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Abstract: In this paper some hyperoperational aspects involving hypergraphs are investigated. An introduction of new 

hyperoperational notions (one is with so called partial character) signifies non-commutative, self-reciprocating and index 

commuting self associative attributes. Furthermore, some hyperoperational characteristics applicable to a Noetherian ring 
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another innovative attempt is made to develop a hypergraphic exploration of some ring theoretic finiteness equivalent 

conditions that may be called some sort of chain conditional path. 
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I. INTRODUCTION 

 

Hypergraph is being widely and deeply investigated 

since its inception and have been used as a successful tool to 

represent and model complex concepts and structures in 

various areas of computer science and discrete mathematics 

[1]. Algebraic hyperstructures appear as a natural extension 

of usual algebraic structures, introduced by the French 

mathematician Marty [12] in the year 1934. It is very well 

known that in classical algebraic structures, its attached 
composition dealing with two elements give rise to an 

element only. On the other hand, the composition available 

in an algebraic hyperstructure is responsible to give the 

output as a set. Some authors have studied hyperstructures 

in connection with cryptography, coding, automata, 

probability, geometry, graphs, hypergraphs etc. so as to suit 

their objectives. [4, 6, 8, 9, 10, 15]. 

 

Among the various research works done in this field it 

would be worth while to mention about Corsini’s work in 

this regard [4, 5, 6, 7]. A special hypergroup, defined by 
Corsini has been named as Corsini hypergroup by authors 

like M. Al Tahan and B. Davvaz in their work "On Corsini 

hypergroups and their productional hypergroups" [15]. A 

range of work has been done based on the works of Corsini 

[11, 12, 13, 14]. Taking this as a motivation for our work we 

have tried to introduce two different definitions that proceed 

in a slightly different direction compared to the definitions 

that are at hand. The study is mainly to perceive how far 

these new notions will take us in this algebraic 

hyperstructural area. This would consist of the first part of 

the article. properties. Some noticeable results establish 

non-commutative, self-reciprocating and index 

 

In the second section our attempt would be to develop 
a hypergraphic exploration of ring theoretic finiteness 

equivalent conditions leading to so called vertex Noetherian 

path. 

 

II. PRELIMINARIES 

 

In this section, the basic definitions and notations are 

introduced for the sake of the subsequent sections. If 𝐻 is a 

non-empty set and 𝒫∗(𝐻)  is the set of all non-empty 

subsets of 𝐻, then a mapping 𝑜:𝐻 × 𝐻 → 𝒫∗(𝐻) is called 

a hyperoperation. We note that 𝑥  𝑜  𝑦 ⊆ 𝐻  for all 

𝑥, 𝑦 ∈ 𝐻 and it is termed as the hyperproduct of 𝑥 and 𝑦. If 

𝐴 and 𝐵 are non-empty subsets of 𝐻, then by 𝐴  𝑜  𝐵, 

we mean. 
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𝐴  𝑜  𝐵 = ⋃

𝑥∈𝐴,𝑦∈𝐵

𝑥  𝑜  𝑦 

 

An algebraic system (𝐻, 𝑜) together with a hyperoperation is known as hypergroupoid. 

 

A hypergraph [14] is a pair Γ = (𝐻, ℰ), where 𝐻 is a set of vertices and ℰ = {𝐸1, 𝐸2, . . . } is a collection of non-empty 

subsets of 𝐻 (known as hyperedges) such that ∪𝑖=1
𝑚 𝐸𝑖 = 𝐻. 

 

Here, we would like to note that the condition ∪𝑖=1
𝑚 𝐸𝑖 = 𝐻 is not obligatory in the definition of hypergraph in the theory of 

general hypergraphs. 

 

 Definition 2.2  A hyperoperation  𝑛 ∗𝑚, for all 𝑛,𝑚 ∈ ℕ on a hypergraph 𝛤 = (𝐻, ℰ) is defined as, for all (𝑥, 𝑦) ∈ 𝐻2, 

 

𝑥𝑛 ∗𝑚 𝑦 = 𝐸
𝑛(𝑥) ∩ 𝐸𝑚(𝑦), 

 

Where 𝐸0(𝑥) = 𝑥, 𝐸(𝑥) = ⋃ 𝐸𝑖𝑥∈𝐸𝑖
, 𝐸(𝐴) = ⋃ 𝐸(𝑥)𝑥∈𝐴  for all non-empty subset 𝐴 of 𝐻, and 𝐸𝑛(𝑥) = 𝐸𝑛−1(𝐸(𝑥)). 

 

It is important to note here that the hypergroupoid (𝐻,   𝑛 ∗𝑚) thus formed is a partial hypergroupoid. 

 

 Definition 2.3  If 𝐴 and 𝐵 are non-empty subsets of 𝐻, then by 𝐴  𝑛 ∗𝑚   𝐵 we mean, 

 

𝐴  𝑛 ∗𝑚   𝐵 = ⋃

𝑥∈𝐴,𝑦∈𝐵

𝑥  𝑛 ∗𝑚   𝑦 

 

And for 𝑥 ∈ 𝐻, 𝑥  𝑛 ∗𝑚   𝐴 = {𝑥}  𝑛 ∗𝑚   𝐴 and 𝐴  𝑛 ∗𝑚   𝑥 = 𝐴  𝑛 ∗𝑚   {𝑥}. 
 

 Definition 2.4  A partial hyperoperation  𝑛𝜃𝑚, for all 𝑛,𝑚 ∈ ℕ on a hypergraph 𝛤 = (𝐻, ℰ) is defined as, for all (𝑥, 𝑦) ∈
𝐻2, 

 

𝑥𝑛𝜃𝑚𝑦 = [𝐸
𝑛(𝑥) ∪ 𝐸𝑚(𝑦)]\[𝐸𝑛(𝑥) ∩ 𝐸𝑚(𝑦)], 

 

Where 𝐸0(𝑥) = 𝑥, 𝐸(𝑥) = ⋃ 𝐸𝑖𝑥∈𝐸𝑖
, 𝐸(𝐴) = ⋃ 𝐸(𝑥)𝑥∈𝐴  for all non-empty subset 𝐴 of 𝐻, and 𝐸𝑛(𝑥) = 𝐸𝑛−1(𝐸(𝑥)). 

 

It is important to note here that the hypergroupoid (𝐻,   𝑛𝜃𝑚) thus formed is a partial hypergroupoid. 

 

 Definition 2.5  If 𝐴 and 𝐵 are non-empty subsets of 𝐻, then by 𝐴  𝑛𝜃𝑚  𝐵 we mean, 

 

𝐴  𝑛𝜃𝑚   𝐵 = ⋃

𝑥∈𝐴,𝑦∈𝐵

𝑥  𝑛𝜃𝑚   𝑦, 

 

And for 𝑥 ∈ 𝐻, 𝑥  𝑛𝜃𝑚  𝐴 = {𝑥}  𝑛𝜃𝑚   𝐴 and 𝐴  𝑛𝜃𝑚  𝑥 = 𝐴  𝑛𝜃𝑚   {𝑥}. 
 

 Note: The partial hypergroupoids 𝐻Γ = (𝐻,   𝑛 ∗𝑚)  and 𝐻Γ = (𝐻,   𝑛𝜃𝑚)  will be called partial hypergraph 

hypergroupoid. 

 

 Definition 2.6  A hyperoperation  𝑛𝑜𝑚 , for all 𝑛,𝑚 ∈ ℕ  on a hypergraph 𝛤 = (𝐻, ℰ)  is self reciprocating if for any 

(𝑎, 𝑏) ∈ 𝐻2, 𝑎 ∈ 𝑏  𝑛𝑜𝑚   𝑏 ⇔ 𝑏 ∈ 𝑎  𝑛𝑜𝑚   𝑎. 

 Definition 2.7  An 𝐸 operator hyperoperation is a hyperoperation described with the help of 𝐸 as already mentioned in 

Definition 2.2 and  2.4. 

 Definition 2.8  In an 𝐸-operator hyperoperation, say,  𝑛𝑜𝑚, 𝑚 and 𝑛 are termed as indices. 

 Definition 2.9  An 𝐸-operator hyperoperation  𝑛𝑜𝑚 is associative if for 𝑎, 𝑏, 𝑐 ∈ 𝐻, 
 

(𝑎  𝑛𝑜𝑚   𝑏)  𝑛𝑜𝑚   𝑐 = 𝑎  𝑛𝑜𝑚   (𝑏  𝑛𝑜𝑚   𝑐). 
 

 Definition 2.10  An 𝐸-operator hyperoperation  𝑛𝑜𝑚 is commuting associative if for 𝑎, 𝑏, 𝑐 ∈ 𝐻, 
 

(𝑎  𝑛𝑜𝑚   𝑏)  𝑛𝑜𝑚   𝑐 = 𝑎  𝑛𝑜𝑚   (𝑐  𝑛𝑜𝑚   𝑏). 
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 Definition 2.11  An 𝐸-operator hyperoperation  𝑛𝑜𝑚 is index commuting self-associative if for each 𝑥 ∈ 𝐻, 
 

(𝑥  𝑛𝑜𝑚   𝑥)  𝑛𝑜𝑚   𝑥 = 𝑥  𝑛𝑜𝑚   (𝑥  𝑚𝑜𝑛   𝑥). 
 

 Theorem 2.1 For each (𝑥, 𝑦) ∈ 𝐻2 and 𝑚,𝑛 ∈ ℕ the hypergroupoid 𝐻𝛤 = (𝐻,𝑛∗𝑚) satisfies the following: 

 

 𝑥 ∈ 𝑥𝑛 ∗𝑚 𝑥. 

 𝑥𝑛 ∗𝑚 𝑦 = 𝑦𝑛 ∗𝑚 𝑥. [𝑛∗𝑚 is commutative. ] 
 𝑦 ∈ 𝑥𝑛 ∗𝑚 𝑥 ⇔ 𝑥 ∈ 𝑦𝑛 ∗𝑚 𝑦. [𝑛∗𝑚 is self reciprocating. ] 
 (𝑥𝑛 ∗𝑚 𝑥)𝑛 ∗𝑚 (𝑥𝑛 ∗𝑚 𝑥) ⊇ (𝑥𝑛 ∗𝑚 𝑥)𝑛 ∗𝑚 𝑥. 

 

 Proof. Proof of (1) and (2) are straightforward. 

 

𝑦 ∈ 𝑥𝑛 ∗𝑚 𝑥 = 𝐸
𝑛(𝑥) ∩ 𝐸𝑚(𝑥) = 𝐸𝑚(𝑥), 𝑛 ≥ 𝑚. 

 

⇒ 𝑦 ∈ 𝐸𝑚(𝑥). 
 

Then, 𝐸(𝑦) ∩ 𝐸𝑚−1(𝑥) ≠ 𝜙 and so 𝐸2(𝑦) ∩ 𝐸𝑚−2(𝑥) ≠ 𝜙, . . . , 𝐸𝑚−1(𝑦) ∩ 𝐸(𝑥) ≠ 𝜙 

 

[Proof as given in [14]]. 

 

Therefore, 𝑥 ∈ 𝐸𝑚(𝑦) = 𝐸𝑚(𝑦) ∩ 𝐸𝑛(𝑦) = 𝑦𝑛 ∗𝑚 𝑦. 

 

⇒ 𝑥 ∈ 𝑦𝑛 ∗𝑚 𝑦. 

 

Thus, 𝑦 ∈ 𝑥𝑛 ∗𝑚 𝑥 ⟹ 𝑥 ∈ 𝑦𝑛 ∗𝑚 𝑦. 

 

Similarly, we can show, 𝑥 ∈ 𝑦𝑛 ∗𝑚 𝑦 ⟹ 𝑦 ∈ 𝑥𝑛 ∗𝑚 𝑥. 

 

Hence, 𝑦 ∈ 𝑥𝑛 ∗𝑚 𝑥 ⟺ 𝑥 ∈ 𝑦𝑛 ∗𝑚 𝑦. 

 

Or,  𝑛 ∗𝑚 is self reciprocating. 
 

(𝑥    𝑚 ∗𝑛     𝑥)    𝑚 ∗𝑛 𝑥 = [𝐸
𝑚(𝑥) ∩ 𝐸𝑛(𝑥)]    𝑚 ∗𝑛 𝑥,        (𝑛 > 𝑚) 

 

= 𝐸𝑚(𝑥)    𝑚 ∗𝑛 𝑥 

 

= {𝑥, 𝑥1, 𝑥2, … , 𝑥𝑝−1}    𝑚 ∗𝑛 𝑥,    [𝑆𝑢𝑝𝑝𝑜𝑠𝑒    𝐸
𝑚(𝑥) = 

 

{𝑥, 𝑥1, 𝑥2, . . . , 𝑥𝑝−1}] 

 

= (𝑥    𝑚 ∗𝑛 𝑥) ∪ (𝑥1    𝑚 ∗𝑛 𝑥) ∪ (𝑥2    𝑚 ∗𝑛 𝑥) ∪. . .∪ (𝑥𝑝−1    𝑚 ∗𝑛 𝑥)⏟                                                    
p components

,    → (𝐴) 

 

Again, 

 

(𝑥    𝑚 ∗𝑛     𝑥)𝑚 ∗𝑛 (𝑥    𝑚 ∗𝑛 𝑥) = [𝐸
𝑚(𝑥) ∩ 𝐸𝑛(𝑥)]𝑚 ∗𝑛 [𝐸

𝑚(𝑥) ∩ 𝐸𝑛(𝑥)] 
 

= 𝐸𝑚(𝑥) 𝑚 ∗𝑛 𝐸
𝑚(𝑥),    (𝑛 > 𝑚) 

 

= {𝑥, 𝑥1, . . . , 𝑥𝑝−1}𝑚 ∗𝑛 {𝑥, 𝑥1, . . . , 𝑥𝑝−1} 

 

= (𝑥  𝑚 ∗𝑛   𝑥) ∪ (𝑥  𝑚 ∗𝑛   𝑥1) ∪. . . (𝑥  𝑚 ∗𝑛   𝑥𝑝−1) 

 

∪ (𝑥1  𝑚 ∗𝑛   𝑥) ∪ (𝑥1  𝑚 ∗𝑛   𝑥1) ∪. . .∪ (𝑥1  𝑚 ∗𝑛   𝑥𝑝−1) 

 

∪ (𝑥𝑝−1  𝑚 ∗𝑛 𝑥) ∪ (𝑥𝑝−1  𝑚 ∗𝑛 𝑥1) ∪. . .∪ (𝑥𝑝−1  𝑚 ∗𝑛 𝑥𝑝−1) 
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= {(𝑥  𝑚 ∗𝑛   𝑥) ∪ (𝑥1  𝑚 ∗𝑛   𝑥) ∪. . .∪ (𝑥𝑝−1  𝑚 ∗𝑛   𝑥)⏟                                        
p components

} 

 

∪ (𝑥  𝑚 ∗𝑛   𝑥1) ∪ (𝑥1  𝑚 ∗𝑛   𝑥1) ∪. . .∪ (𝑥𝑝−1  𝑚 ∗𝑛   𝑥𝑝−1) ,    ⟶ (𝐵) 

 

From (𝐴) and (𝐵) it is easy to conclude that, 

 

(𝑥𝑛 ∗𝑚 𝑥)𝑛 ∗𝑚 (𝑥𝑛 ∗𝑚 𝑥) ⊇ (𝑥𝑛 ∗𝑚 𝑥)𝑛 ∗𝑚 𝑥 

 

 Example 2.1 Suppose 𝛤 = (𝐻, 𝐸)  is a hypergraph where 𝐻 = {𝑣1, 𝑣2, 𝑣3, . . . , 𝑣8}  and 𝐸 = {𝐸1 = {𝑣1, 𝑣2, 𝑣3, 𝑣7}, 𝐸2 =
{𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7},𝐸3 = {𝑣6, 𝑣8}}. 

 

 
Fig 1 Hypergraph 

 

Then, 

 

(𝑣1  2 ∗1   𝑣1)  2 ∗1   𝑣1 = [𝐸
2(𝑣1) ∩ 𝐸(𝑣1)]  2 ∗1   𝑣1 

 

= [𝐸(𝑣1)]  2 ∗1   𝑣1 
 

= {𝑣1, 𝑣2, 𝑣3, 𝑣7}  2 ∗1   𝑣1 
 

= (𝑣1  2 ∗1   𝑣1) ∪ (𝑣2  2 ∗1   𝑣1) ∪ (𝑣3  2 ∗1   𝑣1) ∪ 
 

(𝑣7  2 ∗1   𝑣1) 
 

= [𝐸2(𝑣1) ∩ 𝐸(𝑣1)] ∪ [𝐸
2(𝑣2) ∩ 𝐸(𝑣1)] 

 

∪ [𝐸2(𝑣3) ∩ 𝐸(𝑣1)] ∪ [𝐸
2(𝑣7) ∩ 𝐸(𝑣1)] 

 

= {𝑣1, 𝑣2, 𝑣3, 𝑣7} ∪ {𝑣1, 𝑣2, 𝑣3, 𝑣7} ∪ {𝑣1, 𝑣2, 𝑣3, 𝑣7} 
 

∪ {𝑣1, 𝑣2, 𝑣3, 𝑣7} 
 

= {𝑣1, 𝑣2, 𝑣3, 𝑣7}     ⟶ (𝑖) 
 

And, 

 

(𝑣1  2 ∗1   𝑣1)  2 ∗1   (𝑣1  2 ∗1   𝑣1) = 𝐸(𝑣1)  2 ∗1   𝐸(𝑣1),    [𝐿𝑖𝑘𝑒  𝑎𝑏𝑜𝑣𝑒] 
 

= {𝑣1, 𝑣2, 𝑣3, 𝑣7}  2 ∗1   {𝑣1, 𝑣2, 𝑣3, 𝑣7} 
 

= (𝑣1  2 ∗1   𝑣1) ∪ (𝑣1  2 ∗1   𝑣2) ∪ (𝑣1  2 ∗1   𝑣3) 
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∪ (𝑣1  2 ∗1   𝑣7) ∪. . .∪ (𝑣3  2 ∗1   𝑣7) 
 

= [𝐸2(𝑣1) ∩ 𝐸(𝑣1)] ∪ [𝐸
2(𝑣1) ∩ 𝐸(𝑣2)] ∪ [𝐸

2(𝑣1) 
 

∩ 𝐸(𝑣3)] ∪. . .∪ [𝐸
2(𝑣3) ∩ 𝐸(𝑣7)] 

 

= {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} ,    ⟶ (𝑖𝑖) 
 

From (𝑖) and (𝑖𝑖) we get, 

 

(𝑣1  2 ∗1   𝑣1)  2 ∗1   𝑣1 ⊆ (𝑣1  2 ∗1   𝑣1)  2 ∗1   (𝑣1  2 ∗1   𝑣1) 
 

Similarly, for any other 𝑣𝑖 ∈ 𝐻 we can see that, 

 

(𝑣𝑖   2 ∗1   𝑣𝑖)  2 ∗1   𝑣𝑖 ⊆ (𝑣𝑖   2 ∗1   𝑣𝑖)  2 ∗1   (𝑣𝑖   2 ∗1   𝑣𝑖),    𝑖 ∈ {1,2, . . . ,8}. 
 

 Theorem 2.2 For each (𝑥, 𝑦) ∈ 𝐻2 and 𝑚.𝑛 ∈ ℕ the partial hypergroupoid 𝐻𝛤 = (𝐻,𝑛 𝜃𝑚) satisfies the following: 

 

 𝑥 ∈ 𝐻\(𝑥𝑛𝜃𝑚𝑥). 
 

  𝑛𝜃𝑚 is non-commutative, [i.e. for some 𝑛,𝑚, 𝑥𝑛𝜃𝑚𝑦 ≠ 𝑦𝑛𝜃𝑚𝑥.] 

 

 𝑦 ∈ 𝑥𝑛𝜃𝑚𝑥 ⟺ 𝑥 ∈ 𝑦𝑛𝜃𝑚𝑦. [ 𝑛𝜃𝑚 is self reciprocating.] 

 

Proof. Proof of (1) and (2) are straightforward. 

 

𝑦 ∈ 𝑥𝑛𝜃𝑚𝑥 ⟹ 𝑦 ∈ [𝐸𝑛(𝑥) ∩ 𝐸𝑚(𝑥)]\[𝐸𝑛(𝑥) ∩ 𝐸𝑚(𝑥)] 
 

= 𝐸𝑛(𝑥)\𝐸𝑚(𝑥),        𝑛 ≥ 𝑚. 
 

𝑆𝑜, 𝑦 ∈ 𝐸𝑛(𝑥)\𝐸𝑚(𝑥) 𝑡ℎ𝑎𝑡 𝑔𝑖𝑣𝑒𝑠, 𝑦 ∈ 𝐸𝑛(𝑥) 𝑏𝑢𝑡 𝑦 ∉ 𝐸𝑚(𝑥). 
 

When 𝑦 ∈ 𝐸𝑛(𝑥), then we have 𝐸(𝑦) ∩ 𝐸𝑛−1(𝑥) ≠ 𝜙 and so, 𝐸2(𝑦) ∩ 𝐸𝑛−2(𝑥) ≠ 𝜙, . 
 

𝐸𝑛−1(𝑦) ∩ 𝐸(𝑥) ≠ 𝜙. 

 

Hence, 𝐸𝑛(𝑦) ∩ 𝑥 ≠ 𝜙. Therefore, 𝑥 ∈ 𝐸𝑛(𝑦). 
 

Next we have, 𝑦 ∈ 𝐸𝑚(𝑥) ⟺ 𝑥 ∈ 𝐸𝑚(𝑦) [Proof as given [14].] 

 

Also, we know that, 𝑃 ⟹ 𝑄 gives ∼ 𝑄 ⟹∼ 𝑃 

 

So, combining the above both we have, 𝑦 ∉ 𝐸𝑚(𝑥) ⟹ 𝑥 ∉ 𝐸𝑚(𝑦). 
 

Hence, we have, 

 

𝑥 ∈ 𝐸𝑛(𝑦) but 𝑥 ∉ 𝐸𝑚(𝑦) that gives us 

 

𝑥 ∈ 𝐸𝑛(𝑦)\𝐸𝑚(𝑦) 
 

= [𝐸𝑛(𝑦) ∪ 𝐸𝑚(𝑦)]\[𝐸𝑛(𝑦) ∩ 𝐸𝑚(𝑦)] 
 

= 𝑦𝑛𝜃𝑚𝑦 
 

So, 𝑥 ∈ 𝑦𝑛𝜃𝑚𝑦. 

 

Thus, we get, 

 

𝑦 ∈ 𝑥𝑛𝜃𝑚𝑥 ⟹ 𝑥 ∈ 𝑦𝑛𝜃𝑚𝑦 
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Similarly, we can have, 

 

𝑥 ∈ 𝑦𝑛𝜃𝑚𝑦 ⟹ 𝑦 ∈ 𝑥𝑛𝜃𝑚𝑥 
 

Thus, 

 

𝑦 ∈ 𝑥𝑛𝜃𝑚𝑥 ⇐ 𝑥 ∈ 𝑦𝑛𝜃𝑚𝑦 
 

Hence,  𝑛𝜃𝑚 is self reciprocating. 

 

 Example 2.2 Suppose 𝛤 = (𝐻, 𝐸)  is a hypergraph where 𝐻 = {𝑣1, 𝑣2, 𝑣3, . . . , 𝑣8}  and 𝐸 = {𝐸1 = {𝑣1, 𝑣2, 𝑣3, 𝑣7}, 𝐸2 =
{𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7},𝐸3 = {𝑣6, 𝑣8}} then, 

 

(𝑣1  2𝜃1  𝑣3)  2𝜃1  𝑣5 = [[𝐸
2(𝑣1) ∪ 𝐸(𝑣3)]\[𝐸

2(𝑣1) ∩ 𝐸(𝑣3)]]  2𝜃1  𝑣5 
 

= [{𝑣1, 𝑣2, . . . , 𝑣8}\{𝑣1, 𝑣2, . . . , 𝑣7}]  2𝜃1  𝑣5 
 

= {𝑣8}  2𝜃1  𝑣5 
 

= {𝑣8} 
 

And, 

 

𝑣1  2𝜃1  (𝑣3  2𝜃1  𝑣5) = 𝑣1  2𝜃1  [[𝐸
2(𝑣3) ∪ 𝐸(𝑣5)]\[𝐸

2(𝑣3) ∩ 𝐸(𝑣5)]] 
 

= 𝑣1  2𝜃1  {𝑣1, 𝑣2, 𝑣8} 
 

= (𝑣1  2𝜃1  𝑣1) ∪ (𝑣1  2𝜃1  𝑣2) ∪ (𝑣1  2𝜃1  𝑣8) 
 

= {𝑣4, 𝑣5, 𝑣6, 𝑣8} 
 

Also, 

 

𝑣1  2𝜃1  (𝑣5  2𝜃1  𝑣3) = 𝑣1  2𝜃1  [[𝐸
2(𝑣5) ∪ 𝐸(𝑣3)]\[𝐸

2(𝑣5) ∩ 𝐸(𝑣3)]] 
 

= {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣7} 
 

We observe here that, 

 

(𝑣1  2𝜃1  𝑣3)  2𝜃1  𝑣5 ≠ 𝑣1  2𝜃1  (𝑣3  2𝜃1  𝑣5), 
 

And, 

 

(𝑣1  2𝜃1  𝑣3)  2𝜃1  𝑣5 ≠ 𝑣1  2𝜃1  (𝑣5  2𝜃1  𝑣3). 
 

So, in general we can conclude that, 

 

For the partial hypergroupoid 𝐻Γ = (𝐻,𝑛 𝜃𝑚), where 𝑎, 𝑏, 𝑐 ∈ 𝐻 and 𝑚,𝑛 ∈ 𝐻 the following, 

 

(𝑖)  (𝑎  𝑛𝜃𝑚   𝑏)  𝑛𝜃𝑚   𝑐 = 𝑎  𝑛𝜃𝑚   (𝑏  𝑛𝜃𝑚   𝑐) 
 

(𝑖𝑖)  (𝑎  𝑛𝜃𝑚  𝑏)  𝑛𝜃𝑚  𝑐 = 𝑎  𝑛𝜃𝑚  (𝑐  𝑛𝜃𝑚  𝑏) 
 

Are not true. 

 

Furthermore, we observe that the partial hypergroupoid 𝐻Γ = (𝐻,𝑛 𝜃𝑚) satisfies the index commuting self-associativity 

which is proved in the following theorem: 
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 Theorem 2.3 For any 𝑥 ∈ 𝐻  and 𝑚,𝑛 ∈ ℕ  the partial hypergroupoid 𝐻𝛤 = (𝐻,𝑛 𝜃𝑚)  satisfies the index commutating 

self-associativity. 

 

Or, 

 

(𝑥𝑛𝜃𝑚𝑥)𝑚𝜃𝑛𝑥 = 𝑥𝑛𝜃𝑚(𝑥𝑛𝜃𝑚𝑥). 
 

Proof. 

 

(𝑥𝑛𝜃𝑚𝑥)𝑚𝜃𝑛𝑥 = ⋃

𝑧∈𝑥𝑛𝜃𝑚𝑥

(𝑧𝑚𝜃𝑛𝑥) 

 

= ⋃

𝑧∈𝑥𝑛𝜃𝑚𝑥

[[𝐸𝑚(𝑧) ∪ 𝐸𝑛(𝑥)]\[𝐸𝑚(𝑧) ∩ 𝐸𝑛(𝑥)]]         ⟶ (𝐶) 

 

Again, 

 

𝑥𝑛𝜃𝑚(𝑥𝑛𝜃𝑚𝑥) = ⋃

𝑧∈𝑥𝑛𝜃𝑚𝑥

(𝑥𝑛𝜃𝑚𝑧) 

 

= ⋃

𝑧∈𝑥𝑛𝜃𝑚𝑥

[[𝐸𝑛(𝑥) ∪ 𝐸𝑚(𝑧)]\[𝐸𝑛(𝑥) ∩ 𝐸𝑚(𝑧)]]         ⟶ (𝐷) 

 

Therefore, from (𝐶) and (𝐷) we have, 

 

(𝑥𝑛𝜃𝑚𝑥)𝑚𝜃𝑛𝑥 = 𝑥𝑛𝜃𝑚(𝑥𝑛𝜃𝑚𝑥) 
 

 Example 2.3 Suppose that 𝐻 = {𝑣1, 𝑣2, . . . , 𝑣12}  and 𝐸 = {𝐸1 = {𝑣1, 𝑣2, 𝑣3}, 𝐸2 = {𝑣3, 𝑣4, 𝑣5, 𝑣6},𝐸3 = {𝑣6, 𝑣7, 𝑣8},𝐸4 =
{𝑣8, 𝑣9, 𝑣10}, 𝐸5 = {𝑣10, 𝑣11, 𝑣12}}. 

 

 
Fig 2 Hypergraph 

 
Then, 

 

(𝑣1 2𝜃1 𝑣1)1𝜃2 𝑣1 = [𝐸
2(𝑣1) ∪ 𝐸(𝑣1)]\[𝐸

2(𝑣1) ∩ 𝐸(𝑣1)]1𝜃2𝑣1 
 

= [𝐸2(𝑣1)\𝐸(𝑣1)]1𝜃2𝑣1 
 

= [{𝑣1, 𝑣2, . . . , 𝑣6}\{𝑣1, 𝑣2, 𝑣3}]1𝜃2𝑣1 
 

= {𝑣4, 𝑣5, 𝑣6}1𝜃2𝑣1 
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= (𝑣4  1𝜃2  𝑣1) ∪ (𝑣5  1𝜃2  𝑣1) ∪ (𝑣6  1𝜃2  𝑣1) 
 

= [[𝐸(𝑣4) ∪ 𝐸
2(𝑣1)][𝐸(𝑣4) ∩ 𝐸

2(𝑣1)]] ∪ [[𝐸(𝑣5) ∪ 𝐸
2(𝑣1)][𝐸(𝑣5) ∩ 𝐸

2(𝑣1)]] 
 

∪ [[𝐸(𝑣6) ∪ 𝐸
2(𝑣1)]\[𝐸(𝑣6) ∩ 𝐸

2(𝑣1)]] 
 

= {𝑣1, 𝑣2} ∪ {𝑣1, 𝑣2} ∪ {𝑣1, 𝑣2, 𝑣7, 𝑣8} 
 

= {𝑣1, 𝑣2, 𝑣7, 𝑣8} ,    ⟶ (𝑖𝑖𝑖) 
 

Again, 

 

𝑣1 2𝜃1(𝑣1 2𝜃1𝑣1) = 𝑣1 2𝜃1{𝑣4, 𝑣5, 𝑣6} 
 

= (𝑣1 2𝜃1 𝑣4) ∪ (𝑣1 2𝜃1 𝑣5) ∪ (𝑣1 2𝜃1 𝑣6) 
 

= [[𝐸2(𝑣1) ∪ 𝐸(𝑣4)][𝐸
2(𝑣1) ∩ 𝐸(𝑣4)]] ∪ [[𝐸

2(𝑣1) ∪ 𝐸(𝑣5)][𝐸
2(𝑣1) ∩ 𝐸(𝑣5)]] 

 

∪ [[𝐸2(𝑣1) ∪ 𝐸(𝑣6)]\[𝐸
2(𝑣1) ∩ 𝐸(𝑣6)]] 

 

= {𝑣1, 𝑣2, 𝑣7, 𝑣8} ,    ⟶ (𝑖𝑣) 
 

From (𝑖𝑖𝑖) and (𝑖𝑣) we get, 

 

(𝑣1 2𝜃1 𝑣1)1𝜃2 𝑣1 = 𝑣1 2𝜃1(𝑣1 2𝜃1𝑣1) 
 

Similarly, for any other 𝑣𝑖 ∈ 𝐻 we can see that, 
 

(𝑣𝑖  2𝜃1 𝑣𝑖)1𝜃2 𝑣𝑖 = 𝑣𝑖  2𝜃1(𝑣𝑖  2𝜃1𝑣𝑖),    𝑖 ∈ {1,2, . . . ,12} 
 

 Corollary 2.4 For any 𝑥 ∈ 𝐻 and 𝑚,𝑛 ∈ ℕ the partial hypergroupoid 𝐻𝛤 = (𝐻,𝑛 𝜃𝑚) satisfies, 

 

((𝑥𝑛𝜃𝑚𝑥)𝑛𝜃𝑚𝑥)𝑚𝜃𝑛𝑥 = 𝑥𝑛𝜃𝑚(𝑥𝑚𝜃𝑛(𝑥𝑛𝜃𝑚𝑥)). 
 

Proof. (5). 
 

((𝑥𝑛𝜃𝑚𝑥)𝑛𝜃𝑚𝑥)𝑚𝜃𝑛𝑥 = [ ∪
𝑧∈𝑥𝑛𝜃𝑚𝑥

𝑧𝑛𝜃𝑚𝑥]𝑚𝜃𝑛𝑥 

 

= ⋃

𝑧∈𝑥𝑛𝜃𝑚𝑥

[[𝐸𝑛(𝑧) ∪ 𝐸𝑚(𝑥)]\[𝐸𝑛(𝑧) ∩ 𝐸𝑚(𝑧)]]𝑚𝜃𝑛𝑥 

 

= 𝑅𝑚𝜃𝑛𝑥,    𝑤ℎ𝑒𝑟𝑒    𝑅 = ∪
𝑧∈𝑥𝑛𝜃𝑚𝑥

[[𝐸𝑛(𝑧) ∪ 𝐸𝑚(𝑥)]\[𝐸𝑛(𝑧) ∩ 𝐸𝑚(𝑥)]] 

 

=⋃

𝑢∈𝑅

𝑢𝑚𝜃𝑛𝑥 

 

=⋃

𝑢∈𝑅

[[𝐸𝑚(𝑢) ∪ 𝐸𝑛(𝑥)]\[𝐸𝑚(𝑢) ∩ 𝐸𝑛(𝑥)]] ,        ⟶ (𝐸) 

 

Again, we have, 

 

𝑥𝑛𝜃𝑚(𝑥𝑚𝜃𝑛(𝑥𝑛𝜃𝑚𝑥)) = 𝑥𝑛𝜃𝑚( ∪
𝑧∈𝑥𝑛𝜃𝑚𝑥

𝑥𝑚𝜃𝑛𝑧) 

 

= 𝑥𝑛𝜃𝑚( ∪
𝑧∈𝑥𝑛𝜃𝑚𝑥

[[𝐸𝑚(𝑥) ∪ 𝐸𝑛(𝑧)]\[𝐸𝑚(𝑥) ∪ 𝐸𝑚(𝑧)]]) 

 

= 𝑥𝑛𝜃𝑚𝑅,    𝑤ℎ𝑒𝑟𝑒    𝑅 = ⋃

𝑧∈𝑥𝑛𝜃𝑚𝑥

[[𝐸𝑛(𝑧) ∪ 𝐸𝑚(𝑥)]\[𝐸𝑛(𝑧) ∩ 𝐸𝑚(𝑥)]] 
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= 𝑥𝑛𝜃𝑚𝑅 
 

=⋃

𝑢∈𝑅

𝑥𝑛𝜃𝑚𝑢 

 

=⋃

𝑢∈𝑅

[[𝐸𝑛(𝑥) ∪ 𝐸𝑚(𝑢)]\[𝐸𝑛(𝑥) ∩ 𝐸𝑚(𝑢)]] ,        ⟶ (𝐹) 

 

Therefore, from (𝐸) and (𝐹) we have, 
 

((𝑥𝑛𝜃𝑚𝑥)𝑛𝜃𝑚𝑥)𝑚𝜃𝑛𝑥 = 𝑥𝑛𝜃𝑚(𝑥𝑚𝜃𝑛(𝑥𝑛𝜃𝑚𝑥)) 
 

Note: The above corollary appears valid for any finite number of composition. 

 

III. HYPEROPERATION IN AN IDEAL 

HYPERGRAPH 

 

In this section, we exhibit some hypergraph theoretic 

characteristics of some well known Noetherian properties 
available in ring theory. Keeping this in mind, we introduce 

here, the notions of recursive hyperedge, recursive diameter, 

infinite recursive diameter etc. together with vertex ideal 

maximal condition. All these would lead us to investigate 

the conditions that seem to be responsible for various types 

of finiteness characters in an ideal hypergraph. 

 

 Definition 3.1 An ideal hypergraph is a hypergraph 𝛤 =
(𝐻, ℰ) where 𝐻 is a ring (not necessarily commutative, 

finite or infinite) with unity and ℰ is the collection of all 

the ideals of 𝐻. It is obviously a hypergraph as the ring 

𝐻 ∈ ℰ. 

If 𝐼 ⊆ 𝐻, where 𝐻 is a ring then the ideal generated 

by 𝐼 is the smallest ideal containing 𝐼 and is denoted by <
𝐼 >. Thus, if 𝑎 ∈ 𝐻 and 𝐼 = {𝑎} then < 𝐼 >=< {𝑎} >=<
𝑎 > (= 𝑎𝐻) the principal ideal generated by 𝑎. 

 

 Definition 3.2 A hyperoperation ∗  in an ideal 

hypergraph is a map of the type 

 

∗: 𝐻 × 𝐻 → 𝒫(𝐻) 
 

Such that, for, 𝑎, 𝑏 ∈ 𝐻 

 

𝑎 ∗ 𝑏 =< {𝑎, 𝑏} >= (𝑎, 𝑏)  [= the ideal generated by 

{𝑎, 𝑏}]. 
 

If 𝑎 ∗ 𝑏 = 𝐼(= (𝑎, 𝑏)), then, for 𝑐 ∈ 𝐻, 

 

𝐼 ∗ 𝑐 =⋃(𝑠  ∗   𝑐)

𝑠∈𝐼

=∑
𝑓𝑖𝑛𝑖𝑡𝑒

𝑟𝑖𝑎 +∑
𝑓𝑖𝑛𝑖𝑡𝑒

𝑠𝑖𝑏 +∑
𝑓𝑖𝑛𝑖𝑡𝑒

𝑡𝑖𝑐 = (𝑎  ∗   𝑏)   ∗  𝑐 =< 𝑎, 𝑏, 𝑐 > 

 

Where 𝑟𝑖 , 𝑠𝑖 , 𝑡𝑖 ∈ 𝑅 . Similarly, 𝑐  ∗   𝐼 =<
𝑎, 𝑏, 𝑐 >. So, 𝐼  ∗  𝑐 = 𝑐  ∗  𝐼. 
 

Or, (𝑎  ∗   𝑏)   ∗   𝑐 = 𝑎  ∗   (𝑏  ∗   𝑐). 
 

If 𝑎, 𝑏 ∈ 𝑅 , then, 𝑎  ∗  𝑏  stands for the ideal 

generated by < {𝑎, 𝑏} >. 

 

In general, we define, if 𝐴, 𝐵 ⊆ 𝑅 then, < 𝐴 ∪𝐵 >= 

the ideal generated by 𝐴 ∪ 𝐵= the smallest ideal containing 

𝐴 and 𝐵 and in symbol < 𝐴 ∪ 𝐵 >= 𝐴 ∗ 𝐵. 

 

For, 𝐴,𝐵, 𝐶 ⊆ 𝑅, it is known that, (𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪
(𝐵 ∪ 𝐶) = 𝐴 ∪ 𝐵 ∪ 𝐶  [by convention], and hence, it 

follows the associative property, 

 

𝐴 ∗ (𝐵 ∗ 𝐶) = (𝐴 ∗ 𝐵) ∗ 𝐶 = 𝐴 ∗ 𝐵 ∗ 𝐶 [by convention]. 

 

The term ‘hypergraph’ and ‘family of sets’ are used as 

synonyms, so that a hypergraph is a family 𝐻 = (ℰ𝑖|𝑖 ∈ 𝑀), 
in which the sets 𝑀 and ℰ𝑖 may be finnite or infinite. If 𝑀 

is infinite then 𝐻 is an infinite hypergraph. 

In justification to the above definition we would like to 

mention in our context the ideal hypergraph 𝛤 = (𝐻, ℰ) , 

with 𝐻, a ring (finite or infinite) and ℰ, the collection of all 

ideals of 𝐻. 

 

 Definition 3.3 A recursive path in an ideal hypergraph 

𝛤 = (ℛ, ℰ) is a path, where each hyperedge contains its 

preceeding hyperedge. Equivalently, each hyperedge is 

contained in its succeeding hyperedge. 

 

Thus, if 𝑃1 = 𝑥𝐸1𝐸2𝐸3. . . 𝐸𝑡𝑦, 𝐸𝑖 ∩ 𝐸𝑖+1 ≠ 𝜙 is a path 

of length 𝑡  from 𝑥  to 𝑦  and if, ℛ𝐸2 = 𝐸1 ∗ 𝐸2, ℛ𝐸3 =
𝐸1 ∗ 𝐸2 ∗ 𝐸3, . . . , ℛ𝐸𝑠 = 𝐸1 ∗ 𝐸2 ∗ 𝐸3 ∗. . .∗ 𝐸𝑠 , 𝑦 ∈ ℛ𝐸𝑠  with 

𝐸1 ⊆ ℛ𝐸2 ⊆ ℛ𝐸3 ⊆ ℛ𝐸4 ⊆. . . ⊆ ℛ𝐸𝑠 , then, 

𝑥(ℛ𝐸1)(ℛ𝐸2). . . (ℛ𝐸𝑠)𝑦  [ 𝑠 ≤ 𝑡 ] is the recursive path 

corresponding to 𝑃1 . 

 

 

 

 

 

https://doi.org/10.38124/ijisrt/26jan141
http://www.ijisrt.com/


Volume 11, Issue 1, January – 2026             International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                     https://doi.org/10.38124/ijisrt/26jan141 

 

 

IJISRT26JAN141                                      www.ijisrt.com                                                       132 

 
Fig 3 Recursive Path 

 

We note that, intuitively, all such diameters of usual 

recursive paths are finite in nature. Now, we would like to 

introduce the notion of infinite recursive path. In other 

words assuming the existence of infinite recursive path that 

would be justified with the help of the following examples. 

 

 Example 3.1 For our purpose we will consider two rings 

𝑍[𝑋𝑖|𝑖 = 1,2, . . . ] where 𝑋𝑖𝑋𝑗 = 𝑋𝑗𝑋𝑖. Here the chain of 

ideals < 𝑋1 >⫋< 𝑋1, 𝑋2 >⊆. .. is an ascending infinite 

chain and in our context this is nothing but an infinite 

recursive path [3]. 

 Example 3.2 Let 𝑅  denote the collection of all finite 

subsets of 𝑍+ . Then (𝑅, 𝛥,∩)  is a commutative ring 

without identity (in fact, 𝑅 is an ideal of the ring of sets 

𝑃(𝑍+)). If 𝐼𝑛 = {1,2, . . . , 𝑛}, then we get 

 

𝑃(𝐼1) ⫋ 𝑃(𝐼2) ⫋ 𝑃(𝐼3) ⫋. .. 
 

For each 𝑛 𝐼𝑛 = {1,2, . . . , 𝑛} and 𝑃(𝐼𝑛) =collection of 

all subsets of 𝐼𝑛 and in the above ring each such 𝑃(𝐼) is an 

ideal and 𝑃(𝐼𝑛−1) ⫋ 𝑃(𝐼𝑛) ∀ 𝑛 forms an increasing chain 

of ideals of 𝑅 which terminates at no point  [2]. 

 

 Definition 3.4 A path with initial point x  of a 

hypergraph Γ = (H, ℰ)  is of vertex infinite recursive 

character if for any chosen recursive path xK1K2. . . Kty, 

we have a path of the type xK1K2. . . KtKt+1z whatever 

be t. If it is not of infinite recursive character, then it is 
of finite recursive character. 

 Definition 3.5 A path xK1K2. . . Kty with initial point x 
of a hypergraph Γ = (H, ℰ) is of vertex finite recursive 

character if there does not exist any Ek+1  such that 

xK1K2. . . KtKt+1z whatever be t. 
 Definition 3.6 An ideal hypergraph Γ = (H, ℰ)  has 

vertex ideal maximal condition if for a class of ideal I, 

x ∈ I contains a maximal element M with x ∈ M. 

 Theorem 3.1  If an ideal hypergraph Γ = (H, ℰ) is with 

vertex maximal condition, then it has a path of vertex 

finite recursive character. 

 

Proof. If the hypregraph Γ = (𝐻, ℰ) does not have a 

path of vertex finite recursive character, then we get a vertex 

recursive path of length 𝑑 with initial vertex 𝑥 as 
 

𝑥𝐸1 ⊂ 𝐸2 ⊂. . . ⊂ 𝐸𝑑𝑦, 
 

And this gives another vertex recursive path of length 

𝑑 + 1, 𝑑 + 2, . .. Thus, we get, an infinite vertex recursive 

path with initial vertex 𝑥, where 

 

𝐸1 ⊊ 𝐸2 ⊊. . . ⊊ 𝐸𝑑+1 ⊊. .. 
 

But as Γ is with vertex ideal maximum condition, we 

get a maximal vertex ideal 𝐸𝑡 for some 𝑡 and 𝐸𝑖 = 𝐸𝑡 for 

all 𝑖 ≥ 𝑡, a contradiction. Thus, Γ = (𝐻, ℰ) has a path of 

vertex recursive finite character. 

 

 Theorem 3.2  If an ideal hypergraph Γ = (H, ℰ) 
satisfies the vertex maximal condition, then each ideal is 

finitely generated. 

 

Proof. Suppose an ideal 𝐼  is not finitely generated. 

Then 𝑎1 ∈ 𝐼 for some 𝑎1 ∈ 𝐼 and 𝐼 ≠ (𝑎1). So there exists 

𝑎2 ∈ 𝐼  with 𝑎1 ∈ (𝑎1) ⊊ 𝑎1   ∗   𝑎2  and since 𝐼  in not 

finitely generated we have another 𝑎3 ∈ 𝐼 such that 

 

𝑎1 ∈ (𝑎1) ⊊ 𝑎1   ∗ 𝑎2 ⊊ 𝑎1   ∗   𝑎2   ∗   𝑎3. 
 

Since 𝐼  is not finitely generated, this process will 

continue infinitely. Thus, we get a collection ℱ =
{(𝑎1), 𝑎1 ∗ 𝑎2, 𝑎1 ∗ 𝑎2 ∗ 𝑎3, . . . }  each containing 𝑎1  such 

that 
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𝑎1 ∈ (𝑎1) ⊊ 𝑎1 ∗ 𝑎2 ⊊ 𝑎1 ∗ 𝑎2 ∗ 𝑎3 ⊊. .. 
 

Therefore, ℱ is a collection of vertex ideals and it has 

no maximal element 𝑀 = 𝑎1 ∗ 𝑎2 ∗. . .∗ 𝑎𝑡 , a contradiction. 

Hence, 𝐼 is finitely generated. 
 

 Theorem 3.3  If an ideal hypergraph Γ = (H, ℰ) has a 

path with vertex recursive finite character, then any ideal 

I is finitely generated. 

 

Proof. Suppose an ideal 𝐼  is not finitely generated. 

Then 𝑎1 ∈ 𝐼 for some 𝑎1 ∈ 𝐼 and 𝐼 ≠ (𝑎1). So there exists 

𝑎2 ∈ 𝐼 with 𝑎1 ∈ (𝑎1) ⊊ 𝑎1 ∗ 𝑎2 and since 𝐼 in not finitely 

generated we have another 𝑎3 ∈ 𝐼 such that 

 

𝑎1 ∈ (𝑎1) ⊊ 𝑎1 ∗ 𝑎2 ⊊ 𝑎1 ∗ 𝑎2 ∗ 𝑎3. 
 

Since 𝐼  is not finitely generated, this process will 

continue infinitely. Thus, we get a recursive path of ideals 

𝑎1𝐴1𝐴2. .., where 𝐴𝑖 = 𝑎1 ∗ 𝑎2  ∗. . .∗ 𝑎𝑖 such that 

 

𝑎1 ∈ (𝑎1) ⊊ 𝑎1 ∗ 𝑎2 ⊊ 𝑎1 ∗ 𝑎2 ∗ 𝑎3 ⊊. .. 
 

Since, Γ = (𝐻, ℰ)  has a path with vertex recursive 

finite character, there exist 𝛼 such that 𝑥1𝐴1. . . 𝐴𝛼𝑥𝛼  is a 

recursive path of length 𝛼 and no other path exists of length 

greater than 𝛼 . Thus, there exists 𝐼 = 𝑎1 ∗ 𝑎2 ∗. . .∗ 𝑎𝛼 , a 

contradiction. Hence, 𝐼 is finitely generated. 

 

 Theorem 3.4  If any ideal I of an ideal hypergraph Γ =
(H, ℰ) is finitely generated, then it has a path with vertex 

finite recursive character. 

 

Proof. If not, then suppose Γ = (𝐻, ℰ) has a path with 

vertex infinite recursive character. So, for a vertex finite 

recursive path 𝑥𝐸1𝐸2. . . 𝐸𝑘𝑦, there exists a vertex recursive 

path 𝑥𝐸1𝐸2. . . 𝐸𝑘𝐸𝑘+1𝑧𝑘, where 𝐸𝑘 ⊆ 𝐸𝑘+1, whatever be 𝑘. 

Thus, we get an infinite collection ℱ = {𝐸𝑖|𝐸𝑖 ⊆
𝐸𝑖+1, for each 𝑖} , 𝑥 ∈ 𝐸𝑖 . Now, 𝐸′ =∪ 𝐸𝑖 , 𝐸𝑖 ∈ ℱ  is an 

ideal with 𝑥 ∈ 𝐸′. Thus, 𝐸′ is a vertex maximal ideal with 

𝑥𝐸1. . . 𝐸
′𝑧 with 𝑧 ∈ 𝐸′ , which is a vertex hyperpath with 

finite recursive character, a contradiction. Hence, Γ =
(𝐻, ℰ) has a path with vertex finite recursive character. 

 

IV. CONCLUSION 

 

The authors claim all the results presented here 

completely of their own together with the notions 

developed. There is ample scope to derive so many elegant 

results with far reaching affects to Hyperoperational aspects 

of Hypergraphic world. Moreover, there is a very interesting 

and serious aspects for developing some sort of 
decomposition of Hypergraphs into its substructures with 

prime characters in Algebraic sense that may be expected 

from what is presented in the second section with the idea of 

vertex Noetherian path. 
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