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Abstract: In contrast to existing studies on thermal criticality, which are limited to single-cylinder configurations, this
study examines bimolecular exothermic reactions in finite concentric cylinders subject to asymmetric and Neumann
boundary conditions. The nonlinear energy equation is first nondimensionalised and then solved using the Weighted
Residual Collocation Method (WRCM) with a six-term polynomial trial function implemented in Maple. The accuracy and
convergence of the WRCM are verified by comparison with the classical fourth-order Runge-Kutta (RK4) method,
yielding errors below 107" throughout the computational domain. The results indicate that an increase in the Frank—
Kamenetskii parameter causes a rapid rise in temperature, leading to eventual thermal runaway at criticality values of
0.780 for asymmetric conditions and 1.650 for Neumann conditions. Higher heat-loss parameters improve thermal
stability by enhancing boundary heat dissipation, whereas the initiation parameter significantly influences reaction
sensitivity and temperature gradients near the core. Furthermore, asymmetric boundary conditions generate higher peak
temperatures than Neumann conditions, owing to reduced heat removal. These findings provide useful design insights for
combustion chambers, catalytic reactors, and energy storage systems, highlighting how appropriate control of heat
dissipation can mitigate thermal runaway and improve operational safety.
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I INTRODUCTION

The reactive exothermic processes in cylindrical
arrangements are the basis for many modern technologies,
ranging from catalytic converters and chemical reactors to
heat-storage systems. These systems rely on precise control
of heat production and dispersion in order to maintain
operational stability. In practice, the dominant energy
dissipation in cylindrical geometry is the convective heat
loss at the boundary surfaces, rather than under idealised
adiabatic or isothermal conditions [1,2]. If the rate of heat
escape exceeds the rate of convective and thermal losses, a
heat runaway can occur, causing catastrophic temperature
increases and system failures [3,4].

Classical thermal explosion theory, especially the

Frank-Kamenetsky framework, provides a basic insight into
the instability phenomena, but it is often limited to non-
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monatomic kinetics and idealized boundary conditions,
Frank-Kamenestsky [5]. However, in the real world
chemical reactions - in particular, hydrocarbon oxidation,
catalytic conversion and energy storage reactions - are
usually bimolecular, which introduces a high non-linearity
in the equations governing the reactions [6,7]. This non-
linearity, combined with convective losses of heat, leads to
complex behaviour such as multiple steady state, ignition
delay and local temperature spikes, Mohan and Suresh [8].

Despite significant progress, limited studies have been
conducted on bimolecular reagents in concentric cylindrical
systems under mixed or asymmetric convective boundary
conditions. Many available models still rely on simplified
geometry and ignore the spatial asymmetry of the loss of
heat between the interior and exterior walls [9,10].
Moreover, while purely numerical models provide valuable
predictions, they often lack the transparency, readability and
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parametric sensitivity of semi-analytical methods, which are
still essential for non-linear thermal analysis [11,12]. The
use of weighted residual collocation methods (WRCM),
improved by Maple-based computing, has recently shown
great promise in solving non-linear boundary-value
problems effectively [13,8]

In this study, a semi-analytical framework is used for
modelling the thermal distribution and criticality of a
bimolecular exothermic reaction in a concentric flask with
convective losses of heat and effects on reaction initiation.
For obtaining temperature profiles and determining the
critical  Frank-Kamenetsky parameter associated with
thermal runaway, the weighted residual coefficient method
(WRCM) is used, together with a six-term polynomial test
function. The model systematically examines how the
variables of the temperature behaviour, (heat generation),
(convective heat loss coefficient) and (initiation parameter)
interact to shape the temperature behaviour under
asymmetric and mixed-type boundary conditions. The
findings provide key insights for optimising design and
assessing safety in reactive cabling systems such as
combustion reactors, catalytic converters and heat storage
modules, where efficient management of convective losses
of heat is crucial to maintain stability and avoid critical
thermal outages.

1. MATHEMATICAL FORMULATION

Consider an innovative modification and extension of
Lebelo et al.[2], who analyzed a thermal explosion
branched-chain model describing the chemistry of a highly
reactive ignition-time mixture at rest within an infinite
cylinder. In the present study, the model is reformulated for
a finite concentric cylindrical system in which heat transfer,
reaction Kinetics, and convective energy loss interact
nonlinearly. The chemical process is assumed to follow a
highly exothermic bimolecular reaction with Arrhenius-type
temperature dependence and an initiation rate proportional
to the reactant concentration. Before ignition, no significant
reactant depletion occurs, and the reactive mixture remains
spatially homogeneous. The system operates under non-
adiabatic conditions, with convective heat loss at the outer
boundary and controlled or insulated conditions at the inner
surface, thereby extending classical explosion theory to
more realistic engineering configurations. This formulation
captures the essential interplay between heat generation,
convective dissipation, and activation dynamics, providing a
framework for predicting thermal criticality and ignition
thresholds in reactive cylindrical systems. The foundational
principles and limitations of such nonadiabatic explosion
models are consistent with those described in the works of
Zeldovich, Frank-Kamenetskii, and contemporary nonlinear
thermal researchers [1,3,6,13].

NISRT26JAN1321

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1321

- ¢(T-T,)

Fig 1 Geometry of the Concentric Cylinder

Consider the geometry shown in Figure 1 which
represents the cross section of a concentric cylinder with
convective heat loss and bimolecular kinetic where r1 and r,
represents the radii ofthetwo cylinders sharing the
same center. The model’s boundary conditions were
categorized into two distinct types: Type-1, which as
isothermal walls and Type-2, which has isothermal
conditions at one end and insulation at the other end These
boundaries are theoretically classified as Dirichlet ,Mixed
and Robin boundary conditions. Following the procedures
of the work of Salawu and Okoya [2], the energy balance
equation representing the model is given as:

d?T 1dT - —., KT )" E
ar” Trar T QAO(th ex"(‘ﬁj
—¢(T —T,)+6A=0 1)

Subject to type 1 boundary condition given as:

Type 1; 'r(rl) ='r1 and 'r(l’z) ='|72 )

Type2; T(r) =T, and Z—Tr(rz) =0 (3)

Here, the thermal and species effect were taken to be
unidirectionally distributed, and both served as a function of
7. The parameters k, ¢, R, Ay, v, m, A, n, T, 0, Q and A
are, respectively, Boltzmann constant, heat of reaction, gas
constant, energy release per fuel mole, vibration frequency,
generalized rate of branched-chain order, Planck’s constant,
reaction branch order, temperature, initiation rate, reactive
species and order rate constant.

The following dimensional variables were used to
dimensionlized Equations (1)-(3)

WWW.ijisrt.com 2626


https://doi.org/10.38124/ijisrt/26jan1321
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

g ET-T) R, ¢

2 -+, A=
RT, E r, r,

(4)

The dimensionless form of the Equations (1), (2) and
(3) for the reactive species temperature was connected with
[14,15,16].

d ?+lﬁ+ AG"(1+ ab)" exp 6 +y-p6=0
drs rdr (1+ab)

®)

In Equation (5), the dimensionless terms 0, y,r, a, A B,
n and m, respectively, represent the temperature, initiation
rate, cylinder radius, activation energy, Frank—Kamenetskii,
convective heat-loss, the reaction order .and branched-chain
order

The boundary conditions in dimensionless terms can
be described as follows:

e Case 1: Asymmetric Dimensionless Conditions:
d(h) =a and 6(1.0)=b (6)

e Case 2: Mixed type 1 Dimensionless Conditions:
dée
o(h) = a and W(l) =0 (7

1. METHOD OF SOLUTION

The non-linear energy equation describing the thermal
distribution and the criticality of the bimolecular ignition
reaction in the concentric cylinder has been solved by the
weighted residual collocation method (WRCM). This semi-
analytical method is chosen for its effectiveness in resolving
non-linear boundary-value problems for which analytical
solutions are impractical [13].

To approximate the temperature field, a six-term
polynomial trial function was assumed in the form:

6
o(r)=> cr' ®)
i=1

Where ¢, (i=1,2,...,6) are unknown coefficients to be
determined. A six-term polynomial provides sufficient
flexibility to reproduce nonlinear temperature variations
without sacrificing numerical stability [13,17]. The choice
of polynomial form ensures smoothness and differentiability
throughout the radial domain, essential for accurate
representation of conduction and reaction terms.
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1) = . r, AS
exp(__J(Toa) r=— =14
a Ta

O(r)=c,r +c,r2 +c,r’ +c,r* +c,r’ +c,r°  (9)
Substituting equation (9) into the dimensionless energy
equation (5) gives the residual function:

2 1 2 3 4 5 6
d (Cl.i' SV e A ]
- +

R(r)= -

I df"
Ldleg* + eyt +eg° +e +og” +0°)
— e d +
r dr

1 2 ] 4 3 £\
A(CIJ 0,1 OO T+ T(l+
alef st vet se gt ser + o)

1 2 3 4 j § ’
(C‘]I' T + 0+ 05T 6, ]
= +v

i

cXp 1 2 ] A4 3 6
(L+aler +or +c0” +0,07 + 607 +¢ g

1 2 3 4 5 6
—}9({'1!' OO O T O T ] (10)

In the collocation approach, the residual (r) is forced to
vanish at a finite number of interior points r; within the
physical domain ri<rj<r,

R(r)=0,j=1,2,....N (11)

Where N equals the number of unknown coefficients in
the trial function. In this study, four internal collocation
points r={0.3, 0.4, 0.6, 0.8} are selected, providing uniform
coverage of the domain while avoiding singularities at +=0.
These points yield a well-conditioned algebraic system and
are consistent with previous nonlinear collocation
frameworks [18,3].

e (03) 46,037 +c'3(0.5)3+c4(0‘3)4+ci(0.3)5+cﬁ(0.3)6i]+

R(03)= i
( | ) p |
1dle,(03) +,(03) +65(03) +.,0.3)" +.¢(03) 4,03 J+

r dr

e 03 +6,(03) +¢,(03) +¢,03)* +¢,(03)° +¢,(03)° [0+

ole,(03) +6,(03) #6403 +¢,(03)" +(03) + ¢ (03 )"

o 81(0‘3)1%2(0.3)2+‘c3(0‘3)3+c4(0.3)4+cs(0‘3)5J:cﬁ(O.})ﬁ .,
(1+ale,(03) +6,03) +¢,03) +¢,03)" +¢,03) +¢,(03))

= Ble (0.3 +¢,037 +¢,03 +¢,03)" + 03 +¢,03)°)=0

(12)
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R(04)=

7
dj“

1dle,(0.4) +6,(04 #0504 +,04)° +c(04)" +c,(04) :]+

r

d}.

e (04) +¢,(04) +¢(0.4)" +¢,(04)° +5(04) +,(04)° [ 1+
ale,(0.4) +¢,(0.4) +¢,(04) +¢,(04)* +¢,(04) +¢,(04)° )"

e, (04) +¢,(04) +¢,(04) +¢,(0.4)" +¢,(04)° +¢

4

(1+ ale,(04)) +,(04)* +¢,(04)° +¢,(04) +,(04)° +

= Ble,04) +¢,(04)" + ¢, (04)° +¢,(04)° +¢,(04)° +¢,(04)°)=0

R(06)=

1

ar

1dlg 08) +¢,08) +¢08) +¢,06)" +¢;(08)"+¢(06) :]+

r

Ale,(06) +0,(06)" +¢,(0.6)

3

dr

+¢,(06) +¢5(0.6) +¢,06)* [ 1+
ole,(06) +¢,(06)* +¢,0.6)" +¢,(06)* +¢,(06) +¢,(0.6) )"
e(0.6) +0,(0.6) +¢,(06)" +¢,(0.6)" +¢5(0.6) +¢,(06)°

¥ (I+ale,(06) +¢,(0.6) +¢,(06)’ +¢,(0.6)" +¢,(0.6)° +¢,(06)°)
= Ble(06) +¢,(0.6) +¢,(06)° +¢,(0.6)" +¢,(06)° +¢,(06)° |0

2e08) +e,(08) 4,09+

¢,(08)} +¢,(08) +¢,08)

R(08)=

1 dle (08 +6,(08)" +¢,(08) +¢,(08)* +¢,(08) +(08)')

3

&

’

dr

+

e 08 +e,(087 +,(08)" +¢,(08)"+,(08) #2081+
2le08) +¢,(08) +¢,(08) +¢,08)" +¢,(08) +¢,08)°)"
(08" +0,(08) +¢,(08) +¢,08)" +5(08) +¢08)°

(1+le (08)' +¢,(08) +¢,(08)" +¢,(0." +¢,(08)" +¢,(08)°)

~Fle 08)"+¢,(08)" 46,08 +¢,09 +,(08) +¢,(08)° =0

e, (04) +¢,(04)" +¢,(04)° +¢,(04)" +,(04)° +¢,(04)°) .

(0.
+y
¢;04)°)

d2[2c1(0‘6)1+c2(0‘6)3+c3(0.6)3+c4(0.6)4+55(0.6)5+c5(0‘6)ﬁ:]+

-+

(13)

(14)

(15)
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Together with the two boundary conditions (equations
6-7), the collocation equations form a closed nonlinear
algebraic system for the coefficients c;.

0(0.)=¢,(00" +¢,(0.07 +¢,(00° +¢,(0.0* +¢,(09° +¢,(0.0)° =10 (16)

0(1.0) =, (L0)' +¢,(L0)* +,(L0)° +¢,(L0)* +¢,(L0)° +¢,(L0)* =20
17)

0'(L0) =, (L) +¢,(L0) +,(0L.0)° +¢,(L0)* +¢,(L0)° +¢,(L0)° =0(18)

This approach replaces the integration used in the
standard weighted residual method with pointwise
enforcement, simplifying computation while maintaining
high accuracy.

» Numerical Implementation

Nonlinear algebraic equations obtained by the
weighted residual-coil method have been solved in Maple
software using the Newton-Raphson iterative scheme with
the Fsolve and LinearAlgebra packages. Maple's symbolic
numerical framework improved Jacobian evaluation
accuracy and convergence for the nonlinear heat model. Its
visualization and follow-up tools also supported effective
monitoring of criticality parameters in a concentric ring
system [19,20,21,22,12].

Table 1 Pointwise Comparison Between WRCM (Degree 6) and RK4 Solutions with Computational
Default Values 2=0.1, y=0,5, f=0.5, m=0.5, n=1.0, a=0.2

r OwrcMm Ork4 Absolute Error
0.20 1.000000 1.000000 0.0 x 10°
0.30 1.142318 1.142317 9.3x 107
0.40 1.298574 1.298573 7.5x 107
0.50 1.468211 1.468210 6.5 x 107
0.60 1.650520 1.650519 5.5x 107
0.70 1.844634 1.844633 4.3x 107
0.80 2.049522 2.049522 2.9 x 107
0.90 2.263995 2.263995 1.7 x 107
1.00 2.000000 2.000000 0.0 x 10°
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The weighted residual collocation method (WRCM),
which uses a sixth-degree trial function, and the reference
fourth-order Runge—Kutta (RK4) method are compared in
Table 1. Throughout the whole computational region, the
absolute error is consistently low, and at the edges, it drops
to the limits of machine precision. This suggests that the two
approaches are in strong agreement. This behavior is
consistent with polynomial collocation methods' theoretical
convergence properties. It demonstrates that the steady
temperature field is accurately represented by the sixth-
degree  WRCM approximation. Similar benchmarking
techniques have been extensively employed in recent

https://doi.org/10.38124/ijisrt/26jan1321

research on nonlinear boundary-value problems and
numerical techniques based on collocation, with Runge—
Kutta schemes serving as standard solutions [23,24,25].

V. RESULTS AND DISCUSSION

The heat distribution of combustion reaction in a
concentric cylinder with heat loss and bimolecular is
presented for different boundary conditions. The results are
for the Asymmetric boundary condition and Neumann
boundary condition.

Table 2 Maximum Temperature 0(r)m.x for VVarious Parameters

/3 Y B Asymmetric Conditions 0(r)max Mixed Type 2 Conditions 0(r)max

0.1 0.5 0.5 2.000000 1.019173
0.3 2.011782 1.061132
0.4 2.055988 1.084236
1.0 2.104299 1.435297

1.5 2.151407 1.525634

0.6 1.977317 1.296616

0.7 1.902579 1.117403

The results demonstrate that as A increases from 0.1 to
3.0, 6 (r) max increases monotonically in both boundary
conditions. However, the asymmetric boundary condition
consistently produces higher temperature peaks than the
mixed condition. This behavior indicates that asymmetric
boundaries provide weaker heat dissipation, allowing faster
accumulation of thermal energy within the domain. These
trends agree with the findings of Lebelo et al. [2], who
reported similar behavior in exothermic reaction systems
with nonlinear boundary conditions, and with Adewale et
al.,, [13], who observed that higher heat-generation
parameters promote rapid temperature escalation in reactive
cylinders.

» Comparison Between Boundary Conditions

Table 2 reveals that Asymmetric boundary conditions
yield higher peak temperatures than Neumann condition.
This confirms that heat retention is strongest when no
convective loss occurs at the outer boundary Alhassan and
Musa [3]. The incorporating convective heat loss can
prevent critical temperature overshoot, a design strategy
supported by recent work on cylindrical heat-generating
systems [18,1].

» Parameters Effect on Exothermic Thermal Combustion
Figures 2-4 depict the thermal response of the
bimolecular reaction system under asymmetric boundary
conditions, where the outer wall allows partial heat
dissipation. As the Frank—Kamenetskii parameter (1)
increases from 0.1 to 0.4 (Figure 2), the temperature field
(r) rises sharply, showing the dominance of heat generation
over conduction. The nonlinear growth in temperature near
the inner wall reflects the autocatalytic nature of
bimolecular kinetics and aligns with findings that elevated A
values intensify thermal runaway [1]. The initiation
parameter (y) (Figure 2) further amplifies this effect by
promoting earlier reaction onset; higher y values result in

greater core heating, signifying enhanced ignition potential
[3,26]. Conversely, increasing the heat-loss coefficient (B)
from 0.5 to 0.7 (Figure 3) significantly reduces (r)
throughout the domain, confirming that convective heat loss
stabilizes the system by removing thermal energy more
efficiently. These asymmetric-boundary results corroborate
prior analyses showing that mixed or partially convective
surfaces mitigate runaway risk in reactive cylinders [13,6].

2-.
’,,..-'
181
s
16
— A=0.1
% ——A=D.2
A=0.3
14 — =04
1.2+
I
03 04 05 06 07 02 09 10
t

Fig 2 Variation of Temperature Distribution with A
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Fig 3 Influence of y on Core Temperature Gradient
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Fig 4 Effect of p on Temperature Field

Figures 5-7 illustrate the same parameters variations
under the Neumann (Mixed Type-1) boundary condition,
corresponding to an insulated wall where heat flux is
minimal. Under this constraint, temperature escalation is
more pronounced since the generated heat is trapped within
the domain. In Figure 4, rising A again produces steeper
gradients and lower stability thresholds, consistent with the
Frank-Kamenetskii [5] theory of critical thermal explosion.
The influence of y (Figure 6) becomes even stronger, as
higher initiation intensities rapidly trigger ignition without
sufficient external dissipation [6,3]. Figure 7 shows that
while increasing B slightly attenuates (r), the overall

NISRT26JAN1321
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temperature levels remain higher than in the asymmetric
case, confirming that thermal insulation aggravates
instability. Collectively, Figures 2—7 demonstrate that the
bimolecular mechanism magnifies nonlinear heat release,
and system stability depends critically on the interplay
among heat-generation (4), initiation (y), and heat-loss (8)
parameters. These findings support recent numerical models
using maple-based iterative solvers, which similarly reveal
that insulating or weakly convective boundaries accelerate
thermal runaway in reactive cylindrical systems [8,18].
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Fig 5 Temperature Profile for A
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Fig 6 Impact of y on Heat Accumulation
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Fig 7 Effect of p on Thermal Stability

» Thermal Criticality Analysis

Thermal criticality is the threshold state at which the
rate of heat released by the exothermic bimolecular reaction
balances the combined conductive and convective losses.
Past this point, an arbitrarily small rise in temperature can
trigger runaway reaction, producing rapid, uncontrolled
thermal escalation inside the concentric cylinder [6].
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In this model, the transition to runaway is
characterized through a critical Frank—Kamenetskii
parameter, Acit, defined via the turning-point condition on
the peak temperature:

2
| _g it S| 50, (18)
d/l A=Armax d

2/2
A=Amax

This criterion indicates that, at Agit , the growth of Omax
with A ceases to be locally linear and begins to accelerate
sharply, signaling the onset of instability.

A trial function, as defined in Equation (7), was
assumed in terms of

o(r)=c,r* +c,r? +c,re (19)

This is applied to the boundary conditions (5) and (6)
to obtain a modified 6(r) in the form 66(r),, . The
obtained modified temperature maximum was substituted
into the Equation (4) and evaluated with the default values
m = 0.5, y=0.5, =0.5,0=0.2,n=1.0,a=1.0,b=2.0and h
=0.2. Hence, a slice branch-chain formed in the direction (

O(r) ., ) With critical value , satisfying the range 0< A4 <

ﬂ/ cr.

Table 3 Critical Frank—Kamenetskii Parameter and Maximum Temperature for Different Boundary Conditions

Boundary Condition Acrit Omax
Asymmetric 0.780 3.4120
Neumann 1.650 1.9437

Table 3 indicates that the Asymmetric condition is
more prone to instability since a smaller Frank—Kamenetskii
parameter triggers thermal runaway. Conversely, the
Neumann boundary demonstrates greater stability because
heat retention is balanced by weaker conductive flux at the
wall [13,1].

» The Field 6(r) Becomes Strongly Nonlinear; Multiple
Steady Branches May Emerge.

e Temperature rises steeply near the core, indicating
localized ignition.

e Stronger convective heat lost (B=1) shifts Acit, delaying
runaway.

V. CONCLUSION

This study examined the thermal behavior of a
bimolecular combustion reaction in a concentric cylinder
using the Weighted Residual Collocation Method under
Asymmetric and Neumann boundary conditions. Results
showed that higher A increases temperature, while higher 3
enhances convective stability. The ignition parameter y
accelerates ignition and heat buildup, with the Neumann
boundary producing the highest temperature peaks. Overall,
maintaining balance between heat generation and dissipation

NISRT26JAN1321

is vital to prevent thermal runaway and ensure reactor
safety.

e The bimolecular nature amplifies the nonlinear
temperature rise, reducing the stability margin.

e Increasing P stabilises the system by reducing 0 (jmax.

e Increasing A increases heat generation, leading to sharp
thermal gradients and possible ignition.

e The WRCM -Maple approach accurately captured these
nonlinear thermal responses, aligning well with results
reported by Salawu and Okoya [3] and Adewale et al.,
[13].

Beyond theoretical development, this research extends
to provide a practical and predictive framework for
enhancing the safety and efficiency of nonlinear reactive
systems. The established relationship among the parameters
enables the optimization of reactor design, ensuring
temperature regulation below critical limits. supports the
prediction and control of ignition and extinction in catalytic
reactors, Li et al., [27], thermal management in lithium-ion
batteries Alma’asfa et al., [10], and stability in hydrogen and
biofuel energy systems, Rahman et al., [23]. It assists in
developing cooling strategies for combustion engines and
turbines, Chang et al., [28], assessing phase-change thermal
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storage performance, Ferreira et al., [11], and mitigating
runaway risks in chemical and nuclear reactors [29,30,31].
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