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. INTRODUCTION

Hypergraph is being widely and deeply investigated
since its inception and have been used as a successful tool to
represent and model complex concepts and structures in
various areas of computer science and discrete mathematics
[1]. Algebraic hyperstructures appear as a natural extension
of usual algebraic structures, introduced by the French
mathematician Marty [12] in the year 1934. It is very well
known that in classical algebraic structures, its attached
composition dealing with two elements give rise to an
element only. On the other hand, the composition available
in an algebraic hyperstructure is responsible to give the
output as a set. Some authors have studied hyperstructures
in connection with cryptography, coding, automata,
probability, geometry, graphs, hypergraphs etc. so as to suit
their objectives. [4, 6, 8, 9, 10, 15].

Among the various research works done in this field it
would be worth while to mention about Corsini’s work in
this regard [4, 5, 6, 7]. A special hypergroup, defined by
Corsini has been named as Corsini hypergroup by authors
like M. Al Tahan and B. Davvaz in their work "On Corsini
hypergroups and their productional hypergroups" [15]. A
range of work has been done based on the works of Corsini

ISRT26JAN141

[11, 12, 13, 14]. Taking this as a motivation for our work we
have tried to introduce two different definitions that proceed
in a slightly different direction compared to the definitions
that are at hand. The study is mainly to perceive how far
these new notions will take us in this algebraic
hyperstructural area. This would consist of the first part of
the article. properties. Some noticeable results establish
non-commutative, self-reciprocating and index

In the second section our attempt would be to develop
a hypergraphic exploration of ring theoretic finiteness
equivalent conditions leading to so called vertex Noetherian
path.

1. PRELIMINARIES

In this section, the basic definitions and notations are
introduced for the sake of the subsequent sections. If H is a
non-empty set and P*(H) is the set of all non-empty
subsets of H, then a mapping o: H X H - P*(H) is called
a hyperoperation. We note that x o y < H for all
x,y € H and it is termed as the hyperproduct of x and y. If
A and B are non-empty subsets of H, then by A o B,
we mean.
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X€EA,YEB
An algebraic system (H, o) together with a hyperoperation is known as hypergroupoid.

A hypergraph [14] is a pair T' = (H, &), where H is a set of vertices and € = {E,,E,,...} is a collection of non-empty
subsets of H (known as hyperedges) such that UX, E; = H.

Here, we would like to note that the condition UZ, E; = H is not obligatory in the definition of hypergraph in the theory of
general hypergraphs.

e Definition 2.2 A hyperoperation , *,,, for all n,m € N on a hypergraph I' = (H, &) is defined as, for all (x,y) € H?,

Xn *m ¥ = E™(x) N E™(y),
Where E°(x) = x,E(x) = Uxer, Ei) E(A) = Uyeq E(x) for all non-empty subset A of H, and E™(x) = E"Y(E(x)).
It is important to note here that the hypergroupoid (H,

n *m) thus formed is a partial hypergroupoid.

o Definition 2.3 If A and B are non-empty subsets of H, thenby A ,, *,, B we mean,

A ¥y B= U X an*m ¥
X€EA,YEB
Andfor x € H, x ,*, A={x} ,*n AandA ,*, x=A4 ,*, {x}

e Definition 2.4 A partial hyperoperation
H?,

n0m, for all n,m € N on a hypergraph I = (H, £) is defined as, for all (x,y) €

Xn Oy = [E™(x) U E™ (W)I\[E™(x) N E™(¥)],
Where E°(x) = x, E(x) = Uyeg, E;i, E(A) = Uyea E(x) for all non-empty subset A of H, and E™(x) = E"*(E(x)).

It is important to note here that the hypergroupoid (H, ,6,,) thus formed is a partial hypergroupoid.

o Definition 2.5 If A and B are non-empty subsets of H, thenby A ,6,, B we mean,
A ,06, B= X .0n v
XEAYEB
Andfor xeH, x ,0,, A={x} .6, AandA ,0, x=A ,0, {x}
o Note: The partial hypergroupoids Hr = (H, ,*,) and Hpr=(H, ,0,) will be called partial hypergraph
hypergroupoid.

o Definition 2.6 A hyperoperation ,o0,,, for all n,m € N on a hypergraph I' = (H,&) is self reciprocating if for any
(a,b)€H? a€b ,0, beb€a ,o0, a

o Definition 2.7 An E operator hyperoperation is a hyperoperation described with the help of E as already mentioned in
Definition 2.2 and 2.4.

o Definition 2.8 Inan E-operator hyperoperation, say, ,0,,, m and n are termed as indices.

o Definition 2.9 An E-operator hyperoperation

(a b)

nom
o Definition 2.10 An E-operator hyperoperation

(a b)

nom
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nOm IS associative if for a,b,c € H,

nOm €C=a n0p, (b o, o).

nO0m 1S COMMuting associative if for a,b,c € H,

nOm €=0a n0p, (¢ no, b).
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o Definition 2.11 An E-operator hyperoperation o0, is index commuting self-associative if for each x € H,

(x nom x) nom X=X TLOm (x mon x)'

Theorem 2.1 For each (x,y) € H? and m,n € N the hypergroupoid H = (H,,*,,) satisfies the following:

X € X ¥ X.

Xn *m ¥ = Yn *m X. [n*m IS commutative. ]

VEX, %y X © X E Yy % V. [n*m 1S self reciprocating.]
(xn *m x)n *m (xn *m x) 2 (xn *m x)n *m X.

AN N NN

e Proof. Proof of (1) and (2) are straightforward.

VEXy ¥ x =E"(X)NE™(x) = E™(x), n =2 m.

=y € E™(x).

Then, E(y) N E™1(x) # ¢ andso E2(y)) NE™ 2(x) # ¢,..., E™" L (y) N E(x) # ¢
[Proof as given in [14]].

Therefore, x € E™(y) = E™(y) N E™(Y) =y, *p V-

> X € Yn*m Y-

Thus, y € x,, %, X = X € Y, %1 V.

Similarly, we can show, x € y,, *,, y = y € x,, %, X.

Hence, y E x, *, x © x €y, *,, V.

Or, ,, *, isself reciprocating.

(x m *n x) m *n X = [E™(x) N E™(x)] m *n X, (n>m)
=E™(x) m *n X
={X, X1, X2, s Xp_1} m *n X, [Suppose E™(x) =

{x,%1,%5,..., xp_l}]

=(x m *n X) U (X m *n X) U (X m *n X) U...U (xp—l m *n X), - (4)

p components

Again,
(x m *n X)m *n (X m *n X) = [E™(X) N E™(X)]m *, [E™(x) N E™(X)]
=E™(X) ¥ E™(X), (n>m)
= X0y Xyt b (X1 e Xy )

= m* DUE mx X)) U (X %, xp—l)
U@y m*n XU ¥ X)) ULU g%y, xp—l)

U (xp—l m *n X) U (xp—l m *n X1) U...U (xp—l m *n xp—l)
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x) U (xl m *n x) u...u (xp—l m *n X)}

U (x m *n xl) U (xl

From (A) and (B) itis easy to conclude that,

p components

m *n xl) u...u (xp—l m *n xp—l)t - (B)

(xn *m x)n *m (xn *m x) 2 (xn *m x)n *m X

e Example 2.1 Suppose I' = (H,E) is a hypergraph where H = {v,,v,,vs,...,vg} and E ={E; = {v,,v,,v3,v,},E;, =

{v3, V4, V5, V6, 7}, E5 = {v6, Vg }}-

EH

Then,

w1 2% V1)

=W, 2%

Fig 1 Hypergraph

*

2*1 v =[EPw)NEW)] % vy

=[E(w)] 2% v

={v, V307 2% 1y

v)U@W, % v)I)UW; % v)U

(v, 2% V1)

= [E2(v) N E(] U [E2(v2) N E(vy)]

U [E?(v3) N E(w)] U [E*(v7) N E(vy)]

= {V1,V,,V3,V7} U {v1, 0, V3,V7} U {V1, V5, V3,07 }

And,

Wi 2% V1) 2% (Vg

U {vy,v,,v3,v7}

= {vy,V,,v3,V7} — (@)

2% V) =EW) % E), [Like above]

={V,05,V3,V7} 2% {U1,V;,V3,05})

= 2%
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U@ 2% v )UW 2% V3)
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U, 2% v)U..U(w L% 1)
= [E*(v) NE(w)] U [E?(vy) N E(v)] U [E?(vy)
NE(v3)] V..U [E%(v3) N E(vy)]
= {v,,V,,V3,V,, Vs, Vg, U7}, — (iD)
From (i) and (ii) we get,
Wy 2% V1) 2% VIEWy 2% V) 2% (V1 2% V)
Similarly, for any other v; € H we can see that,

Wi 2% V) 2% S 2% V) 2% (U 2% V), i€{12,...,8}.

e Theorem 2.2 For each (x,y) € H? and m.n € N the partial hypergroupoid H, = (H,, 6,,,) satisfies the following:

v x € H\(x, 0, %).
v’ 0, isnon-commutative, [i.e. for some n,m, x,0,,y # ¥,,60,,x.]
V' Yy Exp0x & x €Y,0,y. [ 0., isself reciprocating.]
Proof. Proof of (1) and (2) are straightforward.
Y € Xpbmx =y € [E"(x) N E™()N\[E™ (x) N E™(x)]
= E"(x)\E™(x), nz=m.
S0,y € EM"(x)\E™(x) that gives,y € E"(x) but y & E™(x).
When y € E™(x), then we have E(y) N E"1(x) # ¢ andso, E2(y) N E"2(x) # ¢, .
E™1(y) nE(x) # ¢.
Hence, E™(y) N x # ¢. Therefore, x € E™(y).
Next we have, y € E™(x) < x € E™(y) [Proof as given [14].]
Also, we know that, P = Q gives ~ Q =~ P
So, combining the above both we have, y € E™(x) = x € E™(y).
Hence, we have,

x € E™(y) but x ¢ E™(y) that gives us

x € E"(O\E™(y)
=[E*")VET"ONIE" () NE™ ()]
= YnOmy

So, x € y,,0,,y.

Thus, we get,

Y € X, 0 x = x € y,,0,,,Y
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Similarly, we can have,

X € Y,0,y =Yy € x,0,x
Thus,

Y € x,0,x = x €EY,0,,y
Hence, ,6,, is self reciprocating.

e Example 2.2 Suppose I' = (H,E) is a hypergraph where H = {v,,v,,vs,...,vg} and E ={E; = {v,,v,,v3,v,}E;, =
{v3, V4, V5, V6, 7}, E3 = {vg, vg}} then,

(vi 201 v3) L6, v5=[[EZ(U1)UE(U3)]\[E2(V1)0E(V3)]] 201 vs
= [vyve . v\ V1, Vo 073 20 Vs

={vg} .0; Vs

= {vg}
And,
Vi 201 (3 26 vs)=vy 50 [[E*(v3) U E(Ws)\[E?(vs) N E(vs)]]
=v; 0, {v,v,,vs}
=W, ,60; v)H)UW; L0, v)U; ,0, vg)
= {v,, V5, V6, Vg}
Also,

vy 200 (s 201 v3)=vy L0 [[E*(vs) U EWs)\[E?(vs) NE(v3)]]
= {v1, V2, V3, Vs, V5, V7 }

We observe here that,

vy 2601 v3) .07 vsFvy 60 (V3 0, vs),
And,

(w1 2601 v3) 207 vs#Fvy 0 (Vs 60, vs).
So, in general we can conclude that,
For the partial hypergroupoid Hr = (H,, 8,,), where a,b,c € H and m,n € H the following,

@ (@ .6, b .0, c=a .6, b .6, <

i)y (a .6, b)) .0, c=a .0, (€ .0, b)
Are not true.

Furthermore, we observe that the partial hypergroupoid Hp = (H,, 6,,) satisfies the index commuting self-associativity
which is proved in the following theorem:
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e Theorem 2.3 For any x € H and m,n € N the partial hypergroupoid H, = (H,, 6,,) satisfies the index commutating
self-associativity.

Or,
(%0 O X) 1 On X = X Oy (X, O X).
Proof.
(O X) b x = (ZmBnx)
= [[E™(2) U E™(x)\[E™(2) N E"(x)]] — (0)
ZEXROmX
Again,
X O (X7, 0 X) = (x%0,61n2)
= [[E"(x) U E™()\[E" (x) N E™(2)]] — (D)
ZEXROmX

Therefore, from (C) and (D) we have,
(0 X)) m Onx = 2, Oy (%, 0, %)

o EX&mp'e 2.3 SUppOSE that H = {vl,vz,...,vlz} and E = {El = {vl' UZ'UB'}' EZ e {U3, U4, Us, U6},E3 e {U6, U7, UB}’E4 b
{vs, 9, V10} Es = {v10, V11, V123}-

E

Fig 2 Hypergraph
Then,
(W1 201 v1)10, v =[E*(vy) UEW)I\E2(v,) N E(v))]16,v,
= [E2(w)\E(1)]16,v
= [{vy,v3,..., Ve \{V1, V2, V3}]1 0,71

= {V4, V5, V6}1 0,11
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=W, .0, v)Uws .0, v)UWs 16, ;)
= [[E(vy) U E2(v))][E (vy) N E?(v1)]] U [[E(vs) U E*(v)][E(vs) N E*(v,)]]
U [[E(ve) U E2(v)\[E(v6) N EZ (v1)]]
= {v,,v,} U {v,,v,} U {v;,v,,vy5, 05}
= {v,,V,,V7,Vg}, — (lii)
Again,
vy 20,(v; 2601v;) =v; ,0.{v,,Vs5,V6}
= (v; ,0; v)U W, ,0; v5)U vy ,0; vg)
= [[E*(v,) U E()][E?(v1) N E(Wy)]] U [[E?(vy) U E (vs)][E? (vy) N E (vs)]]
U [[E*(vy) U E@e)\[E? (v1) N E(v6)]]
= {v;,V,,V7,Vg}, — (iv)
From (iii) and (iv) we get,
(w1 2601 V)10, vy =v, ,0,(v; ,0,v;)
Similarly, for any other v; € H we can see that,
(v; 4601 v)10, vi=v; ,0,(v; ,0,v)), i€{12,...,12}
e Corollary 2.4 Forany x € H and m,n € N the partial hypergroupoid H. = (H,, 6,,) satisfies,
(00 X) 1 O X)) O X = %30, (2, 0, (5,6, %)).
Proof. (5).

(X)) O X) 1 O x = [zex,?emx Zp O X | O x

= U [[E™(2) UE™(O)I\E™(2) N E™(2)]]mOnx
ZEXNOmX

= R,,0,x, where R= U [[E™2)UE™X)\E™(z) n E™(x)]]

ZEXpOmx

= U Uy O x

UER

= U [[E™ W) U E*(ON\[E™ (W) N E™ ()], — (E)

UER

Again, we have,

X O (X3 O (X0 X)) = X, 0 (zEkaGmx X On2)

= %,0(_ U [[E"() UE"()\E™ () UE™(2)]])

n 9m

= x,0,R, where R = U [[E™(z) UE™(x)I\[E™(2) N E™(x)]]

ZEXpOmx
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= x,0,R

= U X, 0u

UER

= U [[E™(x) U E™ @)\ [E™(x) n E™ (W], — (F)

UER

Therefore, from (E) and (F) we have,

(Ccn0mX)n 0 X) ;O X = %5 0p (1, 0 (X7, 012.X))

Note: The above corollary appears valid for any finite number of composition.

I1. HYPEROPERATION IN AN IDEAL
HYPERGRAPH

In this section, we exhibit some hypergraph theoretic
characteristics of some well known Noetherian properties
available in ring theory. Keeping this in mind, we introduce
here, the notions of recursive hyperedge, recursive diameter,
infinite recursive diameter etc. together with vertex ideal
maximal condition. All these would lead us to investigate
the conditions that seem to be responsible for various types
of finiteness characters in an ideal hypergraph.

o Definition 3.1 An ideal hypergraph is a hypergraph I' =
(H,&) where H is a ring (not necessarily commutative,
finite or infinite) with unity and € is the collection of all
the ideals of H. It is obviously a hypergraph as the ring
HeE.

If I € H, where H is a ring then the ideal generated
by I is the smallest ideal containing I and is denoted by <
I >. Thus, if a € H and I = {a} then <] >=< {a} >=<
a > (= aH) the principal ideal generated by a.

e Definition 3.2 A hyperoperation = in an ideal
hypergraph is a map of the type

x*H X H — P(H)
Such that, for, a,b € H

ax*b=<{a,b}>= (a,b) [= the ideal generated by
{a, b}].

If axb=1(= (a,b)),then, for c e H,

I*c=U(s * C)=Z ria+z sib+z tc=(@ * b) =* c=<abc>
finite finite finite

S€l

Where 1;,s;,t; €ER Similarly, ¢ * [I=<
a,b,c>.S0,1 * c=c = I.

O,(a * b)) * c=a * (b * c)

If a,beR, then, a = b stands for the ideal
generated by < {a, b} >.

In general, we define, if A,B € R then, <AUB >=
the ideal generated by A U B= the smallest ideal containing
A and B and in symbol < AU B >= A *B.

For, A,B,C € R, it is known that, (AUB)UC =AU
(BUC)=AUBUC [by convention], and hence, it
follows the associative property,

A*(B*C)=(AxB)x*C=A=x*B=C [byconvention].
The term ‘hypergraph’ and ‘family of sets’ are used as
synonyms, so that a hypergraph is a family H = (&;]i € M),

in which the sets M and &; may be finnite or infinite. If M
is infinite then H is an infinite hypergraph.

ISRT26JAN141

In justification to the above definition we would like to
mention in our context the ideal hypergraph I' = (H,€),
with H, a ring (finite or infinite) and &, the collection of all
ideals of H.

e Definition 3.3 A recursive path in an ideal hypergraph
I' = (R, &) is a path, where each hyperedge contains its
preceeding hyperedge. Equivalently, each hyperedge is
contained in its succeeding hyperedge.

Thus, if P, = xEE,E;...E.y,E;NE;; # ¢ is a path
of length t from x to y and if, RE, = E; * E,,RE; =
E, «E, *E;,...,RE; = E; * E, x E; x...x E;,y € RE, with
E, € RE, € RE, S RE, C...C RE, , then,
X(RE\)(RE,)...(RE;)y [s<t] is the recursive path
corresponding to P;.
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Recursive path corresponding to Py

) E;

Fig 3 Recursive Path

We note that, intuitively, all such diameters of usual
recursive paths are finite in nature. Now, we would like to
introduce the notion of infinite recursive path. In other
words assuming the existence of infinite recursive path that
would be justified with the help of the following examples.

e Example 3.1 For our purpose we will consider two rings
Z[X;li =1,2,...] where X;X; = X;X;. Here the chain of
ideals < X; >&< X;,X, >C... is an ascending infinite
chain and in our context this is nothing but an infinite
recursive path [3].

e Example 3.2 Let R denote the collection of all finite
subsets of Z,. Then (R,4,n) is a commutative ring
without identity (in fact, R is an ideal of the ring of sets
P(Z). If I, ={1,2,...,n}, then we get

PU) & PU) EPU3) & -

For each n I, = {1,2,...,n} and P(I,) =collection of
all subsets of I,, and in the above ring each such P(I) is an
ideal and P(I,_;) & P(I,,) V n forms an increasing chain
of ideals of R which terminates at no point [2].

e Definition 3.4 A path with initial point x of a
hypergraph T = (H,&) is of vertex infinite recursive
character if for any chosen recursive path xK;K,...K.y,
we have a path of the type xK;K,... KK,z whatever
be t. If it is not of infinite recursive character, then it is
of finite recursive character.

o Definition 3.5 A path xK;K,... Ky with initial point x
of a hypergraph T = (H, £) is of vertex finite recursive
character if there does not exist any E,,, such that
xK;K,... KK,z whatever be t.

o Definition 3.6 An ideal hypergraph T'= (H,&) has
vertex ideal maximal condition if for a class of ideal I,
x € 1 contains a maximal element M with x € M.

ISRT26JAN141

e Theorem 3.1 If an ideal hypergraph T' = (H, &) is with
vertex maximal condition, then it has a path of vertex
finite recursive character.

Proof. If the hypregraph T' = (H, ) does not have a
path of vertex finite recursive character, then we get a vertex
recursive path of length d with initial vertex x as

xE, cE,c...c E;y,

And this gives another vertex recursive path of length
d+1,d+2,.. Thus, we get, an infinite vertex recursive
path with initial vertex x, where

E,GCE C..CSEj G-

But as T is with vertex ideal maximum condition, we
get a maximal vertex ideal E, for some t and E; = E, for
all i > t, a contradiction. Thus, I' = (H,&) has a path of
vertex recursive finite character.

e Theorem 3.2 If an ideal hypergraph T = (H, &)
satisfies the vertex maximal condition, then each ideal is
finitely generated.

Proof. Suppose an ideal I is not finitely generated.
Then a, €I for some a;, €I and I # (a,). So there exists
a, €I with a; € (a;) Sa; * a, and since I in not
finitely generated we have another a; € I such that

a, €(q)Sa, *a,%Sa, * a, * as.

Since I is not finitely generated, this process will
continue infinitely. Thus, we get a collection F =
{(a)),a, * a,,a; *a, *as,...} each containing a, such
that
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g, €(q)Ga*a,Sa,*xa, *xa; ...

Therefore, F is a collection of vertex ideals and it has
no maximal element M = a, * a, *...x a,, a contradiction.
Hence, I is finitely generated.

e Theorem 3.3 If an ideal hypergraph I' = (H,&) has a
path with vertex recursive finite character, then any ideal
[ is finitely generated.

Proof. Suppose an ideal I is not finitely generated.
Then a, €1 for some a, € I and I # (a,). So there exists
a, € I with a; € (a,) € a, * a, and since I in not finitely
generated we have another a; € I such that

a; €(qy) Sa;xa, Ea; *a, *as.

Since I is not finitely generated, this process will
continue infinitely. Thus, we get a recursive path of ideals
a,;A,A,..., where A; = a, xa, *...xqa; such that

a,€E()Sa,xa, S a,xa,*a; &...

Since, ' = (H,&) has a path with vertex recursive
finite character, there exist a such that x;A4,...A,x, is a
recursive path of length a and no other path exists of length
greater than a. Thus, there exists I = a; *a, *...xa,, a
contradiction. Hence, I is finitely generated.

e Theorem 3.4 |If any ideal I of an ideal hypergraph I' =
(H, &) is finitely generated, then it has a path with vertex
finite recursive character.

Proof. If not, then suppose T' = (H, £) has a path with
vertex infinite recursive character. So, for a vertex finite
recursive path xEE,...E,y, there exists a vertex recursive
path xEE,...EyEj 12, Where E, € E, ., Whatever be k.
Thus, we get an infinite collection F ={E;|E; S
E;,, for each i}, x € E;. Now, E' =UE, E; €F is an
ideal with x € E'. Thus, E' is a vertex maximal ideal with
xE,...E'z with z € E', which is a vertex hyperpath with
finite recursive character, a contradiction. Hence, T =
(H, &) has a path with vertex finite recursive character.

V. CONCLUSION

The authors claim all the results presented here
completely of their own together with the notions
developed. There is ample scope to derive so many elegant
results with far reaching affects to Hyperoperational aspects
of Hypergraphic world. Moreover, there is a very interesting
and serious aspects for developing some sort of
decomposition of Hypergraphs into its substructures with
prime characters in Algebraic sense that may be expected
from what is presented in the second section with the idea of
vertex Noetherian path.
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