

Iontophoretic and Transdermal Drug Delivery Systems: Emerging Technologies and Applications

Gaurav Patel¹

¹Arnold and Marie Schwartz College of Pharmacy and Health Sciences-
Long Island University,
Brooklyn, NY, 11201, USA

Publication Date: 2026/02/09

Abstract: Iontophoretic and transdermal drug delivery systems have emerged as promising non-invasive alternatives to conventional oral and parenteral routes, offering controlled drug administration, improved patient compliance, and reduced systemic side effects. However, the highly efficient barrier function of the skin, particularly the stratum corneum, limits the passive permeation of most therapeutic agents, including hydrophilic drugs and biologics. Recent advancements in physical enhancement technologies, such as iontophoresis, microneedles, and ultrasound-mediated delivery, have significantly expanded the scope of transdermal drug delivery by transiently and reversibly modulating skin permeability. Among these approaches, iontophoresis enables precise, on-demand drug delivery through electrical driving forces, facilitating the transport of charged and polar molecules across the skin. This review highlights recent progress in iontophoretic and advanced transdermal systems, focusing on underlying mechanisms, formulation design strategies, analytical evaluation techniques, and emerging clinical applications. Special emphasis is placed on localized drug delivery and the potential role of iontophoresis in anticancer therapy. Current challenges and future perspectives related to clinical translation and regulatory considerations are also discussed, underscoring the growing significance of these technologies in modern drug delivery and precision therapeutics.

Keywords: Iontophoresis; Transdermal Drug Delivery; Physical Enhancement Techniques; Microneedles; Sonophoresis; Biologics Delivery; Anticancer Therapy; Wearable Drug Delivery Systems.

How to Cite: Gaurav Patel (2026) Iontophoretic and Transdermal Drug Delivery Systems: Emerging Technologies and Applications. *International Journal of Innovative Science and Research Technology*, 11(1), 3274-3283.
<https://doi.org/10.38124/ijisrt/26jan1247>

I. INTRODUCTION

Transdermal drug delivery systems (TDDS) have emerged as an attractive alternative to conventional oral and parenteral routes due to their ability to bypass first-pass metabolism, maintain sustained plasma drug levels, improve patient compliance, and reduce systemic side effects. Over the past few decades, significant progress has been made in the design of transdermal formulations; however, the clinical applicability of conventional passive TDDS remains largely restricted to a limited number of low-molecular-weight, lipophilic drugs. The primary limitation arises from the highly efficient barrier function of the stratum corneum, which severely restricts the permeation of hydrophilic drugs, macromolecules, peptides, proteins, and emerging biologics.

To overcome these limitations, extensive research has focused on the development of physical enhancement techniques capable of transiently and reversibly modulating the skin barrier. Among these approaches, iontophoresis, microneedle-based systems, and ultrasound-mediated

delivery have gained considerable attention in recent literature due to their ability to enhance transdermal transport in a controlled and non-invasive manner. Recent studies highlight that these technologies not only improve drug flux but also enable precise control over dosing, making them particularly suitable for drugs with narrow therapeutic windows and for localized drug delivery applications.

Iontophoresis, in particular, has witnessed renewed interest owing to advancements in device miniaturization, wearable electronics, and formulation science. By employing a low-intensity electric current, iontophoresis facilitates drug transport across the skin primarily through electromigration and electroosmosis, enabling efficient delivery of charged and polar molecules. Recent publications have demonstrated its potential for the transdermal administration of small molecules, peptides, and even larger biologics, as well as for localized therapy in dermatological and oncological conditions. The integration of optimized formulations, biocompatible polymers, and advanced analytical techniques

has further strengthened the translational potential of iontophoretic systems.

In parallel, microneedles and ultrasound-based approaches have expanded the scope of transdermal delivery by creating micro-scale transport pathways or enhancing skin permeability through acoustic cavitation effects. Current research increasingly emphasizes hybrid systems that combine these physical methods with nanocarriers, hydrogels, or smart drug reservoirs to achieve synergistic enhancement of drug delivery. Such strategies are particularly relevant for emerging clinical applications, including localized anticancer therapy, where targeted drug delivery and reduced systemic toxicity are critical.

In this context, the present review aims to critically evaluate recent advances in iontophoretic and transdermal drug delivery systems, with a specific focus on physical enhancement technologies, underlying mechanisms, formulation design considerations, analytical quantification strategies, and emerging clinical applications. Special emphasis is placed on the potential of iontophoresis for localized and targeted drug delivery, including its future role in anticancer therapy, thereby highlighting current challenges and opportunities for clinical translation.[1], [2], [3]

II. SKIN AS A BARRIER TO DRUG DELIVERY

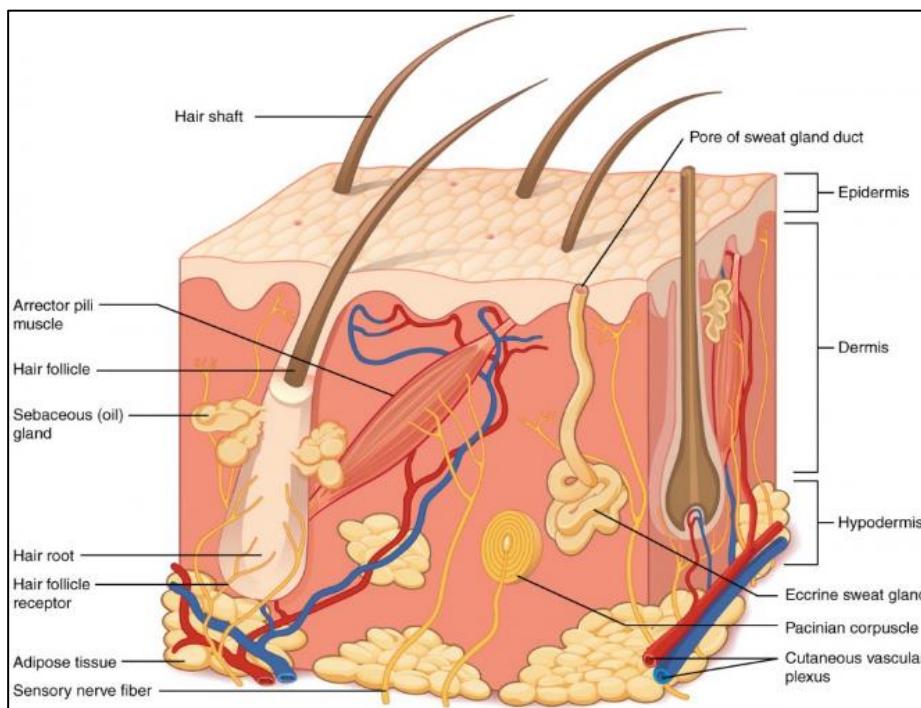


Fig 1 Layers of skin

The skin is the largest organ of the human body and serves as a highly specialized, multifunctional barrier that protects the body from mechanical injury, microbial invasion, chemical exposure, and excessive water loss. While this protective function is essential for physiological homeostasis, it presents a significant challenge for transdermal drug delivery. The skin's complex architecture and biochemical composition severely restrict the penetration of most therapeutic agents, particularly hydrophilic molecules, macromolecules, peptides, proteins, and biologics. As a result, understanding the skin's barrier properties is critical for the rational design of advanced transdermal and iontophoretic drug delivery systems.

Structurally, the skin is composed of three primary layers: the epidermis, dermis, and hypodermis. Among these, the epidermis—specifically its outermost layer, the stratum corneum—constitutes the principal barrier to drug permeation. The stratum corneum is a thin but highly

organized layer, typically 10–20 μm thick, composed of terminally differentiated, keratin-rich corneocytes embedded in a continuous lipid matrix. This unique “brick-and-mortar” architecture, in which corneocytes represent the bricks and intercellular lipids act as the mortar, is primarily responsible for the low permeability of the skin.

The lipid matrix of the stratum corneum consists predominantly of ceramides, cholesterol, and free fatty acids arranged in highly ordered lamellar structures. These lipids form densely packed, crystalline domains that impose a high resistance to molecular diffusion. Consequently, only molecules with favorable physicochemical properties—generally low molecular weight (typically below 500 Da), moderate lipophilicity, and adequate solubility—are capable of passively diffusing across intact skin at therapeutically relevant rates. This inherent selectivity severely limits the scope of conventional transdermal drug delivery systems.

Drug transport across the skin occurs primarily through three distinct pathways: the intercellular (paracellular) route, the transcellular (intracellular) route, and the appendageal route via hair follicles and sweat glands. The intercellular route is considered the dominant pathway for most drugs and involves diffusion through the tortuous lipid domains surrounding corneocytes. This pathway poses a significant barrier to hydrophilic and charged molecules due to the lipophilic nature of the intercellular lipids. The transcellular route, which requires drugs to sequentially partition into and diffuse across both lipophilic and hydrophilic domains, is energetically unfavorable for most compounds. The appendageal route, although offering relatively lower resistance, represents only a small fraction of the total skin surface area and therefore contributes minimally to overall drug transport under passive conditions.

Beyond its structural complexity, the skin also exhibits dynamic biological and physiological properties that further influence drug permeation. Factors such as skin hydration, thickness, age, anatomical site, temperature, and pathological conditions can significantly alter barrier function. For instance, increased hydration of the stratum corneum can disrupt lipid organization and enhance permeability, whereas diseases such as psoriasis or eczema may compromise barrier integrity. However, reliance on such variability is neither predictable nor clinically reliable, reinforcing the need for controlled enhancement strategies.

The barrier function of the skin becomes even more restrictive when considering the delivery of biologics, including peptides, proteins, nucleic acids, and monoclonal antibodies. These molecules typically possess high molecular weights, complex tertiary structures, and limited stability, making passive transdermal permeation virtually impossible. Additionally, enzymatic activity within the skin can further degrade sensitive biomolecules, reducing therapeutic efficacy. These challenges have prompted extensive research into physical enhancement methods capable of transiently and reversibly modulating the skin barrier without causing permanent damage.

In the context of iontophoretic and other advanced transdermal drug delivery systems, the skin barrier is no longer viewed as an insurmountable obstacle but rather as a controllable interface. Techniques such as iontophoresis exploit the skin's inherent electrical properties to drive charged molecules across the barrier via electromigration and electroosmosis, while microneedles and ultrasound physically or acoustically disrupt the stratum corneum to facilitate transport. A thorough understanding of skin barrier structure and function therefore provides the scientific foundation for the development, optimization, and clinical translation of these emerging technologies.

Overall, the formidable barrier properties of the skin represent both a challenge and an opportunity in transdermal drug delivery research. Advances in physical enhancement technologies are increasingly enabling precise, safe, and efficient modulation of this barrier, expanding the range of deliverable therapeutics and opening new avenues for

localized and systemic drug delivery, including applications in anticancer therapy.[4], [5], [6]

III. PHYSICAL ENHANCEMENT METHODS FOR TRANSDERMAL DRUG DELIVERY

Physical enhancement methods for transdermal drug delivery have been developed to overcome the intrinsic resistance of the stratum corneum and to expand the range of therapeutic agents that can be effectively delivered across the skin. Unlike conventional chemical penetration enhancers, which rely on altering the lipid structure of the skin and may cause irritation or long-term barrier disruption, physical enhancement techniques employ external energy or mechanical interventions to transiently and reversibly increase skin permeability. These approaches provide greater control over drug transport, improve reproducibility, and are particularly suitable for the delivery of hydrophilic drugs, macromolecules, and biologics.

The fundamental principle underlying physical enhancement techniques is the controlled modulation of the skin barrier through electrical, mechanical, or acoustic means. By temporarily disrupting the stratum corneum or by actively driving drug molecules across the skin, these methods can significantly enhance transdermal flux without permanently compromising skin integrity. In recent years, advances in biomedical engineering, materials science, and wearable electronics have accelerated the development of sophisticated transdermal devices, leading to renewed interest in physical enhancement strategies for both systemic and localized drug delivery.

Among the various physical methods explored, iontophoresis has emerged as one of the most extensively studied and clinically relevant techniques. Iontophoresis utilizes a low-intensity electric current to facilitate the transdermal transport of charged and polar molecules. Drug delivery is achieved primarily through electromigration, in which charged drug molecules are repelled from an electrode of the same charge, and electroosmosis, which involves the convective flow of solvent induced by the electric field. These mechanisms allow precise control over drug delivery rates by adjusting current density and application time, making iontophoresis particularly attractive for drugs with narrow therapeutic windows. Recent technological advancements have led to the development of compact, programmable, and wearable iontophoretic devices, enhancing patient compliance and enabling on-demand drug administration.

Microneedle-based transdermal systems represent another major advancement in physical enhancement technologies. Microneedles consist of micron-scale projections that painlessly penetrate the stratum corneum to create transient microchannels for drug transport. Depending on their design, microneedles can be fabricated as solid, coated, dissolving, hollow, or hydrogel-forming structures. These systems bypass the primary skin barrier without reaching deeper nerve endings, thereby minimizing pain and discomfort. Microneedles have demonstrated significant

potential for the delivery of vaccines, peptides, proteins, and other biologics, and are increasingly being explored for combination therapies with iontophoresis or nanocarrier-based formulations to further enhance delivery efficiency.

Ultrasound-mediated transdermal drug delivery, commonly referred to as sonophoresis, employs acoustic energy to increase skin permeability. Low-frequency ultrasound is particularly effective in enhancing transdermal transport through mechanisms such as cavitation, microstreaming, and localized disruption of lipid bilayers within the stratum corneum. These effects lead to the formation of aqueous channels that facilitate drug diffusion across the skin. Sonophoresis has been shown to enhance the delivery of both small molecules and macromolecules, and its non-invasive nature makes it an attractive option for repeated or prolonged therapy.

In addition to these established techniques, emerging physical enhancement methods such as electroporation, thermal ablation, and laser-assisted delivery are also being investigated. These approaches create controlled, microscopic disruptions in the stratum corneum, enabling enhanced drug permeation. While some of these methods are still in early stages of development, they offer promising avenues for the delivery of complex therapeutics and personalized treatment regimens.

An important trend in contemporary research is the integration of multiple physical enhancement techniques into hybrid systems. Combining iontophoresis with microneedles or ultrasound, for example, can result in synergistic enhancement of drug transport while reducing the intensity of individual stimuli, thereby improving safety and tolerability. Such multifunctional platforms are particularly relevant for challenging applications, including the transdermal delivery of biologics and localized anticancer therapy, where precise targeting and controlled dosing are critical.

Overall, physical enhancement methods have transformed the landscape of transdermal drug delivery by addressing the fundamental limitations imposed by the skin barrier. Continued advancements in device design, formulation science, and clinical validation are expected to further expand the therapeutic potential of these technologies, positioning them as key enablers in the future of non-invasive and patient-friendly drug delivery systems.[7], [8]

IV. MECHANISM OF IONTOPHORETIC DRUG DELIVERY

Iontophoretic drug delivery is an active transdermal technique that employs a low-intensity electric current to enhance the transport of therapeutic agents across the skin. Unlike passive diffusion, which is governed primarily by concentration gradients and the physicochemical properties of the drug, iontophoresis enables controlled and targeted delivery by directly influencing molecular movement through electrical forces. This technique has gained substantial attention for its ability to deliver charged and polar molecules, as well as certain macromolecules, at

therapeutically relevant rates while maintaining skin integrity.

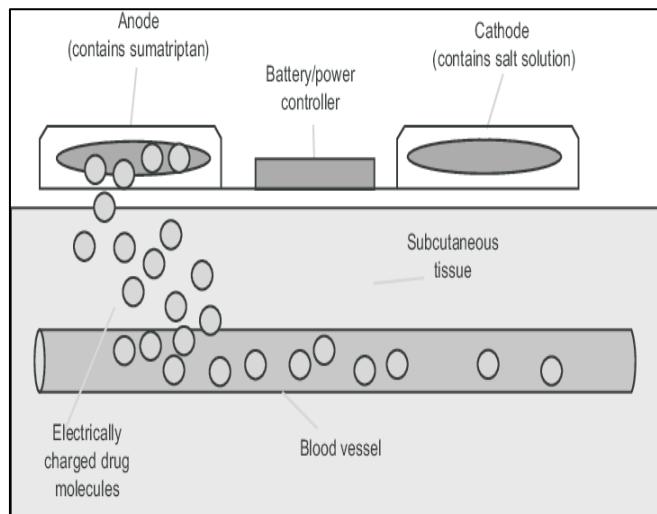


Fig 2 Mechanism f Iontophoretic Drug Delivery

The underlying mechanism of iontophoretic drug delivery is multifactorial and involves the interplay of electrochemical and electrokinetic phenomena. The application of an electric potential across the skin establishes an electrical circuit in which the skin acts as a complex, heterogeneous resistor. When a drug formulation is placed under an electrode of the same charge as the drug molecule, repulsive electrical forces drive the drug away from the electrode and into the skin. This process allows precise modulation of drug flux by controlling current density, duration of application, and electrode configuration.

Electromigration is the primary mechanism responsible for the iontophoretic transport of charged molecules. In this process, ionic drug species move in response to the applied electric field, migrating from the electrode of like charge toward the oppositely charged electrode. The extent of electromigration depends on the valence of the drug, its mobility in the formulation, and the fraction of the applied current carried by the drug ions. Drugs with higher charge density and mobility generally exhibit greater iontophoretic flux. However, competition with other ions present in the formulation or endogenous ions in the skin can reduce delivery efficiency, necessitating careful formulation design to optimize ionic composition.

Electroosmosis represents a secondary but often significant mechanism in iontophoretic drug delivery, particularly for neutral and weakly charged molecules. The skin possesses a net negative charge at physiological pH due to the presence of carboxylate and sulfate groups in skin proteins and lipids. Upon application of an electric field, this fixed negative charge induces a convective solvent flow from the anode to the cathode. This bulk movement of solvent can carry along dissolved drug molecules, thereby enhancing the transport of neutral, polar, and even large molecular weight compounds. Electroosmotic flow is especially relevant in the delivery of peptides and proteins, expanding the scope of iontophoresis beyond strictly ionic drugs.

In addition to electromigration and electroosmosis, iontophoresis may induce subtle, transient alterations in skin structure that further facilitate drug transport. At higher current densities or prolonged application times, localized changes in the lipid organization of the stratum corneum and increased pore hydration have been reported. These effects can resemble mild electroporation-like phenomena, leading to a temporary reduction in skin resistance. Importantly, such changes are typically reversible when clinically acceptable current levels are used, ensuring the safety of the technique.

The efficiency of iontophoretic drug delivery is influenced by multiple interrelated factors, including drug physicochemical properties, formulation characteristics, and electrical parameters. Drug-related factors such as molecular weight, charge, ionization state, and stability under an electric field play critical roles in determining transport efficiency. Formulation variables, including pH, buffer capacity, ionic strength, and the presence of competing ions, directly affect current distribution and drug mobility. Electrical parameters such as current density, electrode type, waveform (direct or pulsed current), and duration of application allow fine-tuning of drug delivery rates and depth of penetration.

The skin itself also contributes to variability in iontophoretic delivery. Differences in skin thickness, hydration, anatomical site, and pathological conditions can alter electrical resistance and transport pathways. Iontophoresis can exploit appendageal routes such as hair follicles and sweat glands, which offer lower electrical resistance and serve as preferential pathways for current flow and drug transport. This feature is particularly advantageous for localized drug delivery applications, including dermatological treatments and site-specific anticancer therapy.

Overall, the mechanism of iontophoretic drug delivery is distinguished by its ability to actively control drug transport through a combination of electrical driving forces and transient modulation of skin barrier properties. This unique mechanistic profile enables reproducible, adjustable, and non-invasive drug delivery, positioning iontophoresis as a promising platform for the transdermal administration of small molecules, biologics, and localized therapies in future clinical applications.[9], [10]

V. FORMULATION DESIGN FOR IONTOPHORETIC AND TRANSDERMAL SYSTEMS

Formulation design plays a pivotal role in determining the efficiency, safety, and clinical success of iontophoretic and transdermal drug delivery systems. Unlike conventional dosage forms, these systems must be engineered not only to ensure drug stability and bioavailability but also to interact optimally with the skin and, in the case of iontophoresis, with the applied electric field. Rational formulation design therefore requires an integrated understanding of drug physicochemical properties, skin barrier characteristics, and device-related parameters.

The selection of a suitable drug candidate is the first critical step in formulation development. Ideal candidates for transdermal and iontophoretic delivery typically possess adequate potency, allowing therapeutic effects at low doses. For iontophoresis in particular, drug ionization behavior is of paramount importance. Charged or ionizable drugs are generally more amenable to electromigration, while neutral molecules may benefit primarily from electroosmotic transport. Molecular weight, chemical stability, and susceptibility to degradation under electrical stimulation must also be carefully considered, especially for peptides, proteins, and other biologics.

The composition of the formulation strongly influences iontophoretic transport efficiency. pH and buffer systems are crucial parameters, as they determine the degree of drug ionization and thus directly affect electromigration. Formulations are often buffered to maintain the drug in its ionized form while minimizing skin irritation and avoiding excessive competition from buffer ions. The ionic strength of the formulation must be optimized to ensure sufficient electrical conductivity without significantly reducing the fraction of current carried by the drug ions. Excessive presence of competing electrolytes can markedly decrease delivery efficiency, highlighting the need for careful selection and concentration of excipients.

Polymeric carriers and matrices are widely employed in transdermal and iontophoretic formulations to provide controlled drug release, enhance skin contact, and improve patient comfort. Hydrogels based on polymers such as polyvinyl alcohol, polyacrylic acid, cellulose derivatives, and natural polymers are particularly popular due to their high-water content, biocompatibility, and favorable electrical conductivity. These systems can serve as drug reservoirs that maintain consistent contact with the skin and facilitate uniform current distribution during iontophoresis. For biologics, polymeric matrices can also provide a protective environment that enhances stability and preserves biological activity.

Permeation enhancers may be incorporated into formulations to complement physical enhancement methods. Although iontophoresis and other physical techniques can significantly increase drug transport, the judicious use of chemical enhancers can further reduce skin resistance and improve drug flux. Fatty acids, surfactants, and terpenes have been explored in combination with iontophoresis; however, their concentrations must be carefully controlled to avoid skin irritation or long-term barrier disruption. The synergistic use of chemical and physical enhancement strategies remains an active area of research.

For advanced transdermal systems, the design of the drug reservoir and patch architecture is equally important. Reservoir-type systems, matrix patches, and membrane-controlled designs have been adapted for iontophoretic applications to ensure precise dosing and minimize drug leakage. Electrode materials and configurations must be compatible with the formulation to prevent electrochemical degradation, pH shifts, or the formation of toxic by-products.

The incorporation of buffering layers and protective membranes can mitigate such issues and improve overall system stability.

Formulation design becomes particularly challenging when addressing the transdermal delivery of biologics, including peptides, proteins, and nucleic acids. These molecules are often sensitive to pH changes, temperature, and electrical stress. Strategies such as the use of stabilizing excipients, antioxidants, and encapsulation within nanoparticles or liposomes have been investigated to enhance stability and delivery efficiency. Combining iontophoresis with nanocarrier-based formulations or hydrogel systems has shown promise in improving skin penetration while preserving the functional integrity of biologics.

In addition to drug delivery performance, safety and patient acceptability are essential considerations in formulation design. Skin irritation, sensitization, and discomfort associated with prolonged application or electrical stimulation must be minimized. Formulations should maintain appropriate viscosity, adhesiveness, and hydration properties to ensure consistent skin contact and ease of use. Stability studies under electrical and environmental stress conditions are also necessary to support clinical translation and regulatory approval.

Overall, the formulation design for iontophoretic and transdermal systems is a multidisciplinary process that integrates pharmaceutical sciences, materials engineering, and device technology. Continued innovation in formulation strategies, coupled with advances in physical enhancement methods, is expected to expand the range of deliverable therapeutics and facilitate the development of safe, effective, and patient-friendly transdermal drug delivery platforms for future clinical applications.[11], [12]

VI. ANALYTICAL QUANTIFICATION AND EVALUATION TECHNIQUES

Robust analytical quantification and systematic evaluation techniques are essential for the development, optimization, and clinical translation of iontophoretic and transdermal drug delivery systems. These techniques provide critical insights into drug permeation kinetics, skin retention behavior, formulation performance, and safety, enabling meaningful comparison across different delivery strategies. Given the complex interplay between formulation variables, device parameters, and skin physiology, a combination of *in vitro*, *ex vivo*, and *in vivo* evaluation approaches is typically employed.

In vitro skin permeation studies represent the cornerstone of transdermal drug delivery research. The Franz diffusion cell is the most widely used experimental setup for assessing drug transport across excised animal or human skin. In this system, the skin is mounted between donor and receptor compartments, allowing controlled evaluation of drug permeation under defined conditions. For iontophoretic studies, electrodes are integrated into the donor and receptor chambers to enable precise application of electrical current.

Parameters such as cumulative drug permeation, steady-state flux, permeability coefficient, and lag time are calculated to characterize delivery efficiency. These studies are particularly valuable during early formulation screening due to their reproducibility and cost-effectiveness.

Ex vivo skin models offer a closer approximation to *in vivo* conditions while maintaining experimental control. Human cadaver skin, porcine skin, and other animal skins are commonly employed to evaluate drug permeation, skin deposition, and electrical resistance changes during iontophoresis. Tape stripping techniques are often used in conjunction with permeation studies to quantify drug distribution across different layers of the stratum corneum and viable epidermis. Such analyses provide important information on localized drug delivery, which is especially relevant for dermatological and anticancer applications where drug retention at the target site is desired.

In vivo evaluation is essential for confirming the clinical relevance of *in vitro* and *ex vivo* findings. Animal models are frequently used to assess pharmacokinetic profiles, bioavailability, and therapeutic efficacy following transdermal or iontophoretic administration. These studies enable measurement of systemic drug levels, local tissue concentrations, and duration of action. In the context of iontophoresis, *in vivo* studies also allow evaluation of skin tolerance, irritation, and reversibility of barrier disruption under repeated or prolonged current application. Although more resource-intensive, *in vivo* investigations are critical for advancing formulations toward clinical trials.

Accurate analytical quantification of drugs permeated through the skin or retained within skin layers is fundamental to all evaluation stages. High-performance liquid chromatography is the most commonly employed technique due to its sensitivity, specificity, and versatility. For complex formulations or low-dose delivery systems, liquid chromatography coupled with tandem mass spectrometry offers enhanced sensitivity and selectivity, enabling precise quantification of trace drug levels in biological matrices. Ultraviolet-visible spectroscopy may be used for preliminary screening or for drugs with strong chromophores, although it generally lacks the sensitivity required for advanced studies.

Skin safety and tolerability assessments form an integral component of the evaluation process. Measurements of transepidermal water loss, skin hydration, and electrical resistance are routinely employed to monitor changes in barrier function following iontophoresis or other physical enhancement methods. Visual scoring of erythema and edema, histopathological examination, and biochemical markers of inflammation provide further insights into skin irritation and potential tissue damage. These assessments are particularly important for formulations intended for repeated or long-term use.

Device performance and reproducibility are additional critical aspects of evaluation for iontophoretic systems. Current uniformity, electrode stability, and consistency of drug delivery across multiple applications must be rigorously

assessed. Advanced imaging techniques, such as confocal microscopy and fluorescence imaging, have been increasingly used to visualize drug penetration pathways and spatial distribution within the skin. Such techniques complement quantitative data and enhance mechanistic understanding of transdermal transport.

Overall, analytical quantification and evaluation techniques provide the scientific foundation for rational formulation development and device optimization in iontophoretic and transdermal drug delivery. The integration of advanced analytical tools with physiologically relevant models enables comprehensive assessment of delivery performance, safety, and therapeutic potential, thereby facilitating the translation of emerging transdermal technologies into clinically viable drug delivery platforms.[13], [14], [15]

VII. APPLICATIONS OF IONTOPHORETIC AND ADVANCED TRANSDERMAL SYSTEMS

Iontophoretic and advanced transdermal drug delivery systems have evolved from experimental platforms into clinically relevant technologies with diverse therapeutic applications. By enabling controlled, non-invasive, and targeted drug administration, these systems address many limitations associated with conventional oral and injectable routes. The ability to modulate drug flux, achieve localized delivery, and improve patient compliance has positioned iontophoresis and other physically enhanced transdermal approaches as valuable tools across multiple therapeutic domains.

One of the most established applications of iontophoretic systems is the delivery of small-molecule drugs for localized and systemic therapy. Iontophoresis has been widely explored for the administration of anti-inflammatory agents, analgesics, and corticosteroids in the management of musculoskeletal disorders, arthritis, and sports injuries. Localized delivery to underlying tissues allows high drug concentrations at the site of action while minimizing systemic exposure and associated adverse effects. In systemic applications, iontophoresis offers controlled dosing and rapid onset of action, making it particularly suitable for drugs requiring precise plasma concentration control.

Advanced transdermal systems have also demonstrated significant potential in the delivery of drugs targeting the central nervous system and cardiovascular conditions. By bypassing hepatic first-pass metabolism and gastrointestinal degradation, transdermal delivery can improve bioavailability and reduce interindividual variability. Iontophoretic modulation further enables on-demand drug administration, which is advantageous for managing conditions characterized by fluctuating therapeutic needs. The incorporation of programmable and wearable devices has enhanced the feasibility of long-term therapy and remote patient monitoring.

The delivery of biologics represents a major advancement in the application of iontophoretic and physically enhanced transdermal technologies. Peptides, proteins, and vaccines, which are traditionally administered via injection due to their poor oral bioavailability, have shown improved skin permeation when combined with iontophoresis, microneedles, or ultrasound. Microneedle-assisted transdermal vaccination has gained particular attention for its ability to target immune-rich skin layers, potentially enhancing immunogenicity while reducing pain and needle-associated risks. Iontophoresis complements these approaches by enabling controlled transport of charged biomolecules and improving dosing accuracy.

Dermatological applications constitute another important area of clinical relevance. Iontophoretic delivery has been investigated for the treatment of hyperhidrosis, localized infections, inflammatory skin disorders, and pigmentary conditions. The ability to deliver drugs directly into affected skin layers enhances therapeutic efficacy and reduces systemic side effects. Additionally, advanced transdermal systems facilitate sustained drug release and improved patient adherence in chronic dermatological conditions.

A particularly promising and emerging application of iontophoretic and advanced transdermal systems is localized drug delivery in anticancer therapy. Transdermal iontophoresis enables targeted delivery of chemotherapeutic agents to superficial tumors, skin cancers, and subcutaneous malignancies. This localized approach can achieve high intratumoral drug concentrations while minimizing systemic toxicity, which is a major limitation of conventional chemotherapy. Furthermore, iontophoresis can be combined with nanocarriers, hydrogels, or microneedles to enhance penetration depth and improve drug retention within tumor tissues. Such strategies hold significant potential for improving therapeutic outcomes and patient quality of life.

In addition to therapeutic delivery, iontophoretic systems have been applied in diagnostic and monitoring applications. Reverse iontophoresis, for example, has been explored for non-invasive sampling of biomarkers, electrolytes, and metabolites through the skin. This approach supports continuous monitoring of physiological parameters and drug levels, contributing to personalized medicine and closed-loop drug delivery systems.

Overall, the applications of iontophoretic and advanced transdermal systems continue to expand with advancements in formulation science, device engineering, and biomedical research. Their versatility in delivering small molecules, biologics, and anticancer agents, combined with improved safety and patient acceptability, underscores their growing importance in modern drug delivery and precision therapeutics. [16], [17], [18]

VIII. CLINICAL TRANSLATION AND REGULATORY CONSIDERATIONS

The successful clinical translation of iontophoretic and advanced transdermal drug delivery systems requires careful consideration of scientific, technical, regulatory, and patient-related factors. While substantial progress has been made at the preclinical level, the transition from laboratory research to routine clinical use remains complex due to the interdisciplinary nature of these systems, which integrate pharmaceutical formulations with medical devices. Addressing regulatory requirements and demonstrating clinical benefit are therefore critical steps in the development pathway.

One of the primary challenges in clinical translation is the classification of iontophoretic and advanced transdermal systems as combination products, encompassing both a drug and a delivery device. Regulatory authorities require comprehensive evaluation of both components individually as well as their integrated performance. The safety and efficacy of the active pharmaceutical ingredient must be demonstrated alongside the reliability, electrical safety, and biocompatibility of the device. This necessitates extensive preclinical testing to assess skin irritation, sensitization, electrical stability, and the reversibility of skin barrier disruption under clinically relevant conditions.

Clinical trial design for iontophoretic systems must account for device-related variables that can influence therapeutic outcomes. Parameters such as current density, duration of application, electrode placement, and user variability can affect drug delivery efficiency and reproducibility. Early-phase clinical studies often focus on pharmacokinetic profiling, dose-response relationships, and short-term safety, while later-phase trials emphasize therapeutic efficacy, long-term tolerability, and patient adherence. The ability to precisely control and monitor drug delivery represents a key advantage of iontophoresis but also introduces additional complexity in standardizing clinical protocols.

Regulatory agencies place significant emphasis on manufacturing quality and consistency for transdermal and iontophoretic products. Good Manufacturing Practice compliance must extend to both the formulation and the device components, including electrodes, power sources, and control systems. Stability studies must demonstrate that the drug maintains its potency and integrity under electrical stimulation and during prolonged storage. Furthermore, packaging and labeling requirements must clearly communicate usage instructions, contraindications, and safety precautions to minimize the risk of misuse or dosing errors.

Post-marketing surveillance and risk management are integral to the regulatory lifecycle of iontophoretic and advanced transdermal systems. Given their active mode of operation, ongoing monitoring of adverse events related to skin irritation, device malfunction, or user error is essential. Real-world data collected after approval can provide valuable

insights into long-term safety, patient acceptance, and device performance, informing future product improvements and regulatory updates.

Patient-centric considerations also play a crucial role in clinical translation. Ease of use, comfort during application, and aesthetic acceptability directly influence patient compliance, particularly for chronic therapies requiring repeated administration. Recent advancements in wearable, lightweight, and programmable transdermal devices have addressed many of these concerns, supporting broader adoption in outpatient and home-care settings. Training and education of both patients and healthcare professionals are essential to ensure correct device usage and maximize therapeutic benefit.

From a regulatory perspective, the evolving landscape of transdermal and iontophoretic technologies has prompted the development of specialized guidelines for combination products and innovative delivery systems. Regulatory frameworks increasingly encourage early dialogue between developers and authorities to clarify classification, data requirements, and clinical endpoints. Such interactions can streamline development timelines and reduce uncertainty during the approval process.

Overall, the clinical translation of iontophoretic and advanced transdermal drug delivery systems depends on the successful integration of robust scientific evidence, rigorous regulatory compliance, and patient-focused design. Continued collaboration among researchers, clinicians, industry stakeholders, and regulatory bodies is essential to overcome existing challenges and to realize the full therapeutic potential of these innovative drug delivery platforms in routine clinical practice. [19], [20]

IX. EMERGING TRENDS AND FUTURE PERSPECTIVES

The field of iontophoretic and advanced transdermal drug delivery is undergoing rapid transformation driven by innovations in materials science, biomedical engineering, digital health technologies, and pharmaceutical formulation. Emerging trends increasingly focus on improving delivery efficiency, expanding the range of deliverable therapeutics, and enhancing patient-centered care. These advances are expected to redefine the clinical utility of transdermal systems and position them as integral components of next-generation therapeutic strategies.

One of the most significant emerging trends is the development of wearable and smart iontophoretic devices capable of precise, programmable, and real-time drug delivery. Advances in microelectronics and flexible electronics have enabled the design of lightweight, skin-conformable systems that allow continuous or on-demand administration of drugs. Integration of sensors to monitor skin impedance, hydration, or physiological biomarkers offers the potential for closed-loop delivery systems in which drug release is dynamically adjusted based on patient-specific needs. Such platforms are particularly promising for chronic

diseases and conditions requiring individualized dosing regimens.

Fig 3 Smart Patch for Transdermal Drug Release

Hybrid transdermal systems that combine multiple physical enhancement techniques represent another important direction in future research. The synergistic integration of iontophoresis with microneedles, ultrasound, or thermal methods can enhance drug penetration while reducing the intensity of each individual stimulus, thereby improving safety and tolerability. These combination approaches are especially relevant for the delivery of biologics and macromolecules, where single enhancement techniques may be insufficient to achieve therapeutic drug levels. Continued exploration of such multifunctional platforms is expected to broaden the applicability of transdermal delivery to increasingly complex therapeutics.

Nanotechnology is also playing an increasingly influential role in shaping the future of transdermal drug delivery. Nanocarriers such as liposomes, polymeric nanoparticles, and nanogels can be engineered to improve drug stability, control release kinetics, and enhance skin penetration. When combined with iontophoresis, these nanosystems can facilitate deeper and more uniform drug distribution within skin and subcutaneous tissues. This approach holds particular promise for localized therapies, including the transdermal delivery of anticancer agents, where targeted drug accumulation and reduced systemic toxicity are critical objectives.

Personalized medicine is expected to significantly influence the evolution of iontophoretic and transdermal systems. Interindividual variability in skin properties, disease state, and therapeutic response necessitates adaptable delivery platforms capable of customization. Advances in digital health, artificial intelligence, and data analytics can support the development of personalized transdermal therapies by optimizing device settings and formulation parameters for individual patients. Such personalization may

improve treatment outcomes and reduce adverse effects, aligning transdermal delivery with broader trends in precision medicine.

Despite these promising developments, several challenges remain that must be addressed to fully realize the future potential of iontophoretic and advanced transdermal systems. Long-term safety under repeated or prolonged use, large-scale manufacturing of complex devices, and cost-effectiveness are critical considerations. Additionally, regulatory frameworks must continue to evolve to accommodate increasingly sophisticated combination products and digital health integrations. Early engagement with regulatory authorities and the adoption of standardized evaluation methodologies will be essential to facilitate clinical translation.

Looking ahead, the convergence of smart device technology, advanced formulations, and a deeper understanding of skin biology is expected to drive significant progress in transdermal drug delivery. Iontophoretic systems, in particular, are poised to play a central role in enabling non-invasive, controllable, and targeted therapies for a wide range of indications, including localized anticancer treatment. Continued interdisciplinary research and collaboration will be key to overcoming existing limitations and translating emerging innovations into clinically impactful solutions.[21], [22]

X. CONCLUSION

Iontophoretic and advanced transdermal drug delivery systems represent a significant advancement in the field of non-invasive drug administration, addressing many of the limitations associated with conventional oral and parenteral dosage forms. The formidable barrier properties of the skin, particularly the stratum corneum, have historically restricted transdermal delivery to a narrow range of small, lipophilic molecules. However, the integration of physical enhancement techniques such as iontophoresis, microneedles, and ultrasound has substantially expanded the therapeutic scope of transdermal systems, enabling efficient delivery of hydrophilic drugs, macromolecules, and emerging biologics.

Among these technologies, iontophoresis has emerged as a particularly versatile and controllable approach due to its ability to actively drive drug molecules across the skin using low-intensity electrical currents. A detailed understanding of its underlying mechanisms, including electromigration and electroosmosis, has facilitated rational formulation design and device optimization. Advances in formulation science, polymeric carriers, and hybrid delivery platforms have further improved drug stability, delivery efficiency, and patient acceptability. Concurrently, the development of robust analytical and evaluation techniques has strengthened the reliability of preclinical and clinical assessments, supporting more effective translation from laboratory research to clinical application.

The clinical potential of iontophoretic and advanced transdermal systems is evident across a wide range of

therapeutic areas, including pain management, dermatology, systemic therapy, and, notably, localized anticancer drug delivery. The ability to achieve targeted, site-specific drug administration while minimizing systemic exposure offers a compelling strategy for improving therapeutic outcomes and reducing adverse effects. Moreover, emerging trends such as wearable and smart transdermal devices, hybrid enhancement technologies, and personalized delivery platforms are poised to further transform this field.

Despite these advances, challenges related to long-term safety, manufacturing complexity, regulatory approval, and cost-effectiveness remain. Addressing these issues will require continued interdisciplinary collaboration among pharmaceutical scientists, engineers, clinicians, and regulatory authorities. With sustained innovation and rigorous clinical validation, iontophoretic and advanced transdermal drug delivery systems are well positioned to become integral components of future therapeutic strategies, offering patient-friendly, precise, and effective alternatives for the treatment of a broad spectrum of diseases.

REFERENCES

- [1]. U. Detamornrat *et al.*, 'Transdermal on-demand drug delivery based on an iontophoretic hollow microneedle array system', *Lab Chip*, vol. 23, no. 9, 2023, doi: 10.1039/d3lc00160a.
- [2]. Q. Fan, K. K. Sirkar, and B. Michniak, 'Iontophoretic transdermal drug delivery system using a conducting polymeric membrane', *J Memb Sci*, vol. 321, no. 2, 2008, doi: 10.1016/j.memsci.2008.04.061.
- [3]. C. Wu *et al.*, 'Self-Powered Iontophoretic Transdermal Drug Delivery System Driven and Regulated by Biomechanical Motions', *Adv Funct Mater*, vol. 30, no. 3, 2020, doi: 10.1002/adfm.201907378.
- [4]. M. A. Bolzinger, S. Briançon, J. Pelletier, and Y. Chevalier, 'Penetration of drugs through skin, a complex rate-controlling membrane', *Curr Opin Colloid Interface Sci*, vol. 17, no. 3, pp. 156–165, 2012, doi: 10.1016/j.cocis.2012.02.001.
- [5]. M. E. Lane, 'Skin penetration enhancers', *Int J Pharm*, vol. 447, no. 1–2, pp. 12–21, 2013, doi: 10.1016/j.ijpharm.2013.02.040.
- [6]. [6] X. Hu and H. He, 'A review of cosmetic skin delivery', 2021. doi: 10.1111/jocd.14037.
- [7]. 'CN104080438B - Skin-lightening cosmetic - Google Patents'. Accessed: Nov. 05, 2022. [Online]. Available: <https://patents.google.com/patent/CN104080438B/en?q=kojic+acid+hplc&oq=kojic+acid+hplc>
- [8]. Z. Palac, A. Engesland, G. E. Flaten, N. Škalko-Basnet, J. Filipović-Grčić, and Ž. Vanić, 'Liposomes for (trans)dermal drug delivery: The skin-PVPA as a novel in vitro stratum corneum model in formulation development', *J Liposome Res*, vol. 24, no. 4, 2014, doi: 10.3109/08982104.2014.899368.
- [9]. A. M. Helmy, 'Overview of recent advancements in the iontophoretic drug delivery to various tissues and organs', 2021. doi: 10.1016/j.jddst.2021.102332.
- [10]. Y. Wang, L. Zeng, W. Song, and J. Liu, 'Influencing factors and drug application of iontophoresis in transdermal drug delivery: an overview of recent progress', 2022. doi: 10.1007/s13346-021-00898-6.
- [11]. T. Gratieri, V. Santer, and Y. N. Kalia, 'Basic principles and current status of transcorneal and transscleral iontophoresis', 2017. doi: 10.1080/17425247.2017.1266334.
- [12]. N. Patel, S. Jain, P. Madan, and S. Lin, 'Application of design of experiments for formulation development and mechanistic evaluation of iontophoretic tacrine hydrochloride delivery', *Drug Dev Ind Pharm*, vol. 42, no. 11, 2016, doi: 10.1080/03639045.2016.1181646.
- [13]. L. Simon, J. Ospina, and K. Ita, 'Prediction of in-vivo iontophoretic drug release data from in-vitro experiments-insights from modeling', *Math Biosci*, vol. 270, 2015, doi: 10.1016/j.mbs.2015.10.011.
- [14]. M. Parrilla, U. Detamornrat, J. Domínguez-Robles, S. Tunca, R. F. Donnelly, and K. De Wael, 'Wearable Microneedle-Based Array Patches for Continuous Electrochemical Monitoring and Drug Delivery: Toward a Closed-Loop System for Methotrexate Treatment', *ACS Sens*, vol. 8, no. 11, 2023, doi: 10.1021/acssensors.3c01381.
- [15]. L. Simon, A. N. Weltner, Y. Wang, and B. Michniak, 'A parametric study of iontophoretic transdermal drug-delivery systems', *J Memb Sci*, vol. 278, no. 1–2, 2006, doi: 10.1016/j.memsci.2005.10.049.
- [16]. B. Olifirov *et al.*, 'Local Iontophoretic Application for Pharmacological Induction of Long-Term Synaptic Depression', *Bio Protoc*, vol. 15, no. 11, 2025, doi: 10.21769/BioProtoc.5338.
- [17]. I. Power, 'Fentanyl HCl iontophoretic transdermal system (ITS): Clinical application of iontophoretic technology in the management of acute postoperative pain', 2007. doi: 10.1093/bja/ael314.
- [18]. V. K. Singh, A. Anis, S. M. Al-Zahrani, D. K. Pradhan, and K. Pal, 'Molecular and electrochemical impedance spectroscopic characterization of the carbopol based bigel and its application in iontophoretic delivery of antimicrobials', *Int J Electrochem Sci*, vol. 9, no. 9, 2014, doi: 10.1016/s1452-3981(23)08151-8.
- [19]. K. Ita, 'Transdermal iontophoretic drug delivery: Advances and challenges', 2016. doi: 10.3109/1061186X.2015.1090442.
- [20]. M. Singhal, C. E. S. Jimenez, M. Lapteva, and Y. N. Kalia, 'Transdermal medical devices: Formulation aspects', in *Innovative Dosage Forms: Design and Development at Early Stage*, 2019. doi: 10.1002/9783527812172.ch8.
- [21]. P. S. Kumbhar *et al.*, 'Advances in Iontophoresis-Based Drug Delivery', in *Transdermal Applications of Minimally Invasive Drug Delivery Systems: Current Trends and Future Perspectives*, 2025. doi: 10.1007/978-981-96-6275-3_3.
- [22]. T. Y. Kim *et al.*, 'Smart contact lens systems for ocular drug delivery and therapy', 2023. doi: 10.1016/j.addr.2023.114817.