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Abstract: In contrast to existing studies on thermal criticality, which are limited to single-cylinder configurations, this 

study examines bimolecular exothermic reactions in finite concentric cylinders subject to asymmetric and Neumann 

boundary conditions. The nonlinear energy equation is first nondimensionalised and then solved using the Weighted 

Residual Collocation Method (WRCM) with a six-term polynomial trial function implemented in Maple. The accuracy and 

convergence of the WRCM are verified by comparison with the classical fourth-order Runge–Kutta (RK4) method, 

yielding errors below 10−7 throughout the computational domain. The results indicate that an increase in the Frank–

Kamenetskii parameter causes a rapid rise in temperature, leading to eventual thermal runaway at criticality values of 

0.780 for asymmetric conditions and 1.650 for Neumann conditions. Higher heat-loss parameters improve thermal 

stability by enhancing boundary heat dissipation, whereas the initiation parameter significantly influences reaction 

sensitivity and temperature gradients near the core. Furthermore, asymmetric boundary conditions generate higher peak 

temperatures than Neumann conditions, owing to reduced heat removal. These findings provide useful design insights for 

combustion chambers, catalytic reactors, and energy storage systems, highlighting how appropriate control of heat 

dissipation can mitigate thermal runaway and improve operational safety. 
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I. INTRODUCTION 

 

The reactive exothermic processes in cylindrical 

arrangements are the basis for many modern technologies, 

ranging from catalytic converters and chemical reactors to 

heat-storage systems. These systems rely on precise control 

of heat production and dispersion in order to maintain 

operational stability. In practice, the dominant energy 

dissipation in cylindrical geometry is the convective heat 

loss at the boundary surfaces, rather than under idealised 

adiabatic or isothermal conditions [1,2]. If the rate of heat 
escape exceeds the rate of convective and thermal losses, a 

heat runaway can occur, causing catastrophic temperature 

increases and system failures [3,4]. 

 

Classical thermal explosion theory, especially the 

Frank-Kamenetsky framework, provides a basic insight into 

the instability phenomena, but it is often limited to non-

monatomic kinetics and idealized boundary conditions, 

Frank-Kamenestsky [5]. However, in the real world 

chemical reactions - in particular, hydrocarbon oxidation, 

catalytic conversion and energy storage reactions - are 

usually bimolecular, which introduces a high non-linearity 

in the equations governing the reactions [6,7]. This non-

linearity, combined with convective losses of heat, leads to 

complex behaviour such as multiple steady state, ignition 

delay and local temperature spikes, Mohan and Suresh [8]. 

 

Despite significant progress, limited studies have been 
conducted on bimolecular reagents in concentric cylindrical 

systems under mixed or asymmetric convective boundary 

conditions. Many available models still rely on simplified 

geometry and ignore the spatial asymmetry of the loss of 

heat between the interior and exterior walls [9,10]. 

Moreover, while purely numerical models provide valuable 

predictions, they often lack the transparency, readability and 
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parametric sensitivity of semi-analytical methods, which are 

still essential for non-linear thermal analysis [11,12]. The 

use of weighted residual collocation methods (WRCM), 

improved by Maple-based computing, has recently shown 

great promise in solving non-linear boundary-value 

problems effectively [13,8] 

 

In this study, a semi-analytical framework is used for 
modelling the thermal distribution and criticality of a 

bimolecular exothermic reaction in a concentric flask with 

convective losses of heat and effects on reaction initiation. 

For obtaining temperature profiles and determining the 

critical Frank-Kamenetsky parameter associated with 

thermal runaway, the weighted residual coefficient method 

(WRCM) is used, together with a six-term polynomial test 

function. The model systematically examines how the 

variables of the temperature behaviour, (heat generation), 

(convective heat loss coefficient) and (initiation parameter) 

interact to shape the temperature behaviour under 
asymmetric and mixed-type boundary conditions. The 

findings provide key insights for optimising design and 

assessing safety in reactive cabling systems such as 

combustion reactors, catalytic converters and heat storage 

modules, where efficient management of convective losses 

of heat is crucial to maintain stability and avoid critical 

thermal outages. 

 

II. MATHEMATICAL FORMULATION 

 

Consider an innovative modification and extension of 

Lebelo et al.[2], who analyzed a thermal explosion 
branched-chain model describing the chemistry of a highly 

reactive ignition-time mixture at rest within an infinite 

cylinder. In the present study, the model is reformulated for 

a finite concentric cylindrical system in which heat transfer, 

reaction kinetics, and convective energy loss interact 

nonlinearly. The chemical process is assumed to follow a 

highly exothermic bimolecular reaction with Arrhenius-type 

temperature dependence and an initiation rate proportional 

to the reactant concentration. Before ignition, no significant 

reactant depletion occurs, and the reactive mixture remains 

spatially homogeneous. The system operates under non-
adiabatic conditions, with convective heat loss at the outer 

boundary and controlled or insulated conditions at the inner 

surface, thereby extending classical explosion theory to 

more realistic engineering configurations. This formulation 

captures the essential interplay between heat generation, 

convective dissipation, and activation dynamics, providing a 

framework for predicting thermal criticality and ignition 

thresholds in reactive cylindrical systems. The foundational 

principles and limitations of such nonadiabatic explosion 

models are consistent with those described in the works of 

Zeldovich, Frank-Kamenetskii, and contemporary nonlinear 

thermal researchers [1,3,6,13]. 
 

 
Fig 1 Geometry of the Concentric Cylinder 

 
Consider the geometry shown in Figure 1 which 

represents the cross section of a concentric cylinder with 

convective heat loss and bimolecular kinetic where r1 and r2 

represents the radii of the two cylinders sharing the 

same center. The model’s boundary conditions were 

categorized into two distinct types: Type-1, which as 

isothermal walls and Type-2, which has isothermal 

conditions at one end and insulation at the other end These 

boundaries are theoretically classified as  Dirichlet ,Mixed 

and Robin boundary conditions. Following the procedures 

of the work of Salawu and Okoya [2], the energy balance 

equation representing the model is given as:  
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Subject to type 1 boundary condition given as: 
 

Type 1; 11)( TrT   and 22)( TrT                                 (2) 

 

Type 2;  11)( TrT   and 0)( 2 r
rd

Td
                            (3) 

 

Here, the thermal and species effect were taken to be 

unidirectionally distributed, and both served as a function of 

𝑟̅. The parameters  k,  , R, 𝐴0, ν, m, ℏ, n, 𝑇̅,  , Q and A 

are, respectively, Boltzmann constant, heat of reaction, gas 

constant,  energy release per fuel mole, vibration frequency, 

generalized rate of branched-chain order, Planck’s constant, 

reaction branch order, temperature, initiation rate, reactive 

species and order rate constant. 

 

The following dimensional variables were used to  

dimensionlized Equations   (1)-(3) 
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The dimensionless form of the Equations (1), (2) and 

(3)  for the reactive species temperature was connected with 

[14,15,16]. 

 

(5) 

 

In Equation (5), the dimensionless terms θ, γ, r,  α, λ β, 

n and m, respectively, represent the temperature, initiation 

rate, cylinder radius, activation energy, Frank–Kamenetskii, 

convective heat-loss,  the reaction order .and branched-chain 

order 

 

The boundary conditions in dimensionless terms can 
be described as follows: 

 

 Case 1: Asymmetric Dimensionless Conditions: 

 

ah )(  and b)0.1(                                                (6) 

 

 Case 2: Mixed type 1 Dimensionless Conditions: 
 

ah )(  and 0)1( 
dr

d
                                              (7) 

 

III. METHOD OF SOLUTION 

 
The non-linear energy equation describing the thermal 

distribution and the criticality of the bimolecular ignition 

reaction in the concentric cylinder has been solved by the 

weighted residual collocation method (WRCM). This semi-

analytical method is chosen for its effectiveness in resolving 

non-linear boundary-value problems for which analytical 

solutions are impractical [13]. 

 

To approximate the temperature field, a six-term 

polynomial trial function was assumed in the form: 
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Where ci, (i=1,2,…,6) are unknown coefficients to be 

determined. A six-term polynomial provides sufficient 

flexibility to reproduce nonlinear temperature variations 

without sacrificing numerical stability [13,17]. The choice 

of polynomial form ensures smoothness and differentiability 

throughout the radial domain, essential for accurate 

representation of conduction and reaction terms. 
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Substituting equation (9) into the dimensionless energy 

equation (5) gives the residual function: 

 

(10) 

 

In the collocation approach, the residual (𝑟) is forced to 

vanish at a finite number of interior points 𝑟𝑗 within the 

physical domain r1≤rj≤r2 

 

R(rj)=0 , j=1,2,…,N                                                          (11) 

 

Where N equals the number of unknown coefficients in 

the trial function. In this study, four internal collocation 

points 𝑟={0.3, 0.4, 0.6, 0.8} are selected, providing uniform 

coverage of the domain while avoiding singularities at 𝑟=0. 

These points yield a well-conditioned algebraic system and 

are consistent with previous nonlinear collocation 

frameworks [18,3]. 

 

(12) 
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(13) 

 

(14) 

 

(15) 

 

Together with the two boundary conditions (equations 

6-7), the collocation equations form a closed nonlinear 

algebraic system for the coefficients ci.. 
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This approach replaces the integration used in the 

standard weighted residual method with pointwise 

enforcement, simplifying computation while maintaining 

high accuracy. 

 
 Numerical Implementation 

Nonlinear algebraic equations obtained by the 

weighted residual-coil method have been solved in Maple 

software using the Newton-Raphson iterative scheme with 

the Fsolve and LinearAlgebra packages. Maple's symbolic 

numerical framework improved Jacobian evaluation 

accuracy and convergence for the nonlinear heat model. Its 

visualization and follow-up tools also supported effective 

monitoring of criticality parameters in a concentric ring 

system [19,20,21,22,12]. 

 

Table 1 Pointwise Comparison Between WRCM (Degree 6) and RK4 Solutions with Computational  

Default Values ƛ=0.1, γ=0,5, β=0.5, m=0.5, n=1.0, α=0.2 

r θWRCM θRK4 Absolute Error 

0.20 1.000000 1.000000 0.0 x 100 

0.30 1.142318 1.142317 9.3 x 10-7 

0.40 1.298574 1.298573 7.5 x 10-7 

0.50 1.468211 1.468210 6.5 x 10-7 

0.60 1.650520 1.650519 5.5 x 10-7 

0.70 1.844634 1.844633 4.3 x 10-7 

0.80 2.049522 2.049522 2.9 x 10-7 

0.90 2.263995 2.263995 1.7 x 10-7 

1.00 2.000000 2.000000 0.0 x 100 

https://doi.org/10.38124/ijisrt/26jan1321
http://www.ijisrt.com/


Volume 11, Issue 1, January – 2026                 International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                             https://doi.org/10.38124/ijisrt/26jan1321 

 

 

IJISRT26JAN1321                                                               www.ijisrt.com                   2629 

The weighted residual collocation method (WRCM), 

which uses a sixth-degree trial function, and the reference 

fourth-order Runge–Kutta (RK4) method are compared in 

Table 1. Throughout the whole computational region, the 

absolute error is consistently low, and at the edges, it drops 

to the limits of machine precision. This suggests that the two 

approaches are in strong agreement. This behavior is 

consistent with polynomial collocation methods' theoretical 
convergence properties. It demonstrates that the steady 

temperature field is accurately represented by the sixth-

degree WRCM approximation. Similar benchmarking 

techniques have been extensively employed in recent 

research on nonlinear boundary-value problems and 

numerical techniques based on collocation, with Runge–

Kutta schemes serving as standard solutions [23,24,25]. 

 

IV. RESULTS AND DISCUSSION 

 

The heat distribution of combustion reaction in a 

concentric cylinder with heat loss and bimolecular is 
presented for different boundary conditions. The results are 

for the Asymmetric boundary condition and Neumann 

boundary condition. 

 

Table 2 Maximum Temperature θ(r)ₘₐₓ for Various Parameters 

ƛ γ β Asymmetric Conditions θ(r)max Mixed Type 2 Conditions θ(r)max 

0.1 0.5 0.5 2.000000 1.019173 

0.3   2.011782 1.061132 

0.4   2.055988 1.084236 

 1.0  2.104299 1.435297 

 1.5  2.151407 1.525634 

  0.6 1.977317 1.296616 

  0.7 1.902579 1.117403 

 

The results demonstrate that as λ increases from 0.1 to 

3.0, θ (𝑟) max increases monotonically in both boundary 

conditions. However, the asymmetric boundary condition 

consistently produces higher temperature peaks than the 
mixed condition. This behavior indicates that asymmetric 

boundaries provide weaker heat dissipation, allowing faster 

accumulation of thermal energy within the domain. These 

trends agree with the findings of Lebelo et al. [2], who 

reported similar behavior in exothermic reaction systems 

with nonlinear boundary conditions, and with Adewale et 

al., [13], who observed that higher heat-generation 

parameters promote rapid temperature escalation in reactive 

cylinders. 

 

 Comparison Between Boundary Conditions 

Table 2 reveals that Asymmetric boundary conditions 
yield higher peak temperatures than Neumann condition. 

This confirms that heat retention is strongest when no 

convective loss occurs at the outer boundary Alhassan and 

Musa [3]. The incorporating convective heat loss can 

prevent critical temperature overshoot, a design strategy 

supported by recent work  on cylindrical heat-generating 

systems [18,1]. 

 

 Parameters Effect on Exothermic Thermal Combustion 

Figures 2-4 depict the thermal response of the 

bimolecular reaction system under asymmetric boundary 
conditions, where the outer wall allows partial heat 

dissipation. As the Frank–Kamenetskii parameter (𝜆) 

increases from 0.1 to 0.4 (Figure 2), the temperature field 

(𝑟) rises sharply, showing the dominance of heat generation 

over conduction. The nonlinear growth in temperature near 

the inner wall reflects the autocatalytic nature of 

bimolecular kinetics and aligns with findings that elevated 𝜆 

values intensify thermal runaway [1]. The initiation 

parameter (𝛾) (Figure 2) further amplifies this effect by 

promoting earlier reaction onset; higher 𝛾 values result in 

greater core heating, signifying enhanced ignition potential 

[3,26]. Conversely, increasing the heat-loss coefficient (𝛽) 

from 0.5 to 0.7 (Figure 3) significantly reduces (𝑟) 
throughout the domain, confirming that convective heat loss 

stabilizes the system by removing thermal energy more 

efficiently. These asymmetric-boundary results corroborate 

prior analyses showing that mixed or partially convective 

surfaces mitigate runaway risk in reactive cylinders [13,6]. 

 

 
Fig 2 Variation of Temperature Distribution with 𝜆 
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Fig 3 Influence of γ on Core Temperature Gradient 

 

 
Fig 4 Effect of β on Temperature Field 

 

Figures 5-7 illustrate the same parameters variations 

under the Neumann (Mixed Type-1) boundary condition, 

corresponding to an insulated wall where heat flux is 

minimal. Under this constraint, temperature escalation is 
more pronounced since the generated heat is trapped within 

the domain. In Figure 4, rising 𝜆 again produces steeper 

gradients and lower stability thresholds, consistent with the 

Frank-Kamenetskii [5] theory of critical thermal explosion. 

The influence of 𝛾 (Figure 6) becomes even stronger, as 

higher initiation intensities rapidly trigger ignition without 

sufficient external dissipation [6,3]. Figure 7 shows that 

while increasing 𝛽 slightly attenuates (𝑟), the overall 

temperature levels remain higher than in the asymmetric 

case, confirming that thermal insulation aggravates 

instability. Collectively, Figures 2–7 demonstrate that the 

bimolecular mechanism magnifies nonlinear heat release, 

and system stability depends critically on the interplay 

among heat-generation (𝜆), initiation (𝛾), and heat-loss (𝛽) 

parameters. These findings support recent numerical models 
using maple-based iterative solvers, which similarly reveal 

that insulating or weakly convective boundaries accelerate 

thermal runaway in reactive cylindrical systems [8,18]. 

 

 
Fig 5 Temperature Profile for 𝜆 

 

 
Fig 6 Impact of γ on Heat Accumulation 
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Fig 7 Effect of β on Thermal Stability 

 

 Thermal Criticality Analysis 

Thermal criticality is the threshold state at which the 

rate of heat released by the exothermic bimolecular reaction 

balances the combined conductive and convective losses. 

Past this point, an arbitrarily small rise in temperature can 

trigger runaway reaction, producing rapid, uncontrolled 
thermal escalation inside the concentric cylinder [6]. 

In this model, the transition to runaway is 

characterized through a critical Frank–Kamenetskii 

parameter, 𝜆crit, defined via the turning-point condition on 

the peak temperature: 
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This criterion indicates that, at λcrit , the growth of θmax 

with λ ceases to be locally linear and begins to accelerate 

sharply, signaling the onset of instability. 

 

A trial function, as defined in Equation (7), was 

assumed in terms of 

 
3

3

2

2

1

1)( rcrcrcr                                              (19) 

 

This is applied to the boundary conditions (5) and (6) 

to obtain a modified θ(r) in the form θ
max)(r  . The 

obtained modified temperature maximum was substituted 

into the Equation (4) and evaluated with the default values 

m = 0.5, γ=0.5, β=0.5, α = 0.2, n = 1.0, a = 1.0, b = 2.0 and h 

=0.2. Hence, a slice branch-chain formed in the direction (

max)(r ) with  critical value , satisfying the range 0≤   ≤ 

 cr. 

 
Table 3 Critical Frank–Kamenetskii Parameter and Maximum Temperature for Different Boundary Conditions 

Boundary Condition λcrit θmax 

Asymmetric 0.780 3.4120 

Neumann 1.650 1.9437 

 

Table 3 indicates that the Asymmetric condition is 

more prone to instability since a smaller Frank–Kamenetskii 

parameter triggers thermal runaway. Conversely, the 

Neumann boundary demonstrates greater stability because 

heat retention is balanced by weaker conductive flux at the 

wall [13,1]. 

 

 The Field θ(r) Becomes Strongly Nonlinear; Multiple 

Steady Branches May Emerge. 

 

 Temperature rises steeply near the core, indicating 

localized ignition. 

 Stronger convective heat lost  (β≳1) shifts λcrit, delaying 

runaway. 

 

V. CONCLUSION 

 

This study examined the thermal behavior of a 

bimolecular combustion reaction in a concentric cylinder 

using the Weighted Residual Collocation Method under 

Asymmetric and Neumann boundary conditions. Results 

showed that higher λ increases temperature, while higher β 

enhances convective stability. The ignition parameter γ 

accelerates ignition and heat buildup, with the Neumann 
boundary producing the highest temperature peaks. Overall, 

maintaining balance between heat generation and dissipation 

is vital to prevent thermal runaway and ensure reactor 

safety. 

 

 The bimolecular nature amplifies the nonlinear 

temperature rise, reducing the stability  margin. 

 Increasing β stabilises the system by reducing  θ(r)max. 

 Increasing λ increases heat generation, leading to sharp 

thermal gradients and possible ignition. 

 The WRCM -Maple approach accurately captured these 

nonlinear thermal responses, aligning well with results 
reported by Salawu and Okoya [3] and Adewale et al., 

[13]. 

 

Beyond theoretical development, this research extends 

to provide a practical and predictive framework for 

enhancing the safety and efficiency of nonlinear reactive 

systems. The established relationship among the parameters 

enables the optimization of reactor design, ensuring 

temperature regulation below critical limits. supports the 

prediction and control of ignition and extinction in catalytic 

reactors, Li et al., [27], thermal management in lithium-ion 
batteries Alma’asfa et al., [10], and stability in hydrogen and 

biofuel energy systems, Rahman et al., [23]. It assists in 

developing cooling strategies for combustion engines and 

turbines, Chang et al., [28], assessing phase-change thermal 
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storage performance, Ferreira et al., [11], and mitigating 

runaway risks in chemical and nuclear reactors [29,30,31]. 
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