) for frame-level processing. The processed audio 

serves as input to the UAP generation module. 

 

The architecture follows a structured workflow where the 

UAP generation module employs gradient-based optimization 

to synthesize universal perturbations. These are evaluated 

against surrogate VAD models (Silero VAD and WebRTC 

VAD) during attack validation. Finally, the system enters a 

refinement stage applying adaptive gradient balancing and 

spectral preservation constraints to optimize UAP effectiveness 
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while ensuring imperceptibility. 

 
 Hardware and Software:  

Implementation utilizes an Intel Core i7 processor (2.6 

GHz or above), 16 GB DDR4 RAM, NVIDIA T4 GPU for 

accelerated training, and 256 GB SSD. The software stack 

includes Python 3.9+ with Flask for the web interface, PyTorch 

and TensorFlow for model implementation, Silero VAD and 

WebRTC VAD for evaluation, Librosa/NumPy/SciPy for audio 

processing, and Whisper/Wav2Vec 2.0 for ASR evaluation. 

 

B. Data Description 

The dataset utilizes clean speech from LibriSpeech and 
CommonVoice, offering diverse speaker characteristics, 

accents, and recording conditions. LibriSpeech features high-

quality narrated audiobooks, while CommonVoice contains 

multilingual crowdsourced speech from varied acoustic 

environments. Samples are preprocessed to 16 kHz, segmented 

into 1–10 second utterances, and labeled with ground-truth 

transcriptions. We allocate 500 samples for UAP training and 

200 for validation. 

 

C. Adversarial Perturbation Synthesis 

The synthesis of Universal Adversarial Perturbations 

(UAPs) is executed via a structured gradient-based optimization 
module through a sequence of integrated stages. First, clean 

speech corpora are curated to ensure diversity across speaker 

demographics and linguistic content. During preprocessing, the 

audio is normalized to a [−1,1] amplitude range, followed by 

frame segmentation and feature extraction. 

 

The perturbation vector 𝛿 is initialized as low-magnitude 

random noise. To iteratively refine 𝛿, we employ a hybrid 

optimization strategy. We utilize the Fast Gradient Sign Method 

(FGSM) to compute the initial direction of the perturbation by 
calculating the gradient of the VAD loss function with respect 

to the input audio. This allows us to identify the most vulnerable 

feature dimensions for suppression. Subsequently, we apply 

Projected Gradient Descent (PGD) to iteratively update the 

perturbation while ensuring it remains within a defined 𝜖-ball 

constraint. This projection step is critical for maintaining 

imperceptibility, as it clips any perturbation values that exceed 

the allowable noise budget. 

 

The optimization process employs the Adam optimizer 
with a scheduled learning rate, minimizing a loss function 

specifically designed to maximize the False Negative Rate 

(FNR) over 4000 iterations. Throughout the loop, the UAP 

undergoes periodic validation against Silero VAD and 

WebRTC VAD to monitor and refine its overall suppression 

effectiveness. 

 

 

 

 

 

 

D. Model Description 

 
 Universal Adversarial Perturbation Model 

The UAP optimization objective balances adversarial 

effectiveness with perceptual quality through a composite loss 

function: 

 

                           𝐿(𝛿) = 𝜆𝑒𝐿energy + 𝜆𝑠𝐿spectral                      (1) 

 

where 𝜆𝑒 and 𝜆𝑠 are weighting hyperparameters. The 

energy loss constrains perturbation magnitude: 

 

                          𝐿energy =
1

𝑁
∑ ∥𝑁

𝑖=1 𝑥𝑖 + 𝛿 ∥2
2                         (2) 

 

where 𝑁 is the number of training samples and 𝑥𝑖 

represents the 𝑖-th clean audio sample. The spectral loss ensures 

minimal frequency-domain distortion: 

 

                    𝐿spectral =
1

𝑁
∑ ∥𝑁

𝑖=1 𝐹(𝑥𝑖 + 𝛿) ∥1                        (3) 

 

where 𝐹(⋅) denotes the Fourier transform operator. The 

𝐿2-norm constraint maintains imperceptibility: 

 

                   𝛿 ← 𝜖 ⋅
𝛿

∥𝛿∥2
 if  ∥ 𝛿 ∥2> 𝜖                             (4) 

 

where 𝜖 defines the maximum perturbation budget 

(typically 0.002). 

 
 WebRTC VAD Model 

WebRTC VAD is a lightweight, rule-based binary 

classifier developed by Google for real-time speech detection. 

It operates on 10, 20, or 30 ms audio frames using energy-based 

features combined with spectral characteristics. Frame-level 

detection operates as: 

 

                 𝑦 = {
1 if speech detected

0 otherwise
                                  (5) 

 
 

 The VAD score quantifies speech presence: 

 

                 VAD_score =
Number of speech frames

Total frames
                        (6) 

 

 Attack success is defined by the bypass condition: 

          Bypass = ⊮ (𝑦clean = 1 ∧ 𝑦attacked = 0)                     (7) 

 

where ⊮ (⋅) is the indicator function. 

 

 Silero VAD Model 

Silero VAD is a modern neural network-based VAD 

system that uses recurrent architectures to model temporal 
dependencies in speech. Unlike WebRTC’s rule-based 

approach, Silero learns discriminative features from data, 

making it more robust to noise but potentially more vulnerable 
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to adversarial perturbations targeting learned representations. 

 
 ASR Model Formulation 

ASR models encode audio features through encoder 

networks: 

 

                                  𝑧 = 𝑓encoder(𝑥)                                    (8) 

 

where 𝑥 represents the input audio and 𝑧 denotes the 

encoded latent representation. Multi-head self-attention 

mechanisms process encoded features: 

 

              Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                  (9) 

 

where 𝑄, 𝐾, 𝑉 are query, key, and value matrices, and 𝑑𝑘 is the 

key dimension. CTC decoding produces transcriptions: 

  

                         𝑦̂ = argmax
𝑦

∏ 𝑃𝑡 (𝑦𝑡|𝑥)                           (10) 

 

 Attack Validation Pipeline 

The validation pipeline, as shown in the second stage of 

Fig. 1, applies generated UAPs to clean speech and evaluates 

effectiveness against target VAD systems. The pipeline 
implements binary classification where VAD detection results 

determine whether audio proceeds to ASR processing or gets 

blocked at the VAD stage. Performance is quantified using 

standard classification metrics: 

 

 Accuracy: 

 

                            Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                   (11) 

 

 

 Precision: 

 

                               Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (12) 

 

 Recall: 

 

                               Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                (13) 

 

 F1-Score: 
 

                           F1 = 2 ×
Precision×Recall

Precision+Recall
                          (14) 

 

 False Negative Rate (Attack Success Metric): 

 

                                  FNR =
𝐹𝑁

𝑇𝑃+𝐹𝑁
                                (15) 

 

where TP, TN, FP, and FN represent true positives, true 

negatives, false positives, and false negatives respectively. 

High FNR indicates effective VAD suppression. 

 

 Refinement and Enhancement 

The refinement module (Fig. 1, stage 3) analyzes attack 

performance to iteratively enhance UAP effectiveness using 

adaptive gradient strategies and spectral constraints. Adaptive 

Gradient Balancing dynamically adjusts loss weights based on 

convergence behavior, while Spectral Preservation Constraints 
limit high-frequency components to maintain imperceptibility. 

Optimization proceeds until convergence or reaching 4000 

iterations, with the learning rate facilitating stable convergence. 

This ensures the final UAP maximizes VAD suppression while 

preserving high perceptual quality. 

 

IV. RESULTS AND DISCUSSION 

 

A. UAP Training Analysis 

Fig. 2 presents comprehensive training metrics for UAP 

generation across 4000 iterations, demonstrating convergence 
behavior and optimization effectiveness. 
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Fig 2 UAP Training Analysis Showing Loss Components, Validation Detection Rate, UAP Norms, and Gradient Dynamics Over 4000 

Training Iterations 
 

The training analysis reveals several insights. Training 

loss components show total loss stabilizing around 13 after 

initial fluctuations during the first 500 iterations, with energy 

loss and spectral loss contributing proportionally throughout 

training. This demonstrates effective multi-objective 

optimization balancing adversarial strength and perceptual 

quality without mode collapse. 

 

The simulated validation detection rate progressively 

declines from approximately 80% to below 40% by iteration 
4000, representing a 50% reduction in VAD detection 

capability. This steady degradation confirms the UAP 

successfully suppresses VAD across diverse validation samples 

while maintaining generalization to unseen samples. 

 

UAP norms over training show the 𝐿2 norm remaining 

consistently below the epsilon constraint (0.002), while the 

infinity norm stays near zero throughout training. This 

adherence ensures the perturbation remains imperceptible while 

maintaining attack effectiveness. The gradient 𝐿2 norm exhibits 

controlled decay from 0.6 to near zero, indicating convergence 

to a local optimum with scheduled learning rate reduction 

preventing oscillation. 

 

B. Classification Performance 

The classification metrics quantify UAP impact on 
WebRTC VAD performance under adversarial conditions. 

After injecting the perturbation, WebRTC VAD incorrectly 

predicted 442 speech frames as “no-speech” out of 489 total 

speech frames, demonstrating severe performance degradation. 

 

Table 1 presents class-wise performance analysis showing 

the dramatic shift in model behavior. 
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Table 1 Class-Wise Performance Analysis 

Class Precision Recall F1-Score 

No-Speech (0) 0.02 1.00 0.05 

Speech (1) 1.00 0.08 0.14 

 

The model shows perfect recall (1.00) for the “no-speech” 
class, consistently labeling frames as silence regardless of 

actual content, indicating the UAP has successfully biased the 

VAD model toward non-detection. However, recall for the 

speech class drops catastrophically to 0.08, indicating the UAP 

forces VAD to ignore active speech in 92% of cases. 
 

The confusion matrix in Table 2 compares clean audio 

ground-truth with predictions on UAP-attacked audio. 

 

Table 2 Confusion Matrix for WebRTC VAD 

True Class Predicted: No-Speech Predicted: Speech 

No-Speech (0) 11 0 

Speech (1) 442 47 

 

Out of 489 speech samples, only 47 (9.6%) were correctly 

detected, while 442 (90.4%) were incorrectly labeled as “no 

speech”. All 11 true no-speech samples were correctly 

classified, demonstrating that the attack specifically targets 

speech detection without causing false positives. This behavior 
confirms a highly successful adversarial attack causing a silent 

denial-of-service. 

 

C. WebRTC VAD Performance Analysis 

Fig. 3 presents a comprehensive evaluation of UAP attack 

effectiveness on WebRTC VAD across multiple quantitative 
metrics. 

 

 
Fig 3. WebRTC VAD Performance Analysis: Detection Rate Comparison, Score Distribution Shift, Bypass Success Rate, and Per-

Sample Detection Reduction 
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The performance analysis demonstrates four key findings. 

Detection rate comparison shows clean audio achieves 
approximately 98% detection rate across test samples, while 

attacked audio drops dramatically to only 9%, representing an 

89 percentage point reduction. This massive reduction confirms 

the UAP’s effectiveness in suppressing VAD activation across 

diverse samples and speakers. 

 

VAD score distributions reveal the mechanism behind 

suppression. Clean audio scores cluster tightly in the 70–100% 

range, while attacked audio scores shift predominantly to the 

20–50% range, falling systematically below the detection 

threshold. This distribution shift explains why the attack 
succeeds: the UAP introduces consistent negative bias in VAD 

confidence scores. 

 

Bypass success quantification shows that out of 500 total 

samples tested, 450 were successfully bypassed, yielding a 

90.0% bypass success rate. This high success rate demonstrates 

the UAP’s strong cross-sample generalization capability. The 

per-sample detection reduction histogram shows most samples 

experiencing 40–50% detection reduction from baseline, with a 

mean reduction of 46.3% and standard deviation of 

approximately 8%, validating the universal nature of the 

adversarial perturbation. 
 

D. Impact on Downstream ASR 

To evaluate end-to-end pipeline impact, perturbed audio 

was processed through complete VAD-ASR systems. When 

VAD correctly triggers (9.6% of cases), ASR processes the 

audio normally with minimal Word Error Rate increase. 

However, when VAD suppression succeeds (90.4% of cases), 

ASR never receives input, resulting in complete transcription 

failure. This demonstrates the critical vulnerability: even 

perfect ASR robustness cannot protect against VAD-level 

attacks. 
 

E. Perceptual Quality Analysis 

Subjective listening tests with 10 participants confirmed 

the UAP remains imperceptible. Participants could not reliably 

distinguish clean from perturbed audio (accuracy: 52%, near 

random chance), and reported no audible artifacts. The 

perturbation amplitude (∼ ±0.001) remains well below typical 

background noise levels. Objective metrics including Signal-to-

Noise Ratio (SNR > 40 dB) and Perceptual Evaluation of 

Speech Quality (PESQ > 4.0) confirm high perceptual quality. 

 

F. Discussion 

The waveform and spectral analyses demonstrate that 

even low-amplitude, imperceptible noise signals can disrupt 

VAD systems. Although inaudible to human listeners, the 

perturbation introduces subtle spectral variations in frequency 

bands critical for VAD decision-making. These variations 

mislead VAD models into misclassifying speech as non-speech 

by reducing energy estimates and corrupting temporal features. 

The UAP generated by the Silent Deception framework 

appears random and noise-like in both time and frequency 

domains, ensuring no speech pattern leakage. Yet despite this 

apparent randomness, the perturbation causes VAD to collapse 
completely, achieving a 90% suppression rate. This 

demonstrates that the optimization has identified vulnerable 

regions in VAD decision boundaries where small perturbations 

have outsized effects. 

 

The experimental results demonstrate that VAD 

constitutes a critical vulnerability within modern speech-

processing pipelines. Through the proposed UAP-based 

adversarial framework, speech detection can be silently 

suppressed without audible distortion, effectively breaking the 

pipeline before ASR activation. The attack exhibits high 
effectiveness, achieving up to 90% bypass rate across diverse 

speakers, phonetic content, and acoustic conditions. 

 

Cross-model transferability analysis reveals the UAP 

generated on WebRTC VAD transfers partially to Silero VAD 

(63% bypass rate), indicating some learned vulnerabilities 

generalize across architectures. However, the reduced transfer 

rate suggests neural and rule-based VAD systems have different 

decision boundaries. 

 

These findings emphasize a critical shift in security 

perspective: protecting ASR alone is insufficient. Existing 
defenses primarily target ASR manipulation through 

adversarial training, input sanitization, or certified robustness. 

Yet this study proves attackers need not interfere with ASR at 

all—disabling VAD is enough to disrupt the entire pipeline. 

Furthermore, VAD suppression is stealthier than ASR 

manipulation because it produces silence rather than suspicious 

incorrect transcriptions. 

 

The results underscore the urgent need to shift audio 

security research from model-level defense to holistic pipeline-

level protection. Future security frameworks must focus on all 
components in the speech processing chain, with particular 

emphasis on VAD as the first line of defense. 

 

V. CONCLUSION 

 

This work introduces Silent Deception, a pipeline-level 

adversarial attack framework exposing VAD as the weakest and 

most vulnerable link in speech-driven systems. The proposed 

UAP-based attack demonstrates that imperceptible 

perturbations can consistently suppress VAD activation, 

causing a silent denial-of-service before ASR processing 
begins. With a 90% bypass success rate and significant ASR 

degradation, the attack highlights critical security gaps in 

modern speech pipelines. 

 

Future research directions include: (1) developing 

adversarially trained VAD models to improve resilience against 

UAP-based suppression attacks, (2) integrating real-time 

anomaly detection mechanisms to monitor unusual frequency 

or amplitude patterns, (3) implementing adaptive spectral 

filtering techniques such as STFT-based or Mel-spectrogram-
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based filtering to remove adversarial noise while preserving 

speech intelligibility, (4) employing multi-model VAD fusion 
to reduce vulnerability through ensemble approaches, (5) 

designing hardware-level defenses including secure 

microphone interfaces, embedded UAP-detection firmware, 

and tamper-resistant digital signal processors, (6) developing 

explainable and transparent VAD models, and (7) conducting 

broader real-world testing under noisy environments and multi-

speaker scenarios. 

 

These enhancements will strengthen VAD robustness and 

establish comprehensive security frameworks for future 

speech-processing systems. 
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