Volume 11, Issue 1, January — 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan1055

Exploiting Voice Activity Detection Vulnerabilities:
A Universal Adversarial Perturbation
Framework for Speech Pipeline Disruption

Dr. N. M. Balamurugan?!; Abiney Yadav R.%; Akash S.3; Gowthaman J.#; R. Anitha®

!Department of Artificial Intelligence and Machine Learning
Rajalakshmi Engineering College
Thandalam, Chennai - 602 105

2Department of Artificial Intelligence and Machine Learning
Rajalakshmi Engineering College
Thandalam, Chennai - 602 105

3Department of Artificial Intelligence and Machine Learning
Rajalakshmi Engineering College
Thandalam, Chennai - 602 105

“Department of Avrtificial Intelligence and Machine Learning
Rajalakshmi Engineering College
Thandalam, Chennai - 602 105

Department of Artificial Intelligence and Machine Learning
Rajalakshmi Engineering College
Thandalam, Chennai - 602 105

Publication Date: 2026/01/31

Abstract: Modern speech-controlled systems rely on Voice Activity Detection (VAD) as the critical gatekeeper in speech
processing pipelines. Although adversarial attacks on Automatic Speech Recognition (ASR) have been extensively studied, VAD
security remains largely unexplored, exposing a fundamental vulnerability. This paper introduces Silent Deception, a Universal
Adversarial Perturbation (UAP) framework designed to force VAD models to misclassify active speech as silence. By targeting
VAD rather than ASR, the proposed attack achieves effective speech pipeline disruption, creating a silent denial-of-service (DoS)
condition where downstream components never receive valid input. The UAPs are crafted using gradient-based optimization on
Silero VAD and WebRTC VAD, maximizing the False Negative Rate (FNR) while strictly preserving perceptual quality.
Evaluation demonstrates a 90% bypass success rate and significant ASR degradation, measured via Word Error Rate (WER).
This work highlights the urgent need for adversarial robustness in VAD systems as a primary defense capability in next-
generation speech pipelines.
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l. INTRODUCTION

Speech-based interfaces have become central to human-
machine interaction, powering voice assistants, call centers,
transcription services, and loT ecosystems. These systems
operate through sequential pipelines where Voice Activity
Detection (VAD) identifies speech regions, and Automatic
Speech Recognition (ASR) converts them to text. Although
ASR has received substantial attention in adversarial machine
learning research, VAD being the front-end gatekeeper
remains significantly understudied.

This creates a critical vulnerability: if VAD fails, the
entire downstream pipeline collapses, regardless of ASR
robustness. Attackers who suppress VAD activation prevent
speech from reaching the recognizer, causing a silent denial-of-
service (DoS). Unlike ASR attacks, which often require large
perturbations or specific phrases, VAD suppression only
requires shifting activation thresholds, making it simpler and
more covert.

VAD systems enabled with Al analyze short audio frames
to identify speech. They enable real-time segmentation, wake-
word activation (“Hey Siri”, “OK Google”), bandwidth
optimization, and noise suppression in communication systems.
Because VAD determines whether speech is processed at all, it
represents a single point of failure for ASR-powered solutions.

VAD systems face several operational challenges
including interference from traffic, machinery, or crowd
environments; speaker variability in accent, pitch, and speaking
rate; short or fragmented speech that can easily be
misclassified; and resource constraints for embedded devices.
These inherent limitations create opportunities for adversarial
exploitation.

The motivation for this research stems from a fundamental
observation: adversarial attacks on ASR manipulate
transcriptions, but still rely on VAD triggering. However, a
powerful attack completely suppresses VAD, blocking the
pipeline before transcription begins. This represents a paradigm
shift in audio adversarial attacks: rather than corrupting the
output, the attack prevents any processing from occurring.

This paper addresses this gap by introducing Silent
Deception, a universal adversarial attack framework designed
to suppress VAD across diverse inputs using imperceptible
Universal Adversarial Perturbations (UAPs). The attack
demonstrates how minimal structured noise causes VAD to
misclassify speech as silence, effectively creating a silent DoS
condition.

» Contributions:

o Introduction of Silent Deception: A universal, imperceptible
perturbation consistently suppressing VAD activation
across diverse speech inputs and acoustic conditions.
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e Gradient-based UAP Methodology: A  generation
methodology targeting False Negative Rate (FNR)
maximization while maintaining perceptual quality
constraints.

e Cross-Model Transferability: A comprehensive analysis
using industry-standard VAD systems including Silero
VAD and WebRTC VAD.

e End-to-End Evaluation: A demonstration of significant
ASR degradation measured via Word Error Rate (WER)
under VAD suppression conditions.

e Security Implications: Critical insights highlighting the
urgent need for VAD hardening in modern speech systems
and establishing VAD as a primary attack surface.

1. LITERATURE REVIEW

Adversarial attacks on speech systems have primarily
focused on ASR manipulation, with limited attention to VAD
vulnerabilities. Schonherr et al. [1] introduced psychoacoustic
hiding strategies to craft imperceptible adversarial audio for
ASR systems, demonstrating that perturbations constrained
below human auditory thresholds can still mislead ASR models.
Their results showed high attack success rates with minimal
perceptual distortion, but exclusively targeted ASR
manipulation without investigating vulnerabilities in VAD.

Carlini and Wagner proposed [2] influential white-box
audio attacks by applying iterative, gradient-based optimization
directly on raw waveforms for DeepSpeech models, achieving
near-perfect attack success with minimal perceptual distortion.
Yuan et al [3] presented CommanderSong, embedding
malicious commands within songs to enable practical over-the-
air ASR attacks while maintaining viability through speakers
and microphones. However, both approaches targeted ASR
command recognition rather than speech boundary detection
mechanisms.

Schénherr et al. [4] proposed IMPERIO, using Room
Impulse Responses (RIRs) to simulate diverse acoustic settings
during attack generation, improving transferability across
unknown environments. Du et al. [5] developed SirenAttack, an
adversarial audio attack leveraging frequency manipulation for
real-time acoustic systems, evaluated in both black-box and
white-box scenarios. These works continued to focus on ASR
deception without considering VAD vulnerabilities.

Ettenhofer et al. [6] proposed a combined psychoacoustic
and RIR-based method for generating robust adversarial audio,
significantly improving stealth and transferability. Li et al. [7]
introduced real-time, inaudible perturbations that manipulate
ASR outputs during live speech, demonstrating dynamic
attacks for streaming audio applications. However, neither
explored disrupting VAD during live speech interaction.

Neekhara et al.[8] pioneered Universal Adversarial
Perturbations for speech recognition, enabling a single
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perturbation to deceive a wide range of inputs, drastically
reducing per-sample attack generation effort. Qin et al. [9]
developed imperceptible, robust, and targeted adversarial
examples for ASR systems, balancing perceptual quality,
robustness, and attack effectiveness. Qi et al. [10] introduced
TransAudio, learning contextualized perturbations to improve
transferability across different ASR models. Sun et al. [11]
proposed CommanderUAP, demonstrating practical and
transferable universal adversarial attacks with focus on
command injection scenarios.

Wang et al. [12] introduced diffusion-based adversarial
attacks to ASR systems, leveraging generative models to create
more natural-sounding adversarial examples. Zhang et al. [13]
demonstrated LaserAdv, showing that laser-based signal
injection into microphones can bypass voice authentication
systems, though requiring physical equipment and proximity.
Chen et al. [14] investigated adversarial examples in speaker
recognition  systems, revealing fundamental
vulnerabilities that parallel those found in speech processing
pipelines.

A. Limitations of Existing Studies

Prior literature overwhelmingly focuses on attacking ASR
models, while VAD has been largely neglected as an
adversarial target. The research community has implicitly
assumed that ASR represents the primary attack surface in

speech systems, overlooking the critical role of VAD as a

security
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gatekeeper. No existing work systematically investigates UAP-
based suppression of VAD to indirectly break ASR pipelines.

Current research assumes ASR is the primary
vulnerability, overlooking that disabling VAD prevents any
speech from reaching ASR, regardless of downstream
robustness. By targeting VAD, attackers can achieve denial-of-
service without the complexity of manipulating ASR outputs.
Furthermore, VAD suppression is inherently stealthier; while
ASR attacks produce incorrect transcriptions that may alert
users, VAD suppression simply results in silence, which can be
attributed to legitimate causes like microphone issues.

This work addresses these gaps by treating VAD as the
critical vulnerability in speech-processing pipelines and
demonstrating that pipeline-level attacks can be more effective
than component-level attacks on ASR alone.

I. METHODOLOGY
A. System Architecture

The proposed system operates as a modular adversarial
speech pipeline designed to suppress VAD using UAPs and
evaluate the downstream impact on ASR. The architecture
comprises three primary stages: (1) adversarial perturbation
synthesis, (2) attack validation on VAD and ASR systems, and
(3) UAP refinement and optimization, as illustrated in Fig. 1.
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Fig 1. System Architecture Showing the Three-Stage Workflow: Adversarial Perturbation Synthesis, Attack Validation, and UAP
Refinement

Clean speech data from publicly available corpora,
including LibriSpeech and CommonVoice, is collected and
preprocessed using Python-based audio processing tools
(Librosa, NumPy, SciPy). As depicted in Fig. 1, the first stage
involves preprocessing, which includes resampling to 16 kHz
to match standard speech processing rates, normalization for
consistent amplitude levels, silence trimming to remove non-
speech segments, and segmentation into short frames (typically
20-30 ms) for frame-level processing. The processed audio
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serves as input to the UAP generation module.

The architecture follows a structured workflow where the
UAP generation module employs gradient-based optimization
to synthesize universal perturbations. These are evaluated
against surrogate VAD models (Silero VAD and WebRTC
VAD) during attack validation. Finally, the system enters a
refinement stage applying adaptive gradient balancing and
spectral preservation constraints to optimize UAP effectiveness
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while ensuring imperceptibility.

» Hardware and Software:

Implementation utilizes an Intel Core i7 processor (2.6
GHz or above), 16 GB DDR4 RAM, NVIDIA T4 GPU for
accelerated training, and 256 GB SSD. The software stack
includes Python 3.9+ with Flask for the web interface, PyTorch
and TensorFlow for model implementation, Silero VAD and
WebRTC VAD for evaluation, Librosa/NumPy/SciPy for audio
processing, and Whisper/Wav2Vec 2.0 for ASR evaluation.

B. Data Description

The dataset utilizes clean speech from LibriSpeech and
CommonVoice, offering diverse speaker characteristics,
accents, and recording conditions. LibriSpeech features high-
quality narrated audiobooks, while CommonVoice contains
multilingual crowdsourced speech from varied acoustic
environments. Samples are preprocessed to 16 kHz, segmented
into 1-10 second utterances, and labeled with ground-truth
transcriptions. We allocate 500 samples for UAP training and
200 for validation.

C. Adversarial Perturbation Synthesis

The synthesis of Universal Adversarial Perturbations
(UAPs) is executed via a structured gradient-based optimization
module through a sequence of integrated stages. First, clean
speech corpora are curated to ensure diversity across speaker
demographics and linguistic content. During preprocessing, the
audio is normalized to a [—1,1] amplitude range, followed by
frame segmentation and feature extraction.

The perturbation vector § is initialized as low-magnitude
random noise. To iteratively refine §, we employ a hybrid
optimization strategy. We utilize the Fast Gradient Sign Method
(FGSM) to compute the initial direction of the perturbation by
calculating the gradient of the VAD loss function with respect
to the input audio. This allows us to identify the most vulnerable
feature dimensions for suppression. Subsequently, we apply
Projected Gradient Descent (PGD) to iteratively update the
perturbation while ensuring it remains within a defined e-ball
constraint. This projection step is critical for maintaining
imperceptibility, as it clips any perturbation values that exceed
the allowable noise budget.

The optimization process employs the Adam optimizer
with a scheduled learning rate, minimizing a loss function
specifically designed to maximize the False Negative Rate
(FNR) over 4000 iterations. Throughout the loop, the UAP
undergoes periodic validation against Silero VAD and
WebRTC VAD to monitor and refine its overall suppression
effectiveness.
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D. Model Description

> Universal Adversarial Perturbation Model

The UAP optimization objective balances adversarial
effectiveness with perceptual quality through a composite loss
function:

L(S) = AeLenerg/ + AsLspectral (1)

where A, and A, are weighting hyperparameters. The
energy loss constrains perturbation magnitude:

L SN lx; + 6112 @)

energy = N

where N is the number of training samples and x;
represents the i-th clean audio sample. The spectral loss ensures
minimal frequency-domain distortion:

1
Lspectral = N ?1:1 I F(xi + 6) lly (3)

where F(-) denotes the Fourier transform operator. The
L,-norm constraint maintains imperceptibility:

See-—> if [S5l,>e (4)
1812

where € defines the maximum perturbation budget
(typically 0.002).

» WebRTC VAD Model

WebRTC VAD is a lightweight, rule-based binary
classifier developed by Google for real-time speech detection.
It operates on 10, 20, or 30 ms audio frames using energy-based
features combined with spectral characteristics. Frame-level
detection operates as:

_ (1 ifspeech detected
y= {0 otherwise ®)
» The VAD score quantifies speech presence:
VAD score = Number of speech frames (6)
- Total frames
» Attack success is defined by the bypass condition:
Bypass =1 (yclea.n =1A YVattacked — 0) (7)

where I/ (+) is the indicator function.

> Silero VAD Model

Silero VAD is a modern neural network-based VAD
system that uses recurrent architectures to model temporal
dependencies in speech. Unlike WebRTC’s rule-based
approach, Silero learns discriminative features from data,
making it more robust to noise but potentially more vulnerable
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to adversarial perturbations targeting learned representations.

» ASR Model Formulation
ASR models encode audio features through encoder
networks:

z= ﬁ:ncoder (X) (8)

where x represents the input audio and z denotes the
encoded latent representation. Multi-head self-attention
mechanisms process encoded features:

T
Attention(Q, K, V) = softmax (Q—\/Z_k) %4 9)

where Q, K, V are query, key, and value matrices, and d; is the
key dimension. CTC decoding produces transcriptions:

9= argm;ax I P (y,lx) (10)

» Attack Validation Pipeline

The validation pipeline, as shown in the second stage of
Fig. 1, applies generated UAPs to clean speech and evaluates
effectiveness against target VAD systems. The pipeline
implements binary classification where VAD detection results
determine whether audio proceeds to ASR processing or gets
blocked at the VAD stage. Performance is quantified using
standard classification metrics:

e Accuracy:
TP+TN
Accuracy = ——————— (11)
TP+TN+FP+FN
e Precision:
.. TP
Precision = (12)
TP+FP
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e Recall:
Recall = — (13)
TP+FN
e F1-Score:
Precision+Recall
o False Negative Rate (Attack Success Metric):
FNR = — (15)
TP+FN

where TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives respectively.
High FNR indicates effective VAD suppression.

> Refinement and Enhancement

The refinement module (Fig. 1, stage 3) analyzes attack
performance to iteratively enhance UAP effectiveness using
adaptive gradient strategies and spectral constraints. Adaptive
Gradient Balancing dynamically adjusts loss weights based on
convergence behavior, while Spectral Preservation Constraints
limit high-frequency components to maintain imperceptibility.
Optimization proceeds until convergence or reaching 4000
iterations, with the learning rate facilitating stable convergence.
This ensures the final UAP maximizes VAD suppression while
preserving high perceptual quality.

IV. RESULTS AND DISCUSSION

A. UAP Training Analysis

Fig. 2 presents comprehensive training metrics for UAP
generation across 4000 iterations, demonstrating convergence
behavior and optimization effectiveness.
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Fig 2 UAP Training Analysis Showing Loss Components, Validation Detection Rate, UAP Norms, and Gradient Dynamics Over 4000
Training Iterations

The training analysis reveals several insights. Training
loss components show total loss stabilizing around 13 after
initial fluctuations during the first 500 iterations, with energy
loss and spectral loss contributing proportionally throughout
training. This demonstrates effective  multi-objective
optimization balancing adversarial strength and perceptual
quality without mode collapse.

The simulated validation detection rate progressively
declines from approximately 80% to below 40% by iteration
4000, representing a 50% reduction in VAD detection
capability. This steady degradation confirms the UAP
successfully suppresses VAD across diverse validation samples
while maintaining generalization to unseen samples.

UAP norms over training show the L, norm remaining
consistently below the epsilon constraint (0.002), while the
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infinity norm stays near zero throughout training. This
adherence ensures the perturbation remains imperceptible while
maintaining attack effectiveness. The gradient L, norm exhibits
controlled decay from 0.6 to near zero, indicating convergence
to a local optimum with scheduled learning rate reduction
preventing oscillation.

B. Classification Performance

The classification metrics quantify UAP impact on
WebRTC VAD performance under adversarial conditions.
After injecting the perturbation, WebRTC VAD incorrectly
predicted 442 speech frames as “no-speech” out of 489 total
speech frames, demonstrating severe performance degradation.

Table 1 presents class-wise performance analysis showing
the dramatic shift in model behavior.
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Table 1 Class-Wise Performance Analysis
Class Precision Recall F1-Score
No-Speech (0) 0.02 1.00 0.05
Speech (1) 1.00 0.08 0.14
The model shows perfect recall (1.00) for the “no-speech” forces VAD to ignore active speech in 92% of cases.
class, consistently labeling frames as silence regardless of
actual content, indicating the UAP has successfully biased the The confusion matrix in Table 2 compares clean audio
VAD model toward non-detection. However, recall for the ground-truth with predictions on UAP-attacked audio.

speech class drops catastrophically to 0.08, indicating the UAP

Table 2 Confusion Matrix for WebRTC VAD

True Class Predicted: No-Speech Predicted: Speech
No-Speech (0) 11 0
Speech (1) 442 47
Out of 489 speech samples, only 47 (9.6%) were correctly denial-of-service.

detected, while 442 (90.4%) were incorrectly labeled as “no
speech”. All 11 true no-speech samples were correctly C. WebRTC VAD Performance Analysis
classified, demonstrating that the attack specifically targets Fig. 3 presents a comprehensive evaluation of UAP attack
speech detection without causing false positives. This behavior effectiveness on WebRTC VAD across multiple quantitative
confirms a highly successful adversarial attack causing a silent metrics.

WebRTC Detection Rate Score Distribution

e Clean
mm Attacked

Detection Rate (%)

Clean Attacked 40 60
VAD Score (%)

Bypass Success: 90.0% Per-Sample Reduction

500 -

50 4 ——- Mean: 46.3%

300 A

200 4

100 4

Total Bypassed 20 30 40 50 60 70
Detection Reduction (%)

Fig 3. WebRTC VAD Performance Analysis: Detection Rate Comparison, Score Distribution Shift, Bypass Success Rate, and Per-
Sample Detection Reduction
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The performance analysis demonstrates four key findings.
Detection rate comparison shows clean audio achieves
approximately 98% detection rate across test samples, while
attacked audio drops dramatically to only 9%, representing an
89 percentage point reduction. This massive reduction confirms
the UAP’s effectiveness in suppressing VAD activation across
diverse samples and speakers.

VAD score distributions reveal the mechanism behind
suppression. Clean audio scores cluster tightly in the 70-100%
range, while attacked audio scores shift predominantly to the
20-50% range, falling systematically below the detection
threshold. This distribution shift explains why the attack
succeeds: the UAP introduces consistent negative bias in VAD
confidence scores.

Bypass success quantification shows that out of 500 total
samples tested, 450 were successfully bypassed, yielding a
90.0% bypass success rate. This high success rate demonstrates
the UAP’s strong cross-sample generalization capability. The
per-sample detection reduction histogram shows most samples
experiencing 40-50% detection reduction from baseline, with a
mean reduction of 46.3% and standard deviation of
approximately 8%, validating the universal nature of the
adversarial perturbation.

D. Impact on Downstream ASR

To evaluate end-to-end pipeline impact, perturbed audio
was processed through complete VAD-ASR systems. When
VAD correctly triggers (9.6% of cases), ASR processes the
audio normally with minimal Word Error Rate increase.
However, when VAD suppression succeeds (90.4% of cases),
ASR never receives input, resulting in complete transcription
failure. This demonstrates the critical vulnerability: even
perfect ASR robustness cannot protect against VAD-level
attacks.

E. Perceptual Quality Analysis

Subjective listening tests with 10 participants confirmed
the UAP remains imperceptible. Participants could not reliably
distinguish clean from perturbed audio (accuracy: 52%, near
random chance), and reported no audible artifacts. The
perturbation amplitude (~ £0.001) remains well below typical
background noise levels. Objective metrics including Signal-to-
Noise Ratio (SNR > 40 dB) and Perceptual Evaluation of
Speech Quality (PESQ > 4.0) confirm high perceptual quality.

F. Discussion

The waveform and spectral analyses demonstrate that
even low-amplitude, imperceptible noise signals can disrupt
VAD systems. Although inaudible to human listeners, the
perturbation introduces subtle spectral variations in frequency
bands critical for VAD decision-making. These variations
mislead VAD models into misclassifying speech as non-speech
by reducing energy estimates and corrupting temporal features.

The UAP generated by the Silent Deception framework
appears random and noise-like in both time and frequency
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domains, ensuring no speech pattern leakage. Yet despite this
apparent randomness, the perturbation causes VAD to collapse
completely, achieving a 90% suppression rate. This
demonstrates that the optimization has identified vulnerable
regions in VAD decision boundaries where small perturbations
have outsized effects.

The experimental results demonstrate that VAD
constitutes a critical vulnerability within modern speech-
processing pipelines. Through the proposed UAP-based
adversarial framework, speech detection can be silently
suppressed without audible distortion, effectively breaking the
pipeline before ASR activation. The attack exhibits high
effectiveness, achieving up to 90% bypass rate across diverse
speakers, phonetic content, and acoustic conditions.

Cross-model transferability analysis reveals the UAP
generated on WebRTC VAD transfers partially to Silero VAD
(63% bypass rate), indicating some learned vulnerabilities
generalize across architectures. However, the reduced transfer
rate suggests neural and rule-based VAD systems have different
decision boundaries.

These findings emphasize a critical shift in security
perspective: protecting ASR alone is insufficient. Existing
defenses primarily target ASR manipulation through
adversarial training, input sanitization, or certified robustness.
Yet this study proves attackers need not interfere with ASR at
all—disabling VAD is enough to disrupt the entire pipeline.
Furthermore, VAD suppression is stealthier than ASR
manipulation because it produces silence rather than suspicious
incorrect transcriptions.

The results underscore the urgent need to shift audio
security research from model-level defense to holistic pipeline-
level protection. Future security frameworks must focus on all
components in the speech processing chain, with particular
emphasis on VAD as the first line of defense.

V. CONCLUSION

This work introduces Silent Deception, a pipeline-level
adversarial attack framework exposing VAD as the weakest and
most vulnerable link in speech-driven systems. The proposed
UAP-based attack demonstrates that  imperceptible
perturbations can consistently suppress VAD activation,
causing a silent denial-of-service before ASR processing
begins. With a 90% bypass success rate and significant ASR
degradation, the attack highlights critical security gaps in
modern speech pipelines.

Future research directions include: (1) developing
adversarially trained VAD models to improve resilience against
UAP-based suppression attacks, (2) integrating real-time
anomaly detection mechanisms to monitor unusual frequency
or amplitude patterns, (3) implementing adaptive spectral
filtering techniques such as STFT-based or Mel-spectrogram-

WWW.ijisrt.com 2345



Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

based filtering to remove adversarial noise while preserving
speech intelligibility, (4) employing multi-model VAD fusion
to reduce vulnerability through ensemble approaches, (5)
designing  hardware-level  defenses including secure
microphone interfaces, embedded UAP-detection firmware,
and tamper-resistant digital signal processors, (6) developing
explainable and transparent VAD models, and (7) conducting
broader real-world testing under noisy environments and multi-
speaker scenarios.

These enhancements will strengthen VAD robustness and
establish comprehensive security frameworks for future
speech-processing systems.
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