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Abstract: Malaria remains a critical public health challenge in Nigeria, where accurate diagnosis is essential for effective
disease management and resource allocation. Discordance between rapid diagnostic tests (RDTs) and microscopy poses
significant challenges for malaria surveillance programs, potentially leading to misdiagnosis and inappropriate treatment
decisions. This study aimed to develop a machine learning model for predicting diagnostic test discordance between RDT
and microscopy in malaria surveillance data from Bayelsa State, Nigeria. A dataset comprising 2,100 monthly observations
from eight Local Government Areas spanning January 2019 to December 2024 was analyzed. The methodology incorporated
Bland Altman agreement analysis, feature engineering with climate and health system variables, and gradient boosting
classification with class weight balancing to address data imbalance. Model interpretation was achieved through SHapley
Additive exPlanations (SHAP) analysis. The Bland Altman analysis revealed a mean difference of negative 2.33 percentage
points between RDT and microscopy, with limits of agreement spanning negative 19.28 to positive 14.62 percentage points.
The LightGBM classifier achieved an area under the receiver operating characteristic curve of 0.901, with precision of 0.67,
recall of 0.74, and F1 score of 0.703. SHAP analysis identified rainfall, climate index, geographic location, and humidity as
the most influential predictors of diagnostic discordance. This study contributes an interpretable machine learning
framework for identifying conditions associated with diagnostic disagreement, potentially informing quality assurance
protocols and targeted interventions in malaria endemic regions.
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I INTRODUCTION Accurate and timely diagnosis forms the cornerstone of

effective malaria management and control strategies. The

Malaria continues to represent one of the most
significant infectious disease burdens globally, with the
World Health Organization estimating 249 million cases and
608,000 deaths in 2022 alone [1]. The African continent bears
a disproportionate share of this burden, accounting for
approximately 94 percent of global malaria cases and 95
percent of malaria related deaths [2]. Within this context,
Nigeria stands as the most affected nation, contributing
roughly 27 percent of global malaria cases and 31 percent of
global malaria deaths, making it the epicenter of the
worldwide malaria epidemic [3]. The implications of this
burden extend beyond immediate health consequences to
encompass substantial socioeconomic impacts, including
reduced productivity, increased healthcare expenditure, and
hindered economic development across affected regions [4].
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World Health Organization recommends parasitological
confirmation of all suspected malaria cases before treatment,
primarily through microscopy or rapid diagnostic tests
(RDTs) [5]. Microscopy, involving the examination of
Giemsa stained blood smears, has traditionally served as the
gold standard for malaria diagnosis due to its ability to detect
and quantify parasites while identifying species [6].
However, microscopy requires trained personnel, functional
equipment, and consistent quality assurance, making it
challenging to implement in resource limited settings. Rapid
diagnostic tests emerged as an alternative diagnostic
approach, offering ease of use, rapid results, and suitability
for deployment in remote areas lacking laboratory
infrastructure [7].

Despite the widespread adoption of both diagnostic
methods, significant discordance between RDT and
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microscopy results has been documented across various
epidemiological settings [8]. Studies conducted in Nigeria
have reported varying levels of agreement between these
diagnostic approaches, with sensitivity and specificity of
RDTs ranging considerably depending on factors such as
parasite density, test brand, storage conditions, and operator
expertise [9]. Analysis of data from the 2015 Nigeria Malaria
Indicator Survey found that while significant agreement
existed between RDT and microscopy outcomes, the
discriminatory accuracy of RDT was weak, with positive
predictive values particularly low in certain populations [10].
Similarly, RDT accuracy below 70 percent compared to
microscopy has been reported in Nigerian community
settings, raising concerns about sole reliance on RDTs for
malaria diagnosis [11].

The consequences of diagnostic discordance extend
beyond individual patient management to affect surveillance
data quality, intervention planning, and resource allocation
decisions. When RDT and microscopy yield conflicting
results, healthcare workers face uncertainty regarding
appropriate treatment decisions, potentially leading to either
unnecessary antimalarial treatment or missed malaria cases
[12]. At the population level, systematic differences between
diagnostic methods can distort estimates of malaria burden,
complicating efforts to monitor transmission trends and
evaluate intervention effectiveness [13]. Understanding the
factors that contribute to diagnostic discordance is therefore
essential for improving malaria surveillance systems and
ensuring accurate disease monitoring.

Machine learning approaches have demonstrated
considerable promise in addressing various challenges in
malaria research, including case prediction, outbreak
forecasting, and risk mapping [14]. Gradient boosting
algorithms have been applied to predict malaria incidence
using climate variability across endemic African countries,
demonstrating the potential of ensemble learning methods for
malaria related prediction tasks [15]. Deep learning
architectures, including Long Short Term Memory (LSTM)
networks, have been employed for temporal forecasting of
malaria cases, capturing complex seasonal and climatic
patterns influencing transmission dynamics [16]. An
interpretable early warning system for malaria outbreaks in
Bayelsa State using deep learning and climate data has
demonstrated the feasibility of predictive modeling for
malaria surveillance in the Niger Delta region [17]. However,
the application of machine learning specifically to predict
diagnostic test discordance remains largely unexplored,
representing a significant gap in the literature.

Furthermore, while machine learning models often
achieve high predictive accuracy, their adoption in healthcare
settings requires interpretability to enable clinical
understanding and trust [18]. Explainable artificial
intelligence (XAIl) techniques, particularly SHAP (SHapley
Additive exPlanations), provide model agnostic approaches
for understanding feature contributions to predictions [19].
Empirical analysis of SHAP stability under data corruption
across datasets and model architectures has provided
methodological guidance for reliable interpretation of
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machine learning predictions [20]. Additionally, the
integration of SHAP and LIME for transparent decision
making has demonstrated practical approaches for
interpreting complex models [21]. The integration of SHAP
analysis with machine learning models offers opportunities to
identify which environmental, temporal, and health system
factors most strongly influence diagnostic agreement,
potentially informing targeted quality improvement
strategies.

This study addresses the identified gap by developing
and evaluating a machine learning framework for predicting
diagnostic test discordance in malaria surveillance. The
research focuses on Bayelsa State, located in the Niger Delta
region of Nigeria, which experiences year round malaria
transmission due to its tropical climate and extensive water
bodies that support mosquito breeding [22]. The specific
objectives of this study are threefold: first, to quantify the
level of agreement between RDT and microscopy derived test
positivity rates using Bland Altman analysis; second, to
develop a gradient boosting classification model capable of
predicting high discordance events; and third, to identify the
key predictors of diagnostic discordance through SHAP
based interpretation.

The contributions of this research include: (1) the first
application of machine learning to predict diagnostic test
discordance in malaria surveillance at the subnational level in
Nigeria; (2) a comprehensive agreement analysis between
RDT and microscopy using established statistical methods;
(3) an interpretable prediction framework that identifies
actionable factors associated with diagnostic disagreement;
and (4) insights that may inform quality assurance protocols
and resource allocation for malaria diagnostic services. The
findings have potential implications for improving
surveillance data quality and supporting evidence based
decision making in malaria control programs.

1. LITERATURE REVIEW

» Malaria Diagnostic Methods and Performance
Evaluation

The evaluation of malaria diagnostic performance has
generated substantial research attention, particularly in
endemic African settings where accurate diagnosis directly
impacts treatment outcomes and surveillance quality.
Microscopy examination of Giemsa stained blood films has
historically served as the reference standard for malaria
diagnosis, enabling parasite detection, species identification,
and quantification of parasitemia [23]. However, the
reliability of microscopy depends heavily on technician
expertise, slide preparation quality, and equipment
maintenance, factors that vary considerably across healthcare
facilities [24]. Studies examining microscopy performance
under field conditions have documented significant inter
observer variability, with concordance rates between expert
and routine microscopists often falling below optimal levels
[25].

Rapid diagnostic tests based on
immunochromatographic detection of malaria antigens,
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particularly histidine rich protein 2 (HRP2), have been
extensively evaluated against microscopy across diverse
epidemiological contexts. Assessment of RDT performance
in Nigerian communities found sensitivity of 94.3 percent but
specificity of only 41.6 percent compared to microscopy,
indicating substantial false positive rates [26]. The study
highlighted that RDT performance varied with parasite
density and transmission intensity, suggesting that a single
performance benchmark may not apply across all settings.
Evaluation of nested PCR, microscopy, and RDT for
falciparum malaria detection in southwestern Nigeria
reported near perfect agreement between microscopy and
PCR but lower concordance for RDT based diagnosis [27].

The phenomenon of diagnostic discordance has been
examined from multiple perspectives. Investigation of factors
affecting RDT and microscopy agreement in Ogun State,
Nigeria identified parasite density as a critical determinant,
with agreement declining substantially at lower parasitemia
levels [28]. Comparison of RDT performance across different
endemicity levels found that accuracy metrics varied
significantly by transmission setting, with implications for
national diagnostic policies [29]. These studies collectively
establish that diagnostic agreement is not uniform but rather
influenced by biological, environmental, and operational
factors that warrant systematic investigation.

» Machine Learning Applications in Malaria Research

Machine  learning  methodologies have been
increasingly applied to malaria related prediction problems,
demonstrating advantages over traditional statistical
approaches for capturing complex nonlinear relationships.
Extreme gradient boosting (XGBoost) has been employed to
predict malaria incidence across six endemic African
countries using climate variables, achieving strong predictive
performance and highlighting the influence of temperature,
rainfall, and humidity on transmission patterns [15]. The
study demonstrated that ensemble tree based methods could
effectively model the relationship between environmental
conditions and malaria burden at national scales.

Deep learning approaches have been explored for
temporal prediction of malaria cases. LSTM networks have
been applied to forecast malaria incidence in the Brazilian
Amazon, finding that recurrent architectures captured
seasonal patterns more effectively than traditional
autoregressive models [16]. Similarly, research employing
gated recurrent units achieved comparable performance while
requiring less computational resources for training [30].
These temporal modeling studies emphasize the importance
of accounting for seasonality and lagged relationships when
predicting malaria related outcomes.

Clinical prediction models using machine learning have
also been developed for individual level malaria diagnosis.
Demographic and environmental features have been used to
predict malaria positivity in Nigerian patients, employing
penalized logistic regression with sequential feature selection
[31]. The study achieved area under the curve of 0.83,
demonstrating that patient characteristics and environmental
exposure factors could inform diagnostic predictions.
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Multiple machine learning algorithms including random
forest and support vector machines have been applied to
predict malaria prevalence using demographic health survey
data, finding that random forest regression achieved
coefficient of determination above 0.99 for prevalence
estimation [32]. An explainable machine learning framework
for income prediction with class imbalance optimization
demonstrated methodological approaches applicable to
imbalanced healthcare datasets such as malaria surveillance
data [33].

» Explainable Artificial Intelligence in Healthcare

The adoption of machine learning in healthcare settings
necessitates interpretability to ensure clinical trust and enable
actionable insights. SHAP values, based on cooperative game
theory, provide theoretically grounded feature importance
measures that satisfy desirable properties including local
accuracy, missingness, and consistency [34]. It has been
demonstrated that SHAP unifies several existing explanation
methods under a single framework, enabling consistent
interpretation across different model types [19]. The
approach has been successfully applied in diverse healthcare
contexts, from disease diagnosis to treatment response
prediction.

Explainable artificial intelligence models for malaria
risk prediction in Kenya have emphasized the value of
interpretable predictions for informing public health
interventions [35]. The study employed SHAP analysis to
identify key risk factors and demonstrated how feature
importance rankings could guide resource allocation
decisions. Systematic evaluation of SMOTE based
techniques on medical datasets provided evidence that
synthetic oversampling approaches may degrade model
performance in certain healthcare contexts, with implications
for handling class imbalance in diagnostic prediction tasks
[36]. Similarly, research applying explainable methods to
infectious disease prediction has shown that understanding
model reasoning enhances both clinical acceptance and
practical utility of machine learning systems [37].

» Research Gap and Study Positioning

The reviewed literature reveals several gaps that this
study addresses. First, while substantial research has
examined diagnostic test performance, few studies have
applied predictive modeling to understand when and why
discordance occurs rather than simply quantifying its extent.
Second, machine learning applications in malaria research
have focused predominantly on case prediction and
forecasting rather than diagnostic quality assessment. Third,
the integration of explainable Al methods with diagnostic
discordance prediction remains unexplored, limiting
opportunities for identifying actionable factors that could
inform quality improvement interventions.

This study contributes to the literature by developing an
interpretable machine learning framework specifically
designed to predict diagnostic test discordance in malaria
surveillance. By combining gradient boosting classification
with SHAP based explanation, the research provides both
predictive capability and mechanistic insights regarding
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factors associated with diagnostic disagreement. The focus on
Bayelsa State, Nigeria, addresses the need for subnational
evidence from high burden settings where understanding
diagnostic variability has direct programmatic implications.

I1. METHODOLOGY

» Study Area and Data Source

This study utilized malaria surveillance data from
Bayelsa State, located in the Niger Delta region of southern
Nigeria. Bayelsa State comprises eight Local Government
Areas (LGAs): Brass, Ekeremor, Kolokuma Opokuma,
Nembe, Ogbia, Sagbama, Southern ljaw, and Yenagoa. The
state experiences a tropical climate characterized by high
rainfall, elevated humidity, and temperatures conducive to
year round malaria transmission. The Niger Delta ecology,
with extensive creeks, rivers, and wetlands, supports
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abundant mosquito breeding habitats, contributing to the high
malaria burden in the region.

The dataset comprised monthly aggregated malaria
surveillance records spanning January 2019 through
December 2024, totaling 2,100 observations across the eight
LGAs. Data elements included test positivity rates from both
microscopy and rapid diagnostic tests, climate variables
(rainfall in millimeters, temperature in degrees Celsius, and
relative humidity percentage), health system indicators
(healthcare worker density, facility reporting rates,
antimalarial stock levels), intervention coverage metrics
(insecticide treated bed net coverage, indoor residual
spraying coverage), and malaria case counts differentiated by
severity. Table 1 presents the summary characteristics of the
dataset.

Table 1 Dataset Characteristics And Summary Statistics

Characteristic

Value

Study Period

January 2019 — December 2024

Geographic Coverage

Bayelsa State, Nigeria

Total Observations 2,100
Number of LGAS 8
Observations per LGA 72 — 478 (median: 249)
TPR Microscopy — Mean (SD) 28.5% (12.0%)

TPR Microscopy — Range

8.3% - 72.2%

TPR RDT — Mean (SD)

26.2% (10.4%)

TPR RDT — Range

8.2% —60.9%

Absolute Discordance — Mean (SD)

6.8% (5.8%)

Absolute Discordance — Median (IQR)

5.3% (2.2% — 9.4%)

Low Discordance (<10%)

1,619 (77.1%)

High Discordance (>10%)

481 (22.9%)

» Proposed Methodology Framework

The proposed methodology comprises five sequential
phases: data preprocessing, discordance quantification and
agreement analysis, feature engineering, model development

with class imbalance handling, and model interpretation
through SHAP analysis. Figure 1 illustrates the complete
methodological framework adopted in this study.

Proposed Methodology Framework

Feature
Input Data Data

Engineering

(2,100 obs)
(22 features)

Preprocessing

S

L.

LightGBM Discordance High/
—
Classifier Prediction Low

—
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Temporal

AUC: 0.901

F1: 0.703

Recall: 0.74

2019-2024

8 LGAs Missing value
Bayelsa State imputation
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TPR = Test Positivity Rate | RDT = Rapid Diagnostic Test | LGA = Local Government Area | SHAP = SHapley Additive exPlanations
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Fig 1 Proposed Methodology Architecture for Diagnostic Discordance Prediction.
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» Data Preprocessing

Data preprocessing involved several sequential steps to
ensure data quality and analytical readiness. Records with
non distinct LGA identifiers were removed, retaining only
observations from the eight recognized LGAs of Bayelsa
State. Missing values in climate and health system variables
were imputed using temporal spatial interpolation, whereby
missing monthly values were estimated based on the median
of the same month across available years within the same
LGA. The Facility column, identified as containing entirely
empty values, was excluded from analysis. Following
preprocessing, the final analytical dataset contained 2,100
complete observations with zero missing values.

» Discordance Definition and Agreement Analysis

Diagnostic discordance was operationally defined as the
absolute difference between RDT derived and microscopy
derived test positivity rates. The discordance value for each
observation was calculated as:

Absolute Discordance = TPR_RDT — TPR_Microscopy]|

A threshold of 10 percentage points was established to
classify observations into high discordance (absolute
discordance greater than 10 percent) and low discordance
(absolute discordance less than or equal to 10 percent)
categories. This threshold was informed by clinical
significance considerations, as differences exceeding 10
percentage points may influence treatment decisions and
resource allocation at the facility level.

Agreement between the two diagnostic methods was
assessed using Bland Altman analysis, which provides
graphical and statistical evaluation of measurement
agreement [38]. The mean difference (bias) and 95 percent
limits of agreement were calculated as:

Mean Difference (d) = X(TPR_RDT — TPR_Muicroscopy) / n
Limits of Agreement = d + 1.96 x SD

Additionally, Lin concordance correlation coefficient
(CCC) was computed to quantify the agreement between the
two measurements while accounting for both precision and
accuracy [39]. The CCC ranges from negative one to positive
one, with values closer to one indicating stronger agreement.
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» Feature Engineering

Feature engineering was performed to create
informative predictors from the raw surveillance data.
Temporal features included cyclical encoding of month using
sine and cosine transformations to capture seasonal patterns,
binary wet season indicator (April through October), and
normalized year to represent temporal trends. Climate
features included a composite climate index calculated as the
product of normalized rainfall and humidity to capture
combined environmental favorability for mosquito breeding.
Health system features were retained in their original form,
including healthcare worker density, facility reporting rates,
and intervention coverage percentages. Categorical LGA
identifiers were encoded numerically to enable model
processing. The complete feature set comprised 22 variables
spanning temporal, climate, health system, and intervention
domains.

» Model Development

The prediction task was formulated as binary
classification, with the target variable indicating high
discordance (class 1) versus low discordance (class 0). The
dataset exhibited class imbalance with 77.1 percent low
discordance and 22.9 percent high discordance observations.
To address this imbalance, class weight balancing was
employed rather than synthetic oversampling techniques, as
preliminary experiments indicated that SMOTE based
approaches led to substantial overfitting with cross validation
to test set performance gaps exceeding 0.17. This finding
aligns with recent evidence that SMOTE based techniques
may degrade performance on medical datasets [36].

The data were partitioned into training (80 percent) and
test (20 percent) sets using stratified random sampling to
maintain class proportions. Features were standardized using
z score normalization based on training set statistics to ensure
consistent scaling while preventing data leakage.

LightGBM (Light Gradient Boosting Machine) was
selected as the primary classifier due to its efficiency with
tabular data, native support for class weights, and strong
performance on imbalanced classification tasks [40].
Hyperparameter  optimization was conducted using
randomized search with five fold stratified cross validation,
exploring the parameter space defined in Table 2. The
optimization objective was F1 score to balance precision and
recall given the class imbalance context.

Table 2 Hyperparameter Search Space And Optimal Values

Parameter Search Space Optimal Value
n_estimators [50, 100, 150] 100
max_depth [2,3,4,5] 5
learning_rate [0.01, 0.05, 0.1] 0.1
subsample [0.6, 0.7, 0.8] 0.6
colsample_bytree [0.6, 0.7, 0.8] 0.6
min_child_samples [10, 20, 30, 50] 10
reg_alpha [0.1, 0.5, 1.0, 2.0] 0.5
reg_lambda [0.1, 0.5, 1.0, 2.0] 0.1
class_weight ['balanced'] balanced
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» Model Evaluation

Model performance was evaluated using multiple
metrics appropriate for imbalanced classification. The area
under the receiver operating characteristic curve (AUC ROC)
measured overall discriminative ability. Precision, recall
(sensitivity), and F1 score assessed performance on the
minority high discordance class. Specificity and balanced
accuracy provided additional perspective on classification
performance across both classes. The gap between cross
validation and test set performance was monitored to assess
generalizability and detect potential overfitting.

» SHAP Analysis for Model Interpretation
Model interpretation was performed using SHAP
(SHapley Additive exPlanations) values, which provide
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consistent and locally accurate feature attributions based on
game theoretic principles [19]. For each prediction, SHAP
values quantify the contribution of each feature to the
deviation from the expected output. The TreeExplainer
algorithm, optimized for tree ensemble models, was
employed to compute exact SHAP values efficiently.
Summary plots visualizing feature importance and directional
effects were generated to identify the most influential
predictors of diagnostic discordance. The stability of SHAP
interpretations was considered in light of recent
methodological guidance on SHAP reliability [20]. Figure 2
presents the dataset summary and distribution characteristics
used in the analysis.
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Fig 2 Dataset Characteristics and Distribution Summary.

V. RESULTS

» Bland Altman Agreement Analysis

The Bland Altman analysis revealed systematic
differences between RDT and microscopy derived test
positivity rates. The mean difference was negative 2.33
percentage points (95 percent confidence interval: negative
2.72 to negative 1.94), indicating that RDT consistently
yielded lower positivity rates compared to microscopy on
average. The standard deviation of differences was 8.64

percentage points, resulting in 95 percent limits of agreement
spanning from negative 19.28 to positive 14.62 percentage
points. This wide range indicates substantial variability in the
agreement between the two diagnostic methods across
observations.

Of the 2,100 observations, 93.9 percent fell within the
limits of agreement, with 6.1 percent exhibiting extreme
discordance beyond these bounds. The Lin concordance
correlation coefficient was 0.689, indicating moderate
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agreement between the methods. The Pearson correlation
coefficient of 0.711 (p less than 0.001) suggested reasonable
linear association, though the substantial deviation from
perfect concordance (CCC equals 1.0) indicates that the two
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methods cannot be considered interchangeable for
surveillance purposes. Figure 3 displays the Bland Altman
plot alongside the concordance scatter plot.

(A) Bland-Altman Plot
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Fig 3 Bland Altman Agreement Analysis Showing (a) Difference Plot and (b) Concordance Scatter Plot.

Analysis of discordance direction revealed that when
diagnostic disagreement occurred, microscopy yielded higher
positivity rates nearly three times more frequently than RDT.
Specifically, microscopy was higher in 356 observations
(17.0 percent of total), while RDT was higher in only 125
observations (6.0 percent). The remaining 1,619 observations
(77.1 percent) were classified as concordant based on the 10
percentage point threshold.

» Classification Model Performance
The LightGBM classifier with class weight balancing
achieved strong discriminative performance on the held out

test set. Table 3 presents the comprehensive evaluation
metrics. The model attained an AUC ROC of 0.901,
indicating excellent ability to distinguish between high and
low discordance cases. The F1 score of 0.703 reflects
reasonable balance between precision (0.67) and recall (0.74)
for the high discordance class. Importantly, the model
demonstrated no evidence of overfitting, with test
performance slightly exceeding cross validation performance
(CV F1: 0.666, Test F1: 0.703), yielding a negative CV test
gap of 0.037.

Table 3 Model Performance Metrics on Test Set

Metric Value

AUC ROC 0.901
Accuracy 0.857
Precision (High Discordance) 0.670
Recall (High Discordance) 0.740
Specificity 0.892

F1 Score 0.703

Balanced Accuracy 0.816

CV Test Gap —0.037

The confusion matrix analysis revealed that the model
correctly identified 289 of 324 low discordance cases (89.2
percent) and 71 of 96 high discordance cases (74.0 percent).
The model produced 35 false positives (low discordance
cases incorrectly predicted as high) and 25 false negatives
(high discordance cases incorrectly predicted as low). The

NISRT26JAN131

relatively higher false positive rate compared to false
negative rate suggests the model errs on the side of flagging
potential discordance, which may be preferable in quality
assurance applications where missing true discordance is
more costly than investigating false alarms. Figure 4 presents
the ROC curve and confusion matrix visualization.
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» Feature Importance Analysis

SHAP analysis identified climate and geographic
factors as the dominant predictors of diagnostic discordance.
Table 4 presents the top ten features ranked by mean absolute
SHAP value. Rainfall emerged as the most influential
predictor with mean absolute SHAP value of 0.379, followed
by the composite climate index (0.322) and LGA encoded
geographic identifier (0.275). Humidity and population

OC Curve and (b) Confusion Matrix.

density also contributed substantially to predictions, with
mean absolute SHAP values of 0.246 and 0.241 respectively.
Intervention coverage variables including indoor spraying
and bed net coverage ranked lower, suggesting that
environmental conditions exert stronger influence on
diagnostic  agreement  than intervention  program
characteristics.

Table 4 Top 10 Predictive Features Ranked by Shap Importance

Rank Feature Mean |SHAP|

1 Rainfall (mm) 0.379

2 Climate Index 0.322

3 LGA (Geographic) 0.275

4 Humidity (%) 0.246

5 Population Density 0.241

6 Temperature (°C) 0.240

7 Antimalarial Stock (%) 0.175

8 Month (cosine) 0.140

9 Indoor Spraying Coverage (%) 0.110

10 Bed Net Coverage (%) 0.103
The SHAP summary plot revealed directional geographic variable showed distinct patterns across LGAS,

relationships between features and discordance predictions.
Higher rainfall values were associated with increased
probability of high discordance, as indicated by positive
SHAP values for high rainfall observations. Similarly,
elevated humidity and climate index values pushed
predictions toward the high discordance class. The
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with certain locations consistently associated with higher
discordance risk regardless of other factors. Seasonal patterns
captured by the cosine transformed month variable indicated
elevated discordance risk during the wet season months.
Figure 5 displays the complete SHAP analysis results.
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(A) SHAP Summary Plot
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Fig 5 SHAP Feature Importance Analysis: (a) Beeswarm Plot Showing Directional Effects and (b) Summary Bar Plot.

» Spatial and Temporal Patterns

Spatial analysis revealed heterogeneous discordance
rates across the eight LGAs of Bayelsa State. High
discordance rates ranged from 13.0 percent in Brass to 37.5
percent in Sagbama, indicating substantial geographic
variation in diagnostic agreement. Notably, Sagbama
exhibited discordance rates nearly three times higher than

diagnostic concordance. Seasonal analysis demonstrated that
discordance rates were higher during the wet season (24.7
percent) compared to the dry season (17.2 percent), with peak
discordance observed in August (37.6 percent) and
September (37.0 percent). This seasonal pattern is consistent
with the identified importance of climate variables in the
SHAP analysis. Figure 6 presents the spatial and temporal

Brass, suggesting location-specific factors affecting pattern visualizations.
(a) Spatial Distribution by LGA (b) Temporal Variation by Month
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Fig 6 Spatial and Temporal Discordance Patterns: (a) LGA Distribution and (b) Seasonal Variation.
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V. DISCUSSION

This study developed and evaluated a machine learning
framework for predicting diagnostic test discordance between
RDT and microscopy in malaria surveillance data from
Bayelsa State, Nigeria. The findings contribute novel insights
into both the extent of diagnostic disagreement and the factors
that influence when such discordance occurs.

The Bland Altman analysis revealed a systematic bias
of negative 2.33 percentage points, indicating that RDT
consistently underestimates test positivity rates compared to
microscopy. This finding aligns with observations from
previous Nigerian studies that have documented variable
RDT sensitivity depending on epidemiological conditions
[10], [11]. The wide limits of agreement (negative 19.28 to
positive 14.62 percentage points) indicate that while the
average difference is modest, individual observations can
exhibit substantial discordance in either direction. The
concordance correlation coefficient of 0.689 represents
moderate agreement, falling short of the threshold typically
considered acceptable for method interchangeability. This
has practical implications for surveillance programs that may
switch between or combine diagnostic methods, as systematic
adjustments may be necessary when aggregating data from
different sources.

The observation that microscopy Yielded higher
positivity rates than RDT approximately three times more
frequently than the reverse pattern warrants consideration.
This asymmetry may reflect several biological and technical
factors. RDT sensitivity is known to decline at lower parasite
densities, potentially missing infections that microscopy can
detect [26]. Additionally, the persistence of HRP2 antigen
following treatment can cause false positive RDT results,
though this would increase rather than decrease RDT
positivity. Storage conditions and test kit quality in field
settings may also contribute to reduced RDT sensitivity [27].
The predominance of microscopy exceeding RDT suggests
that quality assurance efforts should prioritize ensuring
adequate RDT sensitivity rather than specificity in this
setting.

The LightGBM classifier achieved an AUC of 0.901,
demonstrating excellent discriminative ability for identifying
high discordance events. This performance compares
favorably with machine learning applications in related
malaria prediction contexts. Similar AUC values have been
achieved for malaria incidence prediction using gradient
boosting methods [15], while AUC of 0.83 has been reported
for individual malaria diagnosis prediction [31]. The strong
performance obtained here suggests that diagnostic
discordance, despite its apparent complexity, exhibits
learnable patterns that can be captured through supervised
learning approaches.

The use of class weight balancing rather than synthetic
oversampling proved critical for model generalizability.
Initial experiments with SMOTE and related techniques
achieved higher cross validation scores but exhibited
substantial performance degradation on the held out test set,
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with CV test gaps exceeding 0.17. The class weight approach
yielded a negative CV test gap, indicating that the model
performs at least as well on unseen data as during training.
This finding has methodological implications for similar
imbalanced classification problems in health surveillance
contexts, where overfitting to synthetic samples may produce
misleadingly optimistic performance estimates. This
observation is consistent with recent systematic evaluations
showing that SMOTE based techniques may degrade model
performance on medical datasets [36].

The SHAP analysis identified climate variables as the
dominant predictors of diagnostic discordance, with rainfall,
humidity, and the composite climate index occupying the top
positions in feature importance rankings. This finding has
biological plausibility, as climate conditions affect both
malaria transmission intensity and potentially RDT
performance. High humidity and temperature can degrade
RDT reagents if storage conditions are suboptimal, while
increased rainfall is associated with higher mosquito
abundance and parasite transmission [41]. The elevated
discordance during wet season months (24.7 percent versus
17.2 percent in dry season) provides corroborating evidence
for the climate influence on diagnostic agreement.

The prominence of the geographic (LGA) variable in the
feature importance rankings indicates that location specific
factors beyond climate contribute to discordance patterns.
This could reflect differences in laboratory quality, health
worker training, RDT storage practices, or local parasite
characteristics across the eight LGAs. While this finding
highlights the importance of spatial factors, it also represents
a limitation in that the model may be learning location
specific patterns that do not generalize to other geographic
contexts. Future work should investigate the specific
mechanisms underlying geographic variation in diagnostic
agreement.

Notably, intervention coverage variables including bed
net distribution and indoor residual spraying ranked relatively
low in feature importance despite their importance for
malaria transmission reduction. This suggests that
intervention program characteristics have limited direct
influence on diagnostic agreement, which is instead driven
primarily by environmental and facility level factors. This
finding has programmatic relevance, indicating that
improving diagnostic concordance requires targeted
investments in laboratory quality assurance and RDT storage
infrastructure rather than general malaria control
intensification.

The interpretable nature of the SHAP based analysis
distinguishes this work from black box prediction approaches
that may achieve similar accuracy without providing
actionable insights. By identifying rainfall and climate
conditions as key drivers of discordance, the analysis
suggests that surveillance programs could implement season
adjusted quality control protocols, with enhanced monitoring
during wet season months when discordance risk is elevated.
Similarly, the identification of geographic hotspots enables
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targeted capacity building efforts in LGAs with consistently
high discordance rates.

VI. LIMITATIONS

Several limitations should be considered when
interpreting these findings. First, the study utilized
aggregated monthly data rather than individual patient level
records, which may mask within month variability and
preclude analysis of individual level factors influencing
diagnostic agreement. Second, the dataset exhibited uneven
sampling across LGAs, with Nembe contributing 22.8
percent of observations compared to only 3.4 percent from
Sagbama. This imbalance could bias results toward patterns
observed in more heavily sampled locations. Third, the
prominence of the geographic variable in feature importance
rankings suggests that the model may have learned location
specific patterns that may not generalize to other states or
regions of Nigeria.

Fourth, the weak correlations between individual
features and discordance (all below 0.25) indicate that
diagnostic  disagreement is influenced by complex
interactions rather than single dominant factors, limiting the
explanatory power of any predictive model. Fifth, the study
lacked information on specific RDT brands, lot numbers, or
storage conditions, factors known to influence RDT
performance that could not be incorporated into the analysis.

Fifth, while microscopy is treated as the reference
standard, we acknowledge known inter-reader variability and
operational errors, which may introduce label noise into
discordance classification.

Sixth, random train-test splitting may partially
overestimate generalization due to spatial and temporal
correlation in malaria transmission. However, the objective is
operational screening within  similar epidemiological
contexts rather than geographic extrapolation. Future work
will explore spatially blocked validation. Finally, the cross
sectional nature of the evaluation prevents assessment of
model performance under prospective deployment
conditions, where data distributions may shift over time.

VII. CONCLUSION AND
RECOMMENDATIONS

» Conclusion

This study developed an interpretable machine learning
framework for predicting diagnostic test discordance between
RDT and microscopy in malaria surveillance. The Bland
Altman analysis demonstrated moderate agreement between
the diagnostic methods, with systematic bias toward lower
RDT positivity rates and wide limits of agreement that
preclude treating the methods as interchangeable. The
LightGBM classifier achieved excellent discriminative
performance with an AUC of 0.901 while maintaining
generalizability as evidenced by the absence of overfitting.
SHAP analysis identified climate variables, particularly
rainfall and humidity, as the primary drivers of diagnostic
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discordance, with geographic location also contributing
substantially to prediction.

The findings contribute to the limited literature on
applying machine learning to diagnostic quality assessment
in malaria surveillance. By providing both predictive
capability and mechanistic insights, the framework offers
potential utility for informing quality assurance protocols and
resource allocation decisions. The dominance of
environmental factors in driving discordance suggests
opportunities for season adjusted monitoring strategies that
intensify quality control during periods of elevated
discordance risk.

» Recommendations

Based on the study findings, the following
recommendations are proposed for practice and future
research. For malaria surveillance programs, implementing
enhanced quality control protocols during wet season months
when discordance risk is elevated could improve data quality.
Investment in climate controlled RDT storage facilities may
reduce environmentally driven performance degradation.
Geographic areas identified as discordance hotspots should
receive prioritized laboratory capacity building and
microscopist training.

For future research, external validation of the prediction
model in other Nigerian states and across different
epidemiological settings would establish generalizability
bounds. Investigation of individual level factors through
patient record linkage could identify additional predictors not
captured in aggregated data. Integration of RDT brand and
storage condition information would enable more granular
analysis of test performance factors. Development of real
time decision support tools incorporating the prediction
model could facilitate prospective quality monitoring.
Finally, health economic evaluation of targeted quality
assurance strategies informed by model predictions would
support resource allocation decisions.
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