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Abstract: Malaria remains a critical public health challenge in Nigeria, where accurate diagnosis is essential for effective 

disease management and resource allocation. Discordance between rapid diagnostic tests (RDTs) and microscopy poses 

significant challenges for malaria surveillance programs, potentially leading to misdiagnosis and inappropriate treatment 

decisions. This study aimed to develop a machine learning model for predicting diagnostic test discordance between RDT 

and microscopy in malaria surveillance data from Bayelsa State, Nigeria. A dataset comprising 2,100 monthly observations 

from eight Local Government Areas spanning January 2019 to December 2024 was analyzed. The methodology incorporated 

Bland Altman agreement analysis, feature engineering with climate and health system variables, and gradient boosting 

classification with class weight balancing to address data imbalance. Model interpretation was achieved through SHapley 

Additive exPlanations (SHAP) analysis. The Bland Altman analysis revealed a mean difference of negative 2.33 percentage 

points between RDT and microscopy, with limits of agreement spanning negative 19.28 to positive 14.62 percentage points. 

The LightGBM classifier achieved an area under the receiver operating characteristic curve of 0.901, with precision of 0.67, 

recall of 0.74, and F1 score of 0.703. SHAP analysis identified rainfall, climate index, geographic location, and humidity as 

the most influential predictors of diagnostic discordance. This study contributes an interpretable machine learning 

framework for identifying conditions associated with diagnostic disagreement, potentially informing quality assurance 

protocols and targeted interventions in malaria endemic regions. 
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I. INTRODUCTION 

 

Malaria continues to represent one of the most 
significant infectious disease burdens globally, with the 

World Health Organization estimating 249 million cases and 

608,000 deaths in 2022 alone [1]. The African continent bears 

a disproportionate share of this burden, accounting for 

approximately 94 percent of global malaria cases and 95 

percent of malaria related deaths [2]. Within this context, 

Nigeria stands as the most affected nation, contributing 

roughly 27 percent of global malaria cases and 31 percent of 

global malaria deaths, making it the epicenter of the 

worldwide malaria epidemic [3]. The implications of this 

burden extend beyond immediate health consequences to 

encompass substantial socioeconomic impacts, including 
reduced productivity, increased healthcare expenditure, and 

hindered economic development across affected regions [4]. 

 

Accurate and timely diagnosis forms the cornerstone of 

effective malaria management and control strategies. The 

World Health Organization recommends parasitological 
confirmation of all suspected malaria cases before treatment, 

primarily through microscopy or rapid diagnostic tests 

(RDTs) [5]. Microscopy, involving the examination of 

Giemsa stained blood smears, has traditionally served as the 

gold standard for malaria diagnosis due to its ability to detect 

and quantify parasites while identifying species [6]. 

However, microscopy requires trained personnel, functional 

equipment, and consistent quality assurance, making it 

challenging to implement in resource limited settings. Rapid 

diagnostic tests emerged as an alternative diagnostic 

approach, offering ease of use, rapid results, and suitability 

for deployment in remote areas lacking laboratory 
infrastructure [7]. 

 

Despite the widespread adoption of both diagnostic 

methods, significant discordance between RDT and 
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microscopy results has been documented across various 

epidemiological settings [8]. Studies conducted in Nigeria 

have reported varying levels of agreement between these 

diagnostic approaches, with sensitivity and specificity of 

RDTs ranging considerably depending on factors such as 

parasite density, test brand, storage conditions, and operator 

expertise [9]. Analysis of data from the 2015 Nigeria Malaria 

Indicator Survey found that while significant agreement 
existed between RDT and microscopy outcomes, the 

discriminatory accuracy of RDT was weak, with positive 

predictive values particularly low in certain populations [10]. 

Similarly, RDT accuracy below 70 percent compared to 

microscopy has been reported in Nigerian community 

settings, raising concerns about sole reliance on RDTs for 

malaria diagnosis [11]. 

 

The consequences of diagnostic discordance extend 

beyond individual patient management to affect surveillance 

data quality, intervention planning, and resource allocation 
decisions. When RDT and microscopy yield conflicting 

results, healthcare workers face uncertainty regarding 

appropriate treatment decisions, potentially leading to either 

unnecessary antimalarial treatment or missed malaria cases 

[12]. At the population level, systematic differences between 

diagnostic methods can distort estimates of malaria burden, 

complicating efforts to monitor transmission trends and 

evaluate intervention effectiveness [13]. Understanding the 

factors that contribute to diagnostic discordance is therefore 

essential for improving malaria surveillance systems and 

ensuring accurate disease monitoring. 

 
Machine learning approaches have demonstrated 

considerable promise in addressing various challenges in 

malaria research, including case prediction, outbreak 

forecasting, and risk mapping [14]. Gradient boosting 

algorithms have been applied to predict malaria incidence 

using climate variability across endemic African countries, 

demonstrating the potential of ensemble learning methods for 

malaria related prediction tasks [15]. Deep learning 

architectures, including Long Short Term Memory (LSTM) 

networks, have been employed for temporal forecasting of 

malaria cases, capturing complex seasonal and climatic 
patterns influencing transmission dynamics [16]. An 

interpretable early warning system for malaria outbreaks in 

Bayelsa State using deep learning and climate data has 

demonstrated the feasibility of predictive modeling for 

malaria surveillance in the Niger Delta region [17]. However, 

the application of machine learning specifically to predict 

diagnostic test discordance remains largely unexplored, 

representing a significant gap in the literature. 

 

Furthermore, while machine learning models often 

achieve high predictive accuracy, their adoption in healthcare 

settings requires interpretability to enable clinical 
understanding and trust [18]. Explainable artificial 

intelligence (XAI) techniques, particularly SHAP (SHapley 

Additive exPlanations), provide model agnostic approaches 

for understanding feature contributions to predictions [19]. 

Empirical analysis of SHAP stability under data corruption 

across datasets and model architectures has provided 

methodological guidance for reliable interpretation of 

machine learning predictions [20]. Additionally, the 

integration of SHAP and LIME for transparent decision 

making has demonstrated practical approaches for 

interpreting complex models [21]. The integration of SHAP 

analysis with machine learning models offers opportunities to 

identify which environmental, temporal, and health system 

factors most strongly influence diagnostic agreement, 

potentially informing targeted quality improvement 
strategies. 

 

This study addresses the identified gap by developing 

and evaluating a machine learning framework for predicting 

diagnostic test discordance in malaria surveillance. The 

research focuses on Bayelsa State, located in the Niger Delta 

region of Nigeria, which experiences year round malaria 

transmission due to its tropical climate and extensive water 

bodies that support mosquito breeding [22]. The specific 

objectives of this study are threefold: first, to quantify the 

level of agreement between RDT and microscopy derived test 
positivity rates using Bland Altman analysis; second, to 

develop a gradient boosting classification model capable of 

predicting high discordance events; and third, to identify the 

key predictors of diagnostic discordance through SHAP 

based interpretation. 

 

The contributions of this research include: (1) the first 

application of machine learning to predict diagnostic test 

discordance in malaria surveillance at the subnational level in 

Nigeria; (2) a comprehensive agreement analysis between 

RDT and microscopy using established statistical methods; 

(3) an interpretable prediction framework that identifies 
actionable factors associated with diagnostic disagreement; 

and (4) insights that may inform quality assurance protocols 

and resource allocation for malaria diagnostic services. The 

findings have potential implications for improving 

surveillance data quality and supporting evidence based 

decision making in malaria control programs. 

 

II. LITERATURE REVIEW 

 

 Malaria Diagnostic Methods and Performance 

Evaluation 
The evaluation of malaria diagnostic performance has 

generated substantial research attention, particularly in 

endemic African settings where accurate diagnosis directly 

impacts treatment outcomes and surveillance quality. 

Microscopy examination of Giemsa stained blood films has 

historically served as the reference standard for malaria 

diagnosis, enabling parasite detection, species identification, 

and quantification of parasitemia [23]. However, the 

reliability of microscopy depends heavily on technician 

expertise, slide preparation quality, and equipment 

maintenance, factors that vary considerably across healthcare 

facilities [24]. Studies examining microscopy performance 
under field conditions have documented significant inter 

observer variability, with concordance rates between expert 

and routine microscopists often falling below optimal levels 

[25]. 

 

Rapid diagnostic tests based on 

immunochromatographic detection of malaria antigens, 
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particularly histidine rich protein 2 (HRP2), have been 

extensively evaluated against microscopy across diverse 

epidemiological contexts. Assessment of RDT performance 

in Nigerian communities found sensitivity of 94.3 percent but 

specificity of only 41.6 percent compared to microscopy, 

indicating substantial false positive rates [26]. The study 

highlighted that RDT performance varied with parasite 

density and transmission intensity, suggesting that a single 
performance benchmark may not apply across all settings. 

Evaluation of nested PCR, microscopy, and RDT for 

falciparum malaria detection in southwestern Nigeria 

reported near perfect agreement between microscopy and 

PCR but lower concordance for RDT based diagnosis [27]. 

 

The phenomenon of diagnostic discordance has been 

examined from multiple perspectives. Investigation of factors 

affecting RDT and microscopy agreement in Ogun State, 

Nigeria identified parasite density as a critical determinant, 

with agreement declining substantially at lower parasitemia 
levels [28]. Comparison of RDT performance across different 

endemicity levels found that accuracy metrics varied 

significantly by transmission setting, with implications for 

national diagnostic policies [29]. These studies collectively 

establish that diagnostic agreement is not uniform but rather 

influenced by biological, environmental, and operational 

factors that warrant systematic investigation. 

 

 Machine Learning Applications in Malaria Research 

Machine learning methodologies have been 

increasingly applied to malaria related prediction problems, 

demonstrating advantages over traditional statistical 
approaches for capturing complex nonlinear relationships. 

Extreme gradient boosting (XGBoost) has been employed to 

predict malaria incidence across six endemic African 

countries using climate variables, achieving strong predictive 

performance and highlighting the influence of temperature, 

rainfall, and humidity on transmission patterns [15]. The 

study demonstrated that ensemble tree based methods could 

effectively model the relationship between environmental 

conditions and malaria burden at national scales. 

 

Deep learning approaches have been explored for 
temporal prediction of malaria cases. LSTM networks have 

been applied to forecast malaria incidence in the Brazilian 

Amazon, finding that recurrent architectures captured 

seasonal patterns more effectively than traditional 

autoregressive models [16]. Similarly, research employing 

gated recurrent units achieved comparable performance while 

requiring less computational resources for training [30]. 

These temporal modeling studies emphasize the importance 

of accounting for seasonality and lagged relationships when 

predicting malaria related outcomes. 

 

Clinical prediction models using machine learning have 
also been developed for individual level malaria diagnosis. 

Demographic and environmental features have been used to 

predict malaria positivity in Nigerian patients, employing 

penalized logistic regression with sequential feature selection 

[31]. The study achieved area under the curve of 0.83, 

demonstrating that patient characteristics and environmental 

exposure factors could inform diagnostic predictions. 

Multiple machine learning algorithms including random 

forest and support vector machines have been applied to 

predict malaria prevalence using demographic health survey 

data, finding that random forest regression achieved 

coefficient of determination above 0.99 for prevalence 

estimation [32]. An explainable machine learning framework 

for income prediction with class imbalance optimization 

demonstrated methodological approaches applicable to 
imbalanced healthcare datasets such as malaria surveillance 

data [33]. 

 

 Explainable Artificial Intelligence in Healthcare 

The adoption of machine learning in healthcare settings 

necessitates interpretability to ensure clinical trust and enable 

actionable insights. SHAP values, based on cooperative game 

theory, provide theoretically grounded feature importance 

measures that satisfy desirable properties including local 

accuracy, missingness, and consistency [34]. It has been 

demonstrated that SHAP unifies several existing explanation 
methods under a single framework, enabling consistent 

interpretation across different model types [19]. The 

approach has been successfully applied in diverse healthcare 

contexts, from disease diagnosis to treatment response 

prediction. 

 

Explainable artificial intelligence models for malaria 

risk prediction in Kenya have emphasized the value of 

interpretable predictions for informing public health 

interventions [35]. The study employed SHAP analysis to 

identify key risk factors and demonstrated how feature 

importance rankings could guide resource allocation 
decisions. Systematic evaluation of SMOTE based 

techniques on medical datasets provided evidence that 

synthetic oversampling approaches may degrade model 

performance in certain healthcare contexts, with implications 

for handling class imbalance in diagnostic prediction tasks 

[36]. Similarly, research applying explainable methods to 

infectious disease prediction has shown that understanding 

model reasoning enhances both clinical acceptance and 

practical utility of machine learning systems [37]. 

 

 Research Gap and Study Positioning 
The reviewed literature reveals several gaps that this 

study addresses. First, while substantial research has 

examined diagnostic test performance, few studies have 

applied predictive modeling to understand when and why 

discordance occurs rather than simply quantifying its extent. 

Second, machine learning applications in malaria research 

have focused predominantly on case prediction and 

forecasting rather than diagnostic quality assessment. Third, 

the integration of explainable AI methods with diagnostic 

discordance prediction remains unexplored, limiting 

opportunities for identifying actionable factors that could 

inform quality improvement interventions. 
 

This study contributes to the literature by developing an 

interpretable machine learning framework specifically 

designed to predict diagnostic test discordance in malaria 

surveillance. By combining gradient boosting classification 

with SHAP based explanation, the research provides both 

predictive capability and mechanistic insights regarding 
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factors associated with diagnostic disagreement. The focus on 

Bayelsa State, Nigeria, addresses the need for subnational 

evidence from high burden settings where understanding 

diagnostic variability has direct programmatic implications. 

 

III. METHODOLOGY 

 

 Study Area and Data Source 
This study utilized malaria surveillance data from 

Bayelsa State, located in the Niger Delta region of southern 

Nigeria. Bayelsa State comprises eight Local Government 

Areas (LGAs): Brass, Ekeremor, Kolokuma Opokuma, 

Nembe, Ogbia, Sagbama, Southern Ijaw, and Yenagoa. The 

state experiences a tropical climate characterized by high 

rainfall, elevated humidity, and temperatures conducive to 

year round malaria transmission. The Niger Delta ecology, 

with extensive creeks, rivers, and wetlands, supports 

abundant mosquito breeding habitats, contributing to the high 

malaria burden in the region. 

 

The dataset comprised monthly aggregated malaria 

surveillance records spanning January 2019 through 

December 2024, totaling 2,100 observations across the eight 

LGAs. Data elements included test positivity rates from both 

microscopy and rapid diagnostic tests, climate variables 
(rainfall in millimeters, temperature in degrees Celsius, and 

relative humidity percentage), health system indicators 

(healthcare worker density, facility reporting rates, 

antimalarial stock levels), intervention coverage metrics 

(insecticide treated bed net coverage, indoor residual 

spraying coverage), and malaria case counts differentiated by 

severity. Table 1 presents the summary characteristics of the 

dataset. 

 

Table 1 Dataset Characteristics And Summary Statistics 

Characteristic Value 

Study Period January 2019 – December 2024 

Geographic Coverage Bayelsa State, Nigeria 

Total Observations 2,100 

Number of LGAs 8 

Observations per LGA 72 – 478 (median: 249) 

TPR Microscopy – Mean (SD) 28.5% (12.0%) 

TPR Microscopy – Range 8.3% – 72.2% 

TPR RDT – Mean (SD) 26.2% (10.4%) 

TPR RDT – Range 8.2% – 60.9% 

Absolute Discordance – Mean (SD) 6.8% (5.8%) 

Absolute Discordance – Median (IQR) 5.3% (2.2% – 9.4%) 

Low Discordance (≤10%) 1,619 (77.1%) 

High Discordance (>10%) 481 (22.9%) 

 
 Proposed Methodology Framework 

The proposed methodology comprises five sequential 

phases: data preprocessing, discordance quantification and 

agreement analysis, feature engineering, model development 

with class imbalance handling, and model interpretation 

through SHAP analysis. Figure 1 illustrates the complete 

methodological framework adopted in this study. 

 

 
Fig 1 Proposed Methodology Architecture for Diagnostic Discordance Prediction. 
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 Data Preprocessing 

Data preprocessing involved several sequential steps to 

ensure data quality and analytical readiness. Records with 

non distinct LGA identifiers were removed, retaining only 

observations from the eight recognized LGAs of Bayelsa 

State. Missing values in climate and health system variables 

were imputed using temporal spatial interpolation, whereby 

missing monthly values were estimated based on the median 
of the same month across available years within the same 

LGA. The Facility column, identified as containing entirely 

empty values, was excluded from analysis. Following 

preprocessing, the final analytical dataset contained 2,100 

complete observations with zero missing values. 

 

 Discordance Definition and Agreement Analysis 

Diagnostic discordance was operationally defined as the 

absolute difference between RDT derived and microscopy 

derived test positivity rates. The discordance value for each 

observation was calculated as: 
 

Absolute Discordance = |TPR_RDT − TPR_Microscopy| 

 

A threshold of 10 percentage points was established to 

classify observations into high discordance (absolute 

discordance greater than 10 percent) and low discordance 

(absolute discordance less than or equal to 10 percent) 

categories. This threshold was informed by clinical 

significance considerations, as differences exceeding 10 

percentage points may influence treatment decisions and 

resource allocation at the facility level. 

 
Agreement between the two diagnostic methods was 

assessed using Bland Altman analysis, which provides 

graphical and statistical evaluation of measurement 

agreement [38]. The mean difference (bias) and 95 percent 

limits of agreement were calculated as: 

 

Mean Difference (d̄) = Σ(TPR_RDT − TPR_Microscopy) / n 

 

Limits of Agreement = d̄ ± 1.96 × SD 

 

Additionally, Lin concordance correlation coefficient 
(CCC) was computed to quantify the agreement between the 

two measurements while accounting for both precision and 

accuracy [39]. The CCC ranges from negative one to positive 

one, with values closer to one indicating stronger agreement. 

 

 Feature Engineering 

Feature engineering was performed to create 

informative predictors from the raw surveillance data. 

Temporal features included cyclical encoding of month using 

sine and cosine transformations to capture seasonal patterns, 

binary wet season indicator (April through October), and 

normalized year to represent temporal trends. Climate 

features included a composite climate index calculated as the 
product of normalized rainfall and humidity to capture 

combined environmental favorability for mosquito breeding. 

Health system features were retained in their original form, 

including healthcare worker density, facility reporting rates, 

and intervention coverage percentages. Categorical LGA 

identifiers were encoded numerically to enable model 

processing. The complete feature set comprised 22 variables 

spanning temporal, climate, health system, and intervention 

domains. 

 

 Model Development 
The prediction task was formulated as binary 

classification, with the target variable indicating high 

discordance (class 1) versus low discordance (class 0). The 

dataset exhibited class imbalance with 77.1 percent low 

discordance and 22.9 percent high discordance observations. 

To address this imbalance, class weight balancing was 

employed rather than synthetic oversampling techniques, as 

preliminary experiments indicated that SMOTE based 

approaches led to substantial overfitting with cross validation 

to test set performance gaps exceeding 0.17. This finding 

aligns with recent evidence that SMOTE based techniques 

may degrade performance on medical datasets [36]. 
 

The data were partitioned into training (80 percent) and 

test (20 percent) sets using stratified random sampling to 

maintain class proportions. Features were standardized using 

z score normalization based on training set statistics to ensure 

consistent scaling while preventing data leakage. 

 

LightGBM (Light Gradient Boosting Machine) was 

selected as the primary classifier due to its efficiency with 

tabular data, native support for class weights, and strong 

performance on imbalanced classification tasks [40]. 
Hyperparameter optimization was conducted using 

randomized search with five fold stratified cross validation, 

exploring the parameter space defined in Table 2. The 

optimization objective was F1 score to balance precision and 

recall given the class imbalance context. 

 

Table 2 Hyperparameter Search Space And Optimal Values 

Parameter Search Space Optimal Value 

n_estimators [50, 100, 150] 100 

max_depth [2, 3, 4, 5] 5 

learning_rate [0.01, 0.05, 0.1] 0.1 

subsample [0.6, 0.7, 0.8] 0.6 

colsample_bytree [0.6, 0.7, 0.8] 0.6 

min_child_samples [10, 20, 30, 50] 10 

reg_alpha [0.1, 0.5, 1.0, 2.0] 0.5 

reg_lambda [0.1, 0.5, 1.0, 2.0] 0.1 

class_weight ['balanced'] balanced 
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 Model Evaluation 

Model performance was evaluated using multiple 

metrics appropriate for imbalanced classification. The area 

under the receiver operating characteristic curve (AUC ROC) 

measured overall discriminative ability. Precision, recall 

(sensitivity), and F1 score assessed performance on the 

minority high discordance class. Specificity and balanced 

accuracy provided additional perspective on classification 
performance across both classes. The gap between cross 

validation and test set performance was monitored to assess 

generalizability and detect potential overfitting. 

 

 SHAP Analysis for Model Interpretation 

Model interpretation was performed using SHAP 

(SHapley Additive exPlanations) values, which provide 

consistent and locally accurate feature attributions based on 

game theoretic principles [19]. For each prediction, SHAP 

values quantify the contribution of each feature to the 

deviation from the expected output. The TreeExplainer 

algorithm, optimized for tree ensemble models, was 

employed to compute exact SHAP values efficiently. 

Summary plots visualizing feature importance and directional 

effects were generated to identify the most influential 
predictors of diagnostic discordance. The stability of SHAP 

interpretations was considered in light of recent 

methodological guidance on SHAP reliability [20]. Figure 2 

presents the dataset summary and distribution characteristics 

used in the analysis. 

 

 
Fig 2 Dataset Characteristics and Distribution Summary. 

 

IV. RESULTS 

 

 Bland Altman Agreement Analysis 

The Bland Altman analysis revealed systematic 
differences between RDT and microscopy derived test 

positivity rates. The mean difference was negative 2.33 

percentage points (95 percent confidence interval: negative 

2.72 to negative 1.94), indicating that RDT consistently 

yielded lower positivity rates compared to microscopy on 

average. The standard deviation of differences was 8.64 

percentage points, resulting in 95 percent limits of agreement 

spanning from negative 19.28 to positive 14.62 percentage 

points. This wide range indicates substantial variability in the 

agreement between the two diagnostic methods across 
observations. 

 

Of the 2,100 observations, 93.9 percent fell within the 

limits of agreement, with 6.1 percent exhibiting extreme 

discordance beyond these bounds. The Lin concordance 

correlation coefficient was 0.689, indicating moderate 
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agreement between the methods. The Pearson correlation 

coefficient of 0.711 (p less than 0.001) suggested reasonable 

linear association, though the substantial deviation from 

perfect concordance (CCC equals 1.0) indicates that the two 

methods cannot be considered interchangeable for 

surveillance purposes. Figure 3 displays the Bland Altman 

plot alongside the concordance scatter plot. 

 

 
Fig 3 Bland Altman Agreement Analysis Showing (a) Difference Plot and (b) Concordance Scatter Plot. 

 

Analysis of discordance direction revealed that when 

diagnostic disagreement occurred, microscopy yielded higher 

positivity rates nearly three times more frequently than RDT. 

Specifically, microscopy was higher in 356 observations 

(17.0 percent of total), while RDT was higher in only 125 

observations (6.0 percent). The remaining 1,619 observations 

(77.1 percent) were classified as concordant based on the 10 
percentage point threshold. 

 

 Classification Model Performance 

The LightGBM classifier with class weight balancing 

achieved strong discriminative performance on the held out 

test set. Table 3 presents the comprehensive evaluation 

metrics. The model attained an AUC ROC of 0.901, 

indicating excellent ability to distinguish between high and 

low discordance cases. The F1 score of 0.703 reflects 

reasonable balance between precision (0.67) and recall (0.74) 

for the high discordance class. Importantly, the model 

demonstrated no evidence of overfitting, with test 
performance slightly exceeding cross validation performance 

(CV F1: 0.666, Test F1: 0.703), yielding a negative CV test 

gap of 0.037. 

 

Table 3 Model Performance Metrics on Test Set 

Metric Value 

AUC ROC 0.901 

Accuracy 0.857 

Precision (High Discordance) 0.670 

Recall (High Discordance) 0.740 

Specificity 0.892 

F1 Score 0.703 

Balanced Accuracy 0.816 

CV Test Gap −0.037 

 

The confusion matrix analysis revealed that the model 

correctly identified 289 of 324 low discordance cases (89.2 

percent) and 71 of 96 high discordance cases (74.0 percent). 

The model produced 35 false positives (low discordance 
cases incorrectly predicted as high) and 25 false negatives 

(high discordance cases incorrectly predicted as low). The 

relatively higher false positive rate compared to false 

negative rate suggests the model errs on the side of flagging 

potential discordance, which may be preferable in quality 

assurance applications where missing true discordance is 
more costly than investigating false alarms. Figure 4 presents 

the ROC curve and confusion matrix visualization. 
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Fig 4 Model Performance Visualization: (a) ROC Curve and (b) Confusion Matrix. 

 

 Feature Importance Analysis 

SHAP analysis identified climate and geographic 

factors as the dominant predictors of diagnostic discordance. 

Table 4 presents the top ten features ranked by mean absolute 

SHAP value. Rainfall emerged as the most influential 

predictor with mean absolute SHAP value of 0.379, followed 
by the composite climate index (0.322) and LGA encoded 

geographic identifier (0.275). Humidity and population 

density also contributed substantially to predictions, with 

mean absolute SHAP values of 0.246 and 0.241 respectively. 

Intervention coverage variables including indoor spraying 

and bed net coverage ranked lower, suggesting that 

environmental conditions exert stronger influence on 

diagnostic agreement than intervention program 
characteristics. 

 

Table 4 Top 10 Predictive Features Ranked by Shap Importance 

Rank Feature Mean |SHAP| 

1 Rainfall (mm) 0.379 

2 Climate Index 0.322 

3 LGA (Geographic) 0.275 

4 Humidity (%) 0.246 

5 Population Density 0.241 

6 Temperature (°C) 0.240 

7 Antimalarial Stock (%) 0.175 

8 Month (cosine) 0.140 

9 Indoor Spraying Coverage (%) 0.110 

10 Bed Net Coverage (%) 0.103 

 

The SHAP summary plot revealed directional 

relationships between features and discordance predictions. 

Higher rainfall values were associated with increased 

probability of high discordance, as indicated by positive 

SHAP values for high rainfall observations. Similarly, 

elevated humidity and climate index values pushed 

predictions toward the high discordance class. The 

geographic variable showed distinct patterns across LGAs, 

with certain locations consistently associated with higher 

discordance risk regardless of other factors. Seasonal patterns 

captured by the cosine transformed month variable indicated 

elevated discordance risk during the wet season months. 

Figure 5 displays the complete SHAP analysis results. 

https://doi.org/10.38124/ijisrt/26jan131
http://www.ijisrt.com/


Volume 11, Issue 1, January – 2026                   International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                                 https://doi.org/10.38124/ijisrt/26jan131 

 

 

IJISRT26JAN131                                                              www.ijisrt.com                   2243 

 
Fig 5 SHAP Feature Importance Analysis: (a) Beeswarm Plot Showing Directional Effects and (b) Summary Bar Plot. 

 

 Spatial and Temporal Patterns 

Spatial analysis revealed heterogeneous discordance 

rates across the eight LGAs of Bayelsa State. High 

discordance rates ranged from 13.0 percent in Brass to 37.5 

percent in Sagbama, indicating substantial geographic 

variation in diagnostic agreement. Notably, Sagbama 

exhibited discordance rates nearly three times higher than 

Brass, suggesting location-specific factors affecting 

diagnostic concordance. Seasonal analysis demonstrated that 

discordance rates were higher during the wet season (24.7 

percent) compared to the dry season (17.2 percent), with peak 

discordance observed in August (37.6 percent) and 

September (37.0 percent). This seasonal pattern is consistent 

with the identified importance of climate variables in the 

SHAP analysis. Figure 6 presents the spatial and temporal 

pattern visualizations. 

 

 
Fig 6 Spatial and Temporal Discordance Patterns: (a) LGA Distribution and (b) Seasonal Variation. 
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V. DISCUSSION 

 

This study developed and evaluated a machine learning 

framework for predicting diagnostic test discordance between 

RDT and microscopy in malaria surveillance data from 

Bayelsa State, Nigeria. The findings contribute novel insights 

into both the extent of diagnostic disagreement and the factors 

that influence when such discordance occurs. 
 

The Bland Altman analysis revealed a systematic bias 

of negative 2.33 percentage points, indicating that RDT 

consistently underestimates test positivity rates compared to 

microscopy. This finding aligns with observations from 

previous Nigerian studies that have documented variable 

RDT sensitivity depending on epidemiological conditions 

[10], [11]. The wide limits of agreement (negative 19.28 to 

positive 14.62 percentage points) indicate that while the 

average difference is modest, individual observations can 

exhibit substantial discordance in either direction. The 
concordance correlation coefficient of 0.689 represents 

moderate agreement, falling short of the threshold typically 

considered acceptable for method interchangeability. This 

has practical implications for surveillance programs that may 

switch between or combine diagnostic methods, as systematic 

adjustments may be necessary when aggregating data from 

different sources. 

 

The observation that microscopy yielded higher 

positivity rates than RDT approximately three times more 

frequently than the reverse pattern warrants consideration. 

This asymmetry may reflect several biological and technical 
factors. RDT sensitivity is known to decline at lower parasite 

densities, potentially missing infections that microscopy can 

detect [26]. Additionally, the persistence of HRP2 antigen 

following treatment can cause false positive RDT results, 

though this would increase rather than decrease RDT 

positivity. Storage conditions and test kit quality in field 

settings may also contribute to reduced RDT sensitivity [27]. 

The predominance of microscopy exceeding RDT suggests 

that quality assurance efforts should prioritize ensuring 

adequate RDT sensitivity rather than specificity in this 

setting. 
 

The LightGBM classifier achieved an AUC of 0.901, 

demonstrating excellent discriminative ability for identifying 

high discordance events. This performance compares 

favorably with machine learning applications in related 

malaria prediction contexts. Similar AUC values have been 

achieved for malaria incidence prediction using gradient 

boosting methods [15], while AUC of 0.83 has been reported 

for individual malaria diagnosis prediction [31]. The strong 

performance obtained here suggests that diagnostic 

discordance, despite its apparent complexity, exhibits 

learnable patterns that can be captured through supervised 
learning approaches. 

 

The use of class weight balancing rather than synthetic 

oversampling proved critical for model generalizability. 

Initial experiments with SMOTE and related techniques 

achieved higher cross validation scores but exhibited 

substantial performance degradation on the held out test set, 

with CV test gaps exceeding 0.17. The class weight approach 

yielded a negative CV test gap, indicating that the model 

performs at least as well on unseen data as during training. 

This finding has methodological implications for similar 

imbalanced classification problems in health surveillance 

contexts, where overfitting to synthetic samples may produce 

misleadingly optimistic performance estimates. This 

observation is consistent with recent systematic evaluations 
showing that SMOTE based techniques may degrade model 

performance on medical datasets [36]. 

 

The SHAP analysis identified climate variables as the 

dominant predictors of diagnostic discordance, with rainfall, 

humidity, and the composite climate index occupying the top 

positions in feature importance rankings. This finding has 

biological plausibility, as climate conditions affect both 

malaria transmission intensity and potentially RDT 

performance. High humidity and temperature can degrade 

RDT reagents if storage conditions are suboptimal, while 
increased rainfall is associated with higher mosquito 

abundance and parasite transmission [41]. The elevated 

discordance during wet season months (24.7 percent versus 

17.2 percent in dry season) provides corroborating evidence 

for the climate influence on diagnostic agreement. 

 

The prominence of the geographic (LGA) variable in the 

feature importance rankings indicates that location specific 

factors beyond climate contribute to discordance patterns. 

This could reflect differences in laboratory quality, health 

worker training, RDT storage practices, or local parasite 

characteristics across the eight LGAs. While this finding 
highlights the importance of spatial factors, it also represents 

a limitation in that the model may be learning location 

specific patterns that do not generalize to other geographic 

contexts. Future work should investigate the specific 

mechanisms underlying geographic variation in diagnostic 

agreement. 

 

Notably, intervention coverage variables including bed 

net distribution and indoor residual spraying ranked relatively 

low in feature importance despite their importance for 

malaria transmission reduction. This suggests that 
intervention program characteristics have limited direct 

influence on diagnostic agreement, which is instead driven 

primarily by environmental and facility level factors. This 

finding has programmatic relevance, indicating that 

improving diagnostic concordance requires targeted 

investments in laboratory quality assurance and RDT storage 

infrastructure rather than general malaria control 

intensification. 

 

The interpretable nature of the SHAP based analysis 

distinguishes this work from black box prediction approaches 

that may achieve similar accuracy without providing 
actionable insights. By identifying rainfall and climate 

conditions as key drivers of discordance, the analysis 

suggests that surveillance programs could implement season 

adjusted quality control protocols, with enhanced monitoring 

during wet season months when discordance risk is elevated. 

Similarly, the identification of geographic hotspots enables 
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targeted capacity building efforts in LGAs with consistently 

high discordance rates. 

 

VI. LIMITATIONS 

 

Several limitations should be considered when 

interpreting these findings. First, the study utilized 

aggregated monthly data rather than individual patient level 
records, which may mask within month variability and 

preclude analysis of individual level factors influencing 

diagnostic agreement. Second, the dataset exhibited uneven 

sampling across LGAs, with Nembe contributing 22.8 

percent of observations compared to only 3.4 percent from 

Sagbama. This imbalance could bias results toward patterns 

observed in more heavily sampled locations. Third, the 

prominence of the geographic variable in feature importance 

rankings suggests that the model may have learned location 

specific patterns that may not generalize to other states or 

regions of Nigeria. 
 

Fourth, the weak correlations between individual 

features and discordance (all below 0.25) indicate that 

diagnostic disagreement is influenced by complex 

interactions rather than single dominant factors, limiting the 

explanatory power of any predictive model. Fifth, the study 

lacked information on specific RDT brands, lot numbers, or 

storage conditions, factors known to influence RDT 

performance that could not be incorporated into the analysis. 

 

Fifth, while microscopy is treated as the reference 

standard, we acknowledge known inter-reader variability and 
operational errors, which may introduce label noise into 

discordance classification. 

 

Sixth, random train–test splitting may partially 

overestimate generalization due to spatial and temporal 

correlation in malaria transmission. However, the objective is 

operational screening within similar epidemiological 

contexts rather than geographic extrapolation. Future work 

will explore spatially blocked validation. Finally, the cross 

sectional nature of the evaluation prevents assessment of 

model performance under prospective deployment 
conditions, where data distributions may shift over time. 

 

VII. CONCLUSION AND 

RECOMMENDATIONS 

 

 Conclusion 

This study developed an interpretable machine learning 

framework for predicting diagnostic test discordance between 

RDT and microscopy in malaria surveillance. The Bland 

Altman analysis demonstrated moderate agreement between 

the diagnostic methods, with systematic bias toward lower 

RDT positivity rates and wide limits of agreement that 
preclude treating the methods as interchangeable. The 

LightGBM classifier achieved excellent discriminative 

performance with an AUC of 0.901 while maintaining 

generalizability as evidenced by the absence of overfitting. 

SHAP analysis identified climate variables, particularly 

rainfall and humidity, as the primary drivers of diagnostic 

discordance, with geographic location also contributing 

substantially to prediction. 

 

The findings contribute to the limited literature on 

applying machine learning to diagnostic quality assessment 

in malaria surveillance. By providing both predictive 

capability and mechanistic insights, the framework offers 

potential utility for informing quality assurance protocols and 
resource allocation decisions. The dominance of 

environmental factors in driving discordance suggests 

opportunities for season adjusted monitoring strategies that 

intensify quality control during periods of elevated 

discordance risk. 

 

 Recommendations 

Based on the study findings, the following 

recommendations are proposed for practice and future 

research. For malaria surveillance programs, implementing 

enhanced quality control protocols during wet season months 
when discordance risk is elevated could improve data quality. 

Investment in climate controlled RDT storage facilities may 

reduce environmentally driven performance degradation. 

Geographic areas identified as discordance hotspots should 

receive prioritized laboratory capacity building and 

microscopist training. 

 

For future research, external validation of the prediction 

model in other Nigerian states and across different 

epidemiological settings would establish generalizability 

bounds. Investigation of individual level factors through 

patient record linkage could identify additional predictors not 
captured in aggregated data. Integration of RDT brand and 

storage condition information would enable more granular 

analysis of test performance factors. Development of real 

time decision support tools incorporating the prediction 

model could facilitate prospective quality monitoring. 

Finally, health economic evaluation of targeted quality 

assurance strategies informed by model predictions would 

support resource allocation decisions. 
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