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Abstract: The rising levels of particulate matter in city environments pose a significant risk to public health, 

especially concerning sudden cardiopulmonary issues. Conventional monitoring systems typically focus on air 

pollutants alone, neglecting individual physiological susceptibilities. This study introduces an innovative 

Intelligent Geofenced Cardiopulmonary Health Framework that combines environmental IoT sensors with 

real-time monitoring of physiological data through wearables. By utilizing the Haversine formula for accurate 

spatial geofencing, the system links localized Air Quality Index (AQI) metrics —specifically PM₂.₅ and CO—

with real-time cardiac and respiratory indicators, such as Heart Rate (HR), Heart Rate Variability (HRV), 

and Oxygen Saturation (SpO₂). The proposed system employs a Random Forest (RF) ensemble classifier to 

integrate multimodal data into a comprehensive Total Health Risk Index (THRI), while a Long Short -Term 

Memory (LSTM) network offers predictive insights into potential respiratory and cardiac stress events. To 

facilitate rapid intervention, an Edge-AI strategy is used, which sends automatic, personalized health alerts 

via Firebase Cloud Messaging (FCM) when physiological limits are exceeded within high -pollution geofenced 

areas. Experimental findings demonstrate that combining biological feedback with environmental geofencing 

greatly enhances the accuracy of health interventions compared to static AQI monitoring. This research 

offers a scalable, user-focused approach to precision environmental medicine, effectively linking urban IoT 

infrastructure with personalized cardiovascular protect ion. 
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I. INTRODUCTION 
 

Air pollution has become a critical environmental 

factor contributing to cardiopulmonary diseases in rapidly 

urbanizing areas. Rising levels of fine particulate matter and 

gaseous pollutants, especially PM₂.₅ and carbon monoxide 

(CO), are closely associated with sudden cardiovascular 

instability, autonomic dysfunction, respiratory issues, and 
increased rates of illness and death [1][2][3][4]. Traditional 

air-quality monitoring systems, however, focus only on 

atmospheric conditions and do not account for individual 

physiological sensitivity, creating a significant gap in real-

time personal health protection [5]. Consequently, people 

experiencing pollution-related cardiac or respiratory stress 

often remain unaware of their physiological decline until 

symptoms worsen into medical emergencies [6]. Recent 

progress in environmental IoT, wearable biomedical 

sensors, and mobile geolocation technologies has opened up 

new possibilities for precise environmental health 
monitoring. Numerous studies indicate that exposure to high 

levels of PM₂.₅ can lead to rapid heart rate increases, trigger 

arrhythmias, reduce heart-rate variability (HRV), and cause 

hypertensive episodes [7][8][9]. Similarly, respiratory 

impairment caused by pollutants, indicated by decreased 

oxygen saturation (SpO₂) and changes in breathing rate, has 

been identified as an early sign of pulmonary distress 

[10][11]. Integrating these physiological biomarkers with 

geospatial pollution mapping provides a powerful way to 

assess personal vulnerability rather than relying solely on 

environmental pollutant levels. Traditional AQI-based alert 

systems lack personalization, latency optimization, and 
physiological relevance [12]. This has driven recent research 

towards multilayer IoT-based architectures that combine 

wearable biosensing with environmental analytics. 

However, most existing solutions rely on cloud computing, 

suffer from high latency, and do not include predictive 

modelling for early intervention. Edge-AI methods, which 

allow computation directly on embedded devices, offer 

significant advantages in reducing delay and supporting 

rapid autonomous health alerts, especially during exposure 

to hazardous microenvironments [13][14]. To address these 

gaps, this study introduces a novel Intelligent Geofenced 
Cardiopulmonary Health Framework that integrates 

environmental sensing, wearable biometrics, and geospatial 

analytics. Utilizing the Haversine formula for accurate 

geofence construction [15], the system continuously 

correlates localized AQI measurements with real-time HR, 

HRV, respiration rate, blood pressure, and SpO₂ data to 

calculate a unified Total Health Risk Index (THRI). A 

Random Forest (RF) ensemble model performs multi-modal 

risk classification, while a Long Short-Term Memory 

(LSTM) network predicts imminent cardiopulmonary 

instability, including tachycardic spikes and oxygen-

desaturation trends [16][17]. The framework employs an 
Edge-AI deployment strategy to enable rapid, on-device 

decision-making and uses Firebase Cloud Messaging (FCM) 

to deliver autonomous, location-aware emergency alerts 

when physiological thresholds are exceeded within high-

pollution geofences [18]. The proposed approach bridges a 

crucial gap between atmospheric monitoring and 

personalized cardiovascular protection. Unlike static AQI 

notifications, the integration of environmental geofencing 

with individualized physiological feedback significantly 

enhances the specificity and clinical relevance of health 

interventions [19][20]. This research contributes to the 

emerging field of precision environmental medicine by 

providing a scalable, low-latency, user-centric system 

capable of protecting individuals in pollution-heavy urban 

environments. 
 

 Contribution of this Paper 

 

 Introduces the concept of “Cardiopulmonary 

Geofencing”, enabling real-time correlation between 

pollution hotspots and acute physiological responses 

such as HR, HRV, BP, SpO₂, and respiration rate 

[1][2][3][4][5][6][7]. 

 Implements a multi-parameter cardiopulmonary 

monitoring suite, integrating PM₂.₅, CO, AQI, HR, HRV, 

BP, SpO₂, and respiration rate into a unified sensing 
ecosystem [8][9][10][11][12]. 

 Proposes a Total Health Risk Index (THRI) using a 

hybrid ML pipeline: Random Forest for immediate risk 

classification [13]and LSTM for predictive modeling of 

HR spikes and SpO₂ drops [14] 

 Establishes an Edge-AI health-intervention mechanism, 

allowing ultra-low-latency decisions and autonomous 

alerts within high-pollution geofences [15][16]. 

 Implements adaptive FCM-based alerts that dynamically 

respond to real-time physiological deviations detected 

within pollution geofences [17] 

 Demonstrates superior accuracy over static AQI-only 

systems, proving that combined environmental and 

physiological sensing improves early detection of 

cardiopulmonary risk [18][19][20]. 

 Provides a scalable architecture for precision 

environmental medicine, bridging atmospheric 

monitoring with real-time human vulnerability 

assessment. 

 

II. LITERATURE REVIEW 

 

Environmental air pollution has emerged as a major 
global health issue, with particulate matter (PM₂.₅, PM₁₀), 

carbon monoxide (CO), nitrogen dioxide (NO₂), and ozone 

(O₃) closely linked to both acute and chronic heart and lung 

disorders [1][2][3][4]. Conventional methods depend solely 

on environmental monitoring stations that track pollutant 

levels but do not assess an individual's physiological 

sensitivity to these pollutants [5]. Consequently, people may 

be unaware of approaching cardiovascular or respiratory 

declines until symptoms reach a critical level. This 

challenge has spurred investigation into integrated systems 

that merge environmental IoT, wearable devices, machine 
learning, and geospatial analysis. 

 

 Cardiovascular Effects of Particulate Matter (PM₂.₅) 

and Gaseous Pollutants 

A large amount of epidemiological data shows that 

PM₂.₅, because of its small size, reaches the deep alveolar 

areas, enters the bloodstream, and causes systemic 
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inflammation, oxidative stress, autonomic imbalance, 

arrhythmias, hypertension, and myocardial ischemia 

[6][7][8][9]. Right after exposure to PM₂.₅, noticeable 

physiological changes happen within minutes, including: 

 

 Increased Heart Rate (HR) 

 Decreased Heart Rate Variability (HRV) 

 Higher Blood Pressure (BP) 

 Greater respiratory workload 

 

These biomarkers are important as they signal early 

signs of heart and lung distress. 

 

Table 1 Documented Acute Cardiovascular Responses to 

Urban Pollutants 

 
 

Research shows that PM₂.₅ increases the risk of 

arrhythmia, acute coronary syndromes, and worsening heart 

failure [10][11]. This highlights the need to include HR, 

HRV, and BP sensors in real-time monitoring systems. 

 

 Respiratory Health Degradation Driven by Air Pollution 

Fine particulate matter and gas pollutants harm lung 

function. Even short-term exposure can: 
 

 Decrease blood oxygen saturation (SpO₂) 

 Raise the breathing rate 

 Trigger asthma episodes or worsen COPD 

 Cause irritation of bronchial nerves 

 

Studies have shown a strong link between drops in 

SpO₂ and rises in PM₂.₅, making SpO₂ a clear indicator of 

environmental respiratory strain [12][13][14]. Similarly, 

breathing rates increase predictably when exposed to higher 

levels of CO and PM, indicating that more physiological 
effort is required to keep oxygen levels stable [15]. 

 

 
Fig 1 Conceptual Architecture of the Proposed Cardiopulmonary Geofencing Framework Showing Pollution Hotspot 

Identification, Geofence Computation, Physiological Monitoring, and Adaptive Alert Generation. 

 

 Limitations of AQI-Only and Static Monitoring Systems 

Traditional AQI systems concentrate on environmental 

factors instead of individual health responses. They inform 

users about pollution levels, but they cannot determine: 

 

 If the user's heart rate (HR), heart rate variability (HRV), 

blood oxygen saturation (SpO₂), or blood pressure (BP) 

is getting worse 

 If being in a high pollution area is causing immediate 

health problems 

 If the user is in a localized pollution hotspot 

 If exposure to pollutants might cause distress soon As a 
result, they do not support quick medical responses 

[16][17]. 
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Table 2 Limitations of Existing AQI Systems 

 
 

The limitations present lead to the development of 

cardiopulmonary monitoring systems that use geofencing 

technology [30]. 
 

 IoT-Based Environmental Sensing Technologies 

NodeMCU (ESP8266/ESP32) combined with MQ-135 

and laser PM₂.₅ sensors has become a popular choice for 

affordable air quality index (AQI) monitoring [20]. These 

sensors allow for real-time measurement of CO, NH₃, and 

PM₂.₅. Their low cost makes them ideal for widespread use. 

Here are some advantages of IoT sensing: 

 

 High temporal resolution 

 Monitoring at the user level instead of the city level 

 Easy integration with cloud and edge computing devices. 

However, environmental IoT devices often lack 

meaningful physiological data, which limits their ability 

to support proactive interventions [21]. 

 

 Wearable Physiological Monitoring: HR, HRV, BP, 

SpO₂, Respiration Rate 

Wearable sensors, such as PPG, ECG modules, optical 

pulse oximeters, and respiratory stretch sensors, allow for 

non-invasive tracking of: 

 

 HR 

 HRV 

 Blood Pressure 

 SpO₂ 

 Respiration rate 

 

Research supports their effectiveness for real-time 

evaluation of cardiopulmonary conditions [22][23][24]. 

 
Fig 2 Step-by-Step Workflow of the Proposed 

Cardiopulmonary Geofencing System Showing Sensing 

Layers, Geospatial Computation, Machine Learning 

Modules, Risk Assessment, and Personalized  

Alert Delivery. 

 

Integrating these signals creates a comprehensive 

health profile. 
 

 Geofencing and Spatially-aware Health Systems 

Geofencing helps identify pollution hotspots and set up 

safety zones using the Haversine distance formula [25]. 

 

 When a user enters a pollution zone, the system 

increases the monitoring of biometrics. 

 If a user remains in the zone, the risk score is updated 

continuously. 

 Once the user leaves the zone, the risk from exposure 

decreases. 
 

This kind of spatial understanding is mostly missing in 

current health systems. 
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Fig 3 Hybrid THRI Model Integrating Random Forest Classification with LSTM-Based Temporal Prediction for  

Cardiopulmonary Risk Evaluation. 

 

 Machine Learning for Cardiopulmonary Forecasting 

Recent advancements in ML allow for modeling 

complex multi-modal interactions. 

 

 Random Forest (RF) is very effective for classifying 

different types of data and is commonly used to predict 

health risks in biomedical applications [26]. 

 LSTM networks are built to analyze sequential data. 
They capture temporal physiological behaviors and make 

predictions about: 

 

 Spikes in heart rate 

 Drop events in SpO₂ levels 

 Suppression of heart rate variability 

 Patterns of respiratory distress 

 

This ability to forecast provides early warnings before 

symptoms appear [27]. 

 
 Literature Gap Analysis 

After reviewing multiple studies, the following gaps 

are clear: 

 

 There is currently no system that combines AQI and 

cardiopulmonary biomarkers in real time. 

 There is no connection between geofencing and signs of 

physiological stress. 

 RF-LSTM hybrid models have not been used to assess 

health risks related to pollution. 

 The use of Edge-AI for very low-latency autonomous 
alerting is missing. 

 Alerts given are generic and not specific to individual 

physiological conditions. 

 A unified metric like THRI is not found in the current 

literature. 

 

 

Table 3 Summary of Literature Review 

 
 

III. METHODOLOGY 

 

The outlined Intelligent Geofenced Cardiopulmonary 
Health Framework combines environmental IoT sensors, 

wearable health metrics, geospatial analysis, and hybrid 

machine-learning processes to deliver immediate 

assessments of cardiopulmonary risk. This section describes 

the sensor design, preprocessing phases, geofencing system, 

THRI model development, and Edge-AI implementation. 

 

 Environmental Sensing Architecture 

The significant cardiovascular effects of PM₂.₅, PM₁₀, 

and CO exposure are well-known due to extensive long-

term studies such as those by Dockery et al. [1], Pope et al. 
[2][3], and Brook et al. [4]. The World Health Organization 

also provides evidence on air quality and health [5]. 

Therefore, strong real-time monitoring of pollution is 

essential for the system. 

 

 Hardware Elements 

 

 MQ-135 Gas Sensor, detects CO, NH₃, benzene, NOₓ, 

and VOCs. • PM₂.₅ Laser Module, accurately measures 

fine particulate matter that can cause cardiovascular 

strain. 
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 NodeMCU ESP8266, a microcontroller designed for 

gathering environmental data. These affordable sensors 

have shown good reliability in environmental research 

[6][7]. 

 

 AQI Calculation 

The AQI values come from using U.S. EPA 

breakpoints for PM₂.₅ and CO, applying validated methods 
from studies on personal exposure [6][7]. 

 

 Data Preparation 

 

 Fourth-order Butterworth filter application 

 Averaging over 1-second intervals 

 Humidity adjustment for PM₂.₅ scattering 

 

 
Fig 4 Environmental Sensing Unit and Data  

Stream Generation. 

 

 

 

 

 Wearable Physiological Sensing 

Inhaling air pollutants causes autonomic imbalance, 

raises heart rate, lowers heart rate variability, and disrupts 

endothelial function. Cardiovascular research backs these 

links, including: 

 

 Physiology of HRV [8] 

 Accuracy of wearable devices [9] [10] 

 Changes in heart rate/HRV due to pollution [11] 

 

 Monitored Parameters and Literature Support 

 

Table 4 Physiological Metrics and their Cardiopulmonary 

Health Significance. 

 
 

 Sensors Used 

 

 PPG sensor (HR, HRV) 

 Pulse oximeter (SpO₂) 

 Cuffless BP sensor 

 Respiratory belt 

 
Fig 5 Wearable Physiological Monitoring Unit and Data Stream Output. 

 

 Geofencing Using Haversine Formula 

Geofencing has been widely used in tracking health 

behavior and location-based intervention frameworks [13] 

[14]. The system calculates the user’s distance to recorded 

pollution hotspots using Haversine distance. 

 

Formula: 

 

d = 2 R· arcsin  (√sin2 (
∆ɸ

2
) + cos⁡(ɸ₁)cos⁡(ɸ₂)sin² (

∆λ

2
)⁡⁡) 
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Fig 6 Geofence-Based Pollution Exposure Mapping Using 

Haversine Distance. 

 

 Multi-Modal Data Fusion 

Environmental and physiological signals have different 

sampling characteristics. Fusion guarantees synchronized, 

high-resolution risk computation. Fusion Process 

 

 Temporal alignment at 1 Hz 

 Outlier removal with motion-artifact suppression 

 Z-score normalization 

 

Matrix construction: 

 

X = [PM2.5, CO, HR, HRV, BP, SpO2, RespRate, 

GeoFenceFlag] 

 

It is also important to highlight multi-modal fusion as a 

key part of effective biomedical machine-learning systems 
[15]. 

 

Table 5 Feature Matrix Table 

 
 

 THRI: Hybrid RF–LSTM Model 

Hybrid machine-learning pipelines that combine 

classical classifiers with deep sequential models have been 

shown to improve cardiopulmonary prediction accuracy [16] 

[17]. 
 

 Random Forest Classifier RF is used for immediate risk 

detection because it can handle different mixed-scale 

features. 

 

THRI RF ∈ {Low, Moderate, High} 

 

 LSTM Prediction Layer LSTMs capture temporal 
patterns such as: 

 

 HR spike trends 

 HRV reduction trajectories 

 SpO₂ drop patterns • Pollution-linked physiologic lag 

 

Prisk (t + Δt) = f (Xₜ) 

 

 Final Risk Index(THRI): 

 

THRI = w₁ · THRIRF + w₂ · P risk 

 

 Edge-AI Deployment 

Edge computing reduces latency and ensures quick 

responses, as demonstrated in previous edge-AI systems 

[18] [19]. Pipeline • RF and LSTM models undergo 

quantization through TF-Lite-Micro. • Implemented on 

ESP32 and mobile device processors. • Achieves inference 

latency of less than 15 ms. 

 

 Personalized Real-Time Intervention (FCM) 

Mobile health solutions that consider context are 

effective in lowering behavioral and clinical risks [20]. The 
system sends notifications via Firebase Cloud Messaging 

when the THRI exceeds a set threshold: Example Alert: 

“Your heart rate is increasing unusually in a high-pollution 

area. We recommend relocating immediately.” 

 

IV. RESULTS AND DISCUSSION 

 

The proposed Intelligent Geofenced Cardiopulmonary 

Health Framework was evaluated by collecting 

synchronized environmental (PM₂.₅, CO) and physiological 

(HR, HRV, BP, SpO₂, RR) data from 40 participants over 18 
days. This resulted in a total of 2.4 million samples. The 

findings strongly support the system's ability to identify, 

predict, and respond to cases of cardiopulmonary stress 

caused by pollution. 

 

 Environmental–Physiological Correlation 

Clear pollutant–biomarker associations were observed: 

 

 PM₂.₅ ↑ → HR ↑ (r = 0.72) 

 CO ↑ → SpO₂ ↓ (r = −0.63) 

 PM₂.₅ + CO ↑ → HRV ↓ (r = −0.58) 

 AQI ↑ → Respiration rate ↑ (r = 0.66) 

 

These patterns align with established pollution-health 

evidence [1–12] 
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Fig 7 PM₂.₅ Concentration and HR Showing Synchronous Rise During Pollution Peaks. 

 

 Geofence Performance 

The system’s Haversine-based geofence detection was 

quick. • Hotspot entry detection: 41 ms 

 

 

 

 Wearable activation: 120 ms 

 Edge-AI inference: <15 ms 

 Total response: <176 ms 

 

This is much faster than cloud-dependent systems [18][19]. 

 
Fig 8 Haversine Geofence Trigger Performance Across Seven Pollution Hotspots. 
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 RF Classification Performance 

Random Forest immediate-risk classification achieved: 

 

 
 

Consistent with RF performance in biomedical prediction 

[15][16]. 

 

 
Fig 9 Confusion Matrix Showing >90% Correct 

Classification for all Risk Levels. 

 

 LSTM Predictive Performance 

LSTM predicted cardiopulmonary deterioration: 

 

 HR spike prediction: 89.5% 

 SpO₂ drop prediction: 87.4% 

 Prediction horizon: 20 to 30 seconds ahead 

 

 
Fig 10 LSTM Prediction Closely Tracks HR Fluctuations, 

Providing Early Warnings. 

 THRI (RF + LSTM) Fusion Performance 

Hybrid fusion improved overall risk detection: 

 

 
 

 
Fig 11 Accuracy Comparison Showing RF Highest 

Accuracy, with THRI Improving Predictive Robustness. 

 

 Effectiveness of Personalized Alerts 

Compared to static AQI alerts: 

 

 
 

 
Fig 12 User compliance comparison showing significant 

improvement when physiological context is included. 
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V. FUTURE DIRECTIONS 

 

The Cardiopulmonary Health Framework, equipped 

with smart geofencing, shows significant promise as a real-

time system for assessing environmental and physiological 

risks. Based on the study's results, several future research 

paths could greatly improve its scalability, clinical validity, 

and predictive accuracy. 
 

 Expansion of Physiological and Environmental Sensing 

Future iterations should include more biomarkers 

beyond heart rate, heart rate variability, blood pressure, 

oxygen saturation, and respiration rate. Adding multi-

channel ECG, galvanic skin response (GSR), skin 

temperature, and perfusion index can improve our 

understanding of autonomic and hemodynamic changes 

during exposure to pollutants. Additionally, expanding the 

range of pollutants studied to include nitrogen dioxide 

(NO₂), ozone (O₃), sulfur dioxide (SO₂), and volatile organic 
compounds will increase environmental accuracy, 

considering their known effects on cardiovascular and lung 

health. 

 

 Personalized Baseline Modeling and Adaptive THRI 

Calibration 

The current THRI uses thresholds based on population 

data. Future developments should focus on customizing 

baseline calculations. This will help the model recognize a 

user's typical clean-air HRV, HR, and SpO₂ patterns. It will 

also allow the thresholds to adjust automatically. 

Techniques such as transfer learning, Bayesian calibration, 
and regular baseline drift adjustment can improve THRI into 

a precision-medicine metric that matches individual 

cardiopulmonary responses. 

 

 Large-Scale Clinical Trials and Medical-Grade 

Validation 

To build medical credibility, controlled clinical trials 

must confirm: 

 

 The patterns of HRV and HR compared to clinical ECG 

benchmarks. 

 The accuracy of SpO₂ desaturation identification against 

hospital oximeters. 

 The precision of BP estimation during pollution spikes. 

 

These trials will assess sensitivity, specificity, Bland-

Altman agreement, and diagnostic validity. 

 

 Multi-User Crowdsourced Pollution–Health Network 

Future efforts should focus on creating a distributed 

edge-IoT network. This network will allow users to work 

together to develop a detailed spatiotemporal map 
connecting pollution and health. Previous research on 

crowdsourced air quality monitoring shows that these 

networks can effectively analyze urban exposure. This 

would make it possible to: 

 

 Create city-wide air quality index heat maps 

 Estimate crowd-level total health risk 

 Predict hotspots in real time 

 Provide early alerts for community-level risks related to 

cardiopulmonary health. 

 

 Context-Aware AI Recommendation Engine 

In addition to alerts, upcoming systems should offer 

AI-driven behavior suggestions. These include: 

 

 Safer walking paths 

 Breathing techniques to use when heart rate variability 

drops 

 Tips for lowering indoor pollution 

 Adjustments to activities during expected changes in 

heart rate or oxygen levels. 

 

Research in mobile health shows that personalized 

recommendations greatly improve user adherence. 

 

 Federated Learning and Privacy-Preserving Analytics 
To improve precision while maintaining privacy, 

forthcoming advancements should implement: 

 

 Federated learning for training models in a decentralized 

manner 

 Secure aggregation techniques 

 Differential privacy methods 

 On-device inference to ensure low latency 

 

These strategies are consistent with modern edge-

computing architectures. 
 

 Advanced Dynamic Geofencing and Pollution 

Propagation Modeling 

The current system uses circular geofences. Future 

updates should allow for: 

 

 Polygonal and multi-layer geofence capabilities 

 AQI gradient-based mapping of geofences 

 Boundaries that change over time due to wind, humidity, 

and traffic conditions 

 ML-driven predictions of pollution dispersion 
 

This dynamic geospatial intelligence will better show 

real environmental risk patterns. 

 

 Integration with National Digital Health Infrastructure 

Upcoming iterations could connect with: 

 

 Electronic Health Records (EHR) 

 Hospital Information Systems 

 APIs for government AQI monitoring 

 Public health surveillance systems 
 

This would allow for automated medical follow-ups 

and analyses across the population regarding cardiovascular 

risks linked to pollution. 

 

 Stress and Autonomic Dysfunction Monitoring 

Considering the large amount of research linking 

pollution exposure to autonomic imbalance, lower HRV, 
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and psychological stress, future studies should include: 

 

 Predicting stress levels using HRV and respiration 

 A complete physiological stress index 

 Alerts for autonomic dysregulation before clear 

cardiopulmonary problems occur. 

 

 Clinical and Research Visualization Dashboard 
A specialized dashboard needs to be created to 

visualize the following: 

 

 Trends in AQI with HR/HRV/SpO₂ data 

 The timeline of THRI • Logs of entries and exits for 

pollution geofences 

 Predicted curves from LSTM models 

 Urban pollution heatmaps 

 An individual's history of exposure and physiological 

stress 

 
These dashboards will help healthcare professionals, 

researchers, and public health officials. 

 

These upcoming pathways create the suggested 

framework for precision environmental cardiology. This 

framework offers real-time, customized, location-sensitive 

cardiopulmonary protection for individuals and 

communities. Continuous improvements in sensing 

technology, AI modeling, geospatial computation, and 

clinical use will increase its impact and global significance. 

 

VI. CONCLUSION 

 

This research presents a smart cardiopulmonary 

monitoring system driven by geofencing. It combines 

environmental measurements, wearable biometric data, 

spatial analytics, and a hybrid machine-learning approach to 

assess health risks in real time. Unlike traditional AQI-based 

methods that ignore individual physiological differences, 

this framework connects exposure to PM₂.₅ and CO with 

sudden changes in heart rate, heart rate variability, blood 

pressure, oxygen saturation, and respiratory rate. This 
effectively captures the real cardiopulmonary effects of 

polluted environments. By using Random Forest 

classification and LSTM forecasting, the system creates a 

Total Health Risk Index that can identify and predict health 

decline. Test results show strong correlations between 

pollutants and biomarkers. It also has quick geofence-trigger 

response times of under 176 ms and improved risk-

prediction accuracy compared to separate models. An 

evaluation focused on user experience indicated that alerts 

connected to context and physiology greatly improve 

compliance over static AQI notifications. This highlights the 

advantages of combining environmental and biological data. 
The system uses Edge-AI, supported by fast on-device 

inference, making it a low-latency solution for real-world 

cardiopulmonary protection. Moreover, the framework's 

modular design allows for easy integration with additional 

sensors, federated learning, clinical systems, and national 

digital health networks. In summary, this research provides 

a scalable, personalized, and predictive method for precision 

environmental medicine, offering an innovative way to 

reduce cardiopulmonary risks from pollution. With ongoing 

enhancements in clinical validation, dynamic geospatial 

modeling, and large-scale rollout, this system has significant 

potential to set a global standard for smart environmental 

health monitoring. 
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