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Abstract: This study examines the risks associated with the deployment of large language models (LLMs) in healthcare, 

focusing on memorization, prompt inference errors, and retrieval hazards. LLMs, such as GPT-4, MedPaLM, and fine-

tuned clinical models like ClinicalBERT, are increasingly used in clinical decision support, diagnostic assistance, and 

administrative automation. While these models offer significant potential in improving healthcare delivery, they also 

present privacy and safety risks. The study investigates how these models memorize sensitive data, generate incorrect or 

unsafe responses due to prompt errors, and retrieve irrelevant or confidential information through external knowledge 

bases. The findings reveal that GPT-4, a general-purpose model, exhibits higher memorization and inference risks 

compared to domain-specific models like MedPaLM and ClinicalBERT, which showed improved performance in 

healthcare tasks and reduced memorization tendencies. The study also emphasizes the importance of prompt engineering, 

the potential hazards of retrieval-augmented generation (RAG) systems, and the necessity of privacy-preserving 

techniques. Based on these findings, the paper proposes a set of practical recommendations for safe LLM integration in 

healthcare, including data governance practices, prompt validation protocols, and retrieval safeguards. Finally, the study 

outlines a framework for risk mitigation and suggests directions for future research, including longitudinal studies on 

model drift, cross-institutional validation of risk profiles, and human-in-the-loop interventions for real-world deployment. 

The findings provide essential insights for clinicians, AI researchers, and policymakers working to safely deploy AI in 

healthcare. 
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I. INTRODUCTION 

 

 Background and Context 

The evolution of large language models (LLMs) has 
transformed numerous industries, with healthcare being a 

prominent sector. Initially, LLMs like GPT-2 and GPT-3, 

developed by OpenAI, demonstrated significant 

advancements in natural language processing (NLP), 

enabling machines to generate human-like text (Vaswani et 

al., 2017). These models are trained on vast amounts of text 

data and have shown proficiency in tasks such as text 

generation, summarization, and sentiment analysis. In 

healthcare, LLMs have been increasingly adopted for a 

variety of purposes, from assisting in clinical decision 

support to automating administrative tasks (Beltagy et al., 

2019). 

 
In the healthcare informatics landscape, LLMs have 

become integral tools for enhancing clinical decision 

support (CDS). They are used to assist clinicians in 

diagnosing diseases, recommending treatments, and 

predicting patient outcomes based on electronic health 

records (EHRs) and patient data (Rajkomar et al., 2019). For 

example, models fine-tuned on medical literature can help 

generate summaries of EHRs, offering healthcare providers 

an efficient way to access critical patient information, thus 
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improving workflow efficiency (Liu et al., 2020). 

Furthermore, LLMs contribute to patient communication by 

generating personalized responses in chatbots, aiding in 

patient education, appointment scheduling, and symptom 

tracking (Bertomeu et al., 2021). 

 

Despite their promise, the generative capabilities of 

LLMs in healthcare must be distinguished from their clinical 
utility and safety. While LLMs excel at generating human-

like text, their ability to make accurate, clinically relevant 

decisions is still limited by their lack of understanding of 

medical context and the potential for biases in their training 

data (Choi et al., 2020). In clinical settings, safety concerns 

arise regarding the potential for LLMs to provide misleading 

or incorrect information, which could lead to adverse patient 

outcomes (Ching et al., 2018). Therefore, careful validation, 

oversight, and integration into clinical workflows are 

essential to ensure their utility and safety in real-world 

applications. 
 

 Problem Statement 

The integration of large language models (LLMs) in 

healthcare introduces significant risks, particularly related to 

memorization of sensitive data. LLMs are trained on vast 

datasets, including potentially sensitive information from 

clinical records, medical literature, and patient data. Despite 

efforts to ensure data privacy, there is a concern that these 

models might inadvertently memorize and regurgitate 

private information (Carlini et al., 2021). Such 

memorization poses a direct threat to patient confidentiality, 

especially when LLMs are used in real-world applications 
such as clinical decision support and patient communication. 

This unintended retention of data can lead to the exposure of 

protected health information (PHI), violating privacy laws 

such as HIPAA and GDPR (Shokri et al., 2017). 

 

Another issue arises from unintended prompt 

inference. While LLMs are designed to generate human-like 

responses based on input prompts, their ability to infer and 

generate predictions is not always aligned with the medical 

context. This gap can result in unsafe or inaccurate 

recommendations when the model is prompted with medical 
queries (Hendrycks et al., 2020). In healthcare, where 

decision-making directly impacts patient care, such 

inference errors can have serious consequences. For 

instance, an LLM might provide a clinically inappropriate 

treatment recommendation or misinterpret patient 

symptoms, leading to suboptimal care or harm. 

 

Additionally, retrieval hazards in systems that combine 

LLMs with information retrieval mechanisms pose another 

layer of risk. Many LLMs used in healthcare are augmented 

with retrieval-based systems to fetch relevant information 

from external databases (e.g., clinical guidelines or patient 
records). However, improper indexing, query handling, or 

lack of adequate safeguards can result in the retrieval of 

sensitive information that should not be disclosed, either 

accidentally or due to adversarial manipulation (Zhao et al., 

2020). These risks could compromise the integrity of 

healthcare delivery and breach legal and ethical standards 

surrounding data access and usage. 

 Motivation and Significance 

The motivation behind addressing the risks associated 

with large language models (LLMs) in healthcare is driven 

by the potential consequences of exposing or misusing 

sensitive patient data. Erroneous or exposed data in 

healthcare settings can lead to dire consequences, including 

misdiagnoses, inappropriate treatments, and compromised 

patient confidentiality. When LLMs inadvertently memorize 
or generate sensitive health information, the risks extend 

beyond individual privacy violations; they can undermine 

patient trust in healthcare systems, ultimately affecting the 

quality and safety of care. Ensuring that LLMs operate 

within strict privacy boundaries is not only crucial for 

maintaining patient safety but also for preserving the 

integrity of healthcare systems at large. 

 

Regulatory concerns further amplify the need for 

effective safeguards. Laws such as the Health Insurance 

Portability and Accountability Act (HIPAA) in the U.S. and 
the General Data Protection Regulation (GDPR) in Europe 

impose stringent requirements on the collection, processing, 

and storage of personal health data. Failure to adhere to 

these regulations due to risks associated with LLMs could 

result in significant legal and financial repercussions for 

healthcare organizations. Moreover, ethical principles in the 

deployment of artificial intelligence (AI) must be prioritized 

to prevent harm. AI systems, including LLMs, must operate 

transparently and accountably, ensuring that their outputs 

align with the values of fairness, non-malfeasance, and 

patient autonomy. 

 
Given the complexities of integrating LLMs into 

clinical practice, there is a critical need for systematic 

assessment frameworks to evaluate the risks and ensure safe, 

ethical use of these technologies. These frameworks should 

provide methodologies for assessing the memorization, 

inference, and retrieval risks associated with LLMs, along 

with guidelines for mitigating potential harms. By 

developing comprehensive assessment tools, healthcare 

providers and regulators can proactively address concerns 

related to privacy, safety, and efficacy, ensuring that LLMs 

are deployed in a way that enhances patient care without 
compromising ethical or legal standards. 

 

 Study Objectives 

The primary objective of this study is to quantify the 

memorization tendencies in healthcare-oriented large 

language models (LLMs). Specifically, the study aims to 

measure the extent to which these models retain sensitive 

data from training datasets, particularly data related to 

patient health records, clinical notes, and other confidential 

information. By assessing the memorization patterns, the 

study will identify vulnerabilities in the models that could 

lead to unintentional data exposure or privacy breaches. This 
objective is critical to understanding the risks associated 

with deploying LLMs in healthcare settings where patient 

confidentiality is paramount. 

 

Another key objective is to evaluate the risks 

associated with prompt inference, particularly under 

adversarial and benign conditions. This evaluation will 
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involve testing the LLMs' responses to both standard clinical 

prompts and adversarially crafted prompts that are designed 

to expose weaknesses in the models’ reasoning processes. 

The goal is to assess how the models generate responses in 

these different scenarios and identify potential safety 

concerns, such as the risk of generating unsafe or misleading 

clinical recommendations. By understanding the nuances of 

prompt inference, the study will highlight how different 
types of inputs can affect the reliability and safety of the 

model’s outputs. 

 

Finally, the study seeks to characterize the privacy and 

retrieval risk profile of healthcare-oriented LLMs. This will 

involve examining the retrieval mechanisms used by these 

models, particularly in systems where models access 

external data sources to inform their responses. The study 

will assess how LLMs handle queries related to sensitive 

patient information and explore the potential for unintended 

disclosure of protected health information (PHI) through 
improper retrieval practices. Understanding these risks is 

essential for ensuring that LLMs do not inadvertently expose 

patient data when accessing or referencing external 

healthcare databases, thereby safeguarding both patient 

privacy and the integrity of healthcare services. 

 

 Scope and Limitations 

 

 Scope 

This study focuses on large language models (LLMs) 

that are deployed or fine-tuned specifically for clinical and 

administrative tasks in healthcare. These models are used in 
various applications such as clinical decision support, 

electronic health record (EHR) summarization, patient 

interaction systems, and automated medical coding. The 

study examines these LLMs' behaviour with respect to 

memorization, prompt inference risks, and privacy concerns 

in the context of healthcare data, aiming to evaluate their 

safety and reliability when integrated into healthcare 

systems. 

 

 Exclusions 

This study excludes non-neural information retrieval 
systems and rule-based chatbots. Non-neural systems, such 

as traditional keyword-based search engines or information 

retrieval systems, do not rely on the same deep learning 

techniques as LLMs and therefore do not present the same 

risks related to data memorization or inference errors. 

Additionally, rule-based chatbots, which operate on 

predefined decision trees or scripts, are not considered in 

this study since they do not exhibit the generative 

capabilities of LLMs and do not have the same potential for 

unintended information retrieval or data memorization. As 

such, these systems are outside the scope of this research. 
 

 Limitations 

The study's limitations include issues related to dataset 

representativeness and the generalizability of findings across 

different LLM families. The models used in this research 

may not fully represent the diversity of healthcare LLMs in 

terms of architecture or training data. Variations in training 

datasets, including the size, composition, and quality of data, 

may affect the results and influence the memorization or 

inference tendencies of the models. Moreover, while the 

study focuses on several widely used LLMs, the findings 

may not generalize across all model families or types, as the 

risk profiles can vary depending on the specific 

configurations and fine-tuning processes of different 

models. These limitations highlight the need for caution 

when applying the study's findings to models outside the 
specific scope of this research. 

 

II. LITERATURE REVIEW 

 

 LLMs in Healthcare 

The integration of large language models (LLMs) into 

healthcare has led to significant advancements in multiple 

areas, including diagnostic assistance, narrative generation, 

and administrative automation. LLMs, such as OpenAI’s 

GPT series and Google's BERT, have shown promising 

applications in clinical settings by assisting healthcare 
professionals in interpreting medical data, generating 

clinical reports, and automating administrative tasks like 

medical billing, appointment scheduling, and patient 

communication. 

 

 Diagnostic Assistance 

LLMs have been deployed in diagnostic assistance 

tools, helping clinicians analyse patient data, including 

medical histories and test results, to suggest potential 

diagnoses. These models are often fine-tuned with medical 

datasets, enabling them to recognize patterns in symptoms, 

lab results, and radiology reports (Khouzani et al., 2021). In 
one instance, GPT-3 was used to generate initial diagnostic 

suggestions based on patient descriptions, a feature that 

could save time for clinicians and ensure that critical 

conditions are not overlooked (Kovalev et al., 2020). Such 

applications aim to enhance clinical decision-making by 

providing evidence-based recommendations that clinicians 

can verify. 

 

 Narrative Generation 

In the realm of narrative generation, LLMs are used to 

automate the generation of clinical notes and medical 
summaries from raw patient data. Tools such as 

ClinicalBERT, a variant of BERT fine-tuned for clinical 

text, are capable of extracting relevant medical information 

from EHRs and generating structured reports that 

summarize a patient's condition, past treatments, and 

recommended next steps (Lee et al., 2020). This application 

reduces clinician burnout, streamlines workflows, and 

allows clinicians to focus more on patient care rather than 

documentation. 

 

 Administrative Automation 
LLMs also support administrative automation in 

healthcare by processing unstructured data such as emails, 

records, and insurance claims. Models like ClinicalGPT are 

fine-tuned for tasks like medical coding, insurance claim 

processing, and managing patient inquiries (Xu et al., 2021). 

These applications reduce administrative costs, increase 

efficiency, and ensure that time-sensitive tasks are 

performed without error. By automating routine tasks, 
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LLMs free up healthcare professionals to focus on more 

complex clinical responsibilities. 

 

 Domain-Specific Fine-Tuned Variants 

LLMs fine-tuned for domain-specific tasks, such as 

BioBERT and ClinicalGPT, are optimized for healthcare 

applications. BioBERT, which is pre-trained on biomedical 

text, excels in tasks such as named entity recognition (NER) 
and relationship extraction, which are critical for processing 

biomedical research papers and clinical notes (Lee et al., 

2020). Similarly, ClinicalGPT is tailored for clinical 

dialogue, making it well-suited for applications like virtual 

patient consultations and medical chatbots. These fine-tuned 

models leverage specialized medical corpora to understand 

the unique language and context of healthcare, improving 

the accuracy and relevance of their outputs (Huang et al., 

2021). 

 

Despite the advancements, there remain challenges 
related to the generalization and safety of these models, as 

they are highly dependent on the quality and diversity of the 

data used for fine-tuning. While LLMs like BioBERT and 

ClinicalGPT demonstrate substantial promise in specific 

domains, further validation is needed to ensure their 

accuracy, reduce biases, and prevent the generation of 

unsafe or unreliable medical recommendations (Johnson et 

al., 2021). 

 

 Memorization in Deep Language Models 

 

 Definitions: Token Memorization vs. Semantic 
Memorization 

Memorization in deep language models (LLMs) can be 

categorized into two types: token memorization and 

semantic memorization. Token memorization refers to the 

model's ability to memorize and regurgitate exact sequences 

of tokens from its training data. For instance, if a model is 

exposed to a sentence like "The patient's medical history 

includes chronic hypertension," and it later outputs this same 

sentence verbatim in response to a similar prompt, this 

indicates token memorization (Carlini et al., 2021). In 

contrast, semantic memorization involves the model 
retaining and reproducing the underlying meaning or context 

of specific information without directly recalling the exact 

tokens. A model demonstrating semantic memorization may 

not repeat exact phrases but could produce an output that 

closely aligns in meaning with previously seen data (Cohen 

et al., 2021). This distinction is important, as semantic 

memorization could still lead to privacy concerns if the 

model generates information that closely resembles sensitive 

content, even if it is not an exact replication of the data. 

 

 Mechanisms: Training on PHI, Overfitting Indicators 
The mechanisms behind memorization are often linked 

to how a model is trained, particularly when sensitive data, 

such as Protected Health Information (PHI), is involved. 

When LLMs are trained on large datasets that include PHI 

or medical records, there is a risk that the model will 

inadvertently memorize sensitive details, which could later 

be extracted and exposed (Shokri et al., 2017). This becomes 

a significant concern in healthcare, where privacy 

regulations like HIPAA mandate strict controls over patient 

data. Overfitting, a key phenomenon related to 

memorization, occurs when a model becomes too closely 

attuned to the specifics of its training data, rather than 

generalizing to new, unseen examples. Overfitting is 

typically indicated by high performance on training data but 

poor generalization to validation or test datasets 

(Goodfellow et al., 2016). When LLMs overfit to their 
training datasets, they are more likely to memorize details, 

including sensitive information, which can lead to 

unintended disclosures in real-world applications. 

 

 Prior Empirical Findings on Extraction Vulnerabilities 

Previous research has demonstrated that deep learning 

models, including LLMs, are susceptible to extraction 

attacks that can reveal memorized information. Carlini et al. 

(2021) showed that even sophisticated models like GPT-3 

could be vulnerable to extraction attacks, where an attacker 

could craft specific queries to recover sensitive information 
that the model had memorized during training. Other studies 

have found that LLMs trained on medical datasets, 

especially those containing PHI, can inadvertently leak 

personal health information, even when no direct access to 

the underlying training data is available (Zhao et al., 2020). 

These vulnerabilities highlight the risks of using LLMs in 

environments where privacy and confidentiality are 

paramount. Research also suggests that these models are 

particularly vulnerable when exposed to adversarial prompts 

that are designed to extract specific pieces of information 

(Carlini et al., 2021). Understanding these vulnerabilities is 

crucial for ensuring that LLMs can be deployed safely and 
ethically in healthcare applications. 

 

 Prompt Inference Mechanisms 

 

 Prompt Engineering Paradigms: Zero-Shot, Few-Shot, 

Chain of Thought 

In large language models (LLMs), prompt engineering 

plays a pivotal role in shaping the model's output. The zero-

shot paradigm refers to providing the model with a task 

description without any examples, expecting it to generate 

an appropriate response based solely on the prompt's 
instructions (Brown et al., 2020). This method is particularly 

useful when the task is clear, and the model has been pre-

trained on diverse datasets. However, the accuracy of the 

output can be unpredictable, especially in complex or 

specialized domains like healthcare, where precision is 

critical. 

 

The few-shot paradigm involves supplying the model 

with a few examples of the desired output along with the 

task description. This helps the model adapt its 

understanding to the specific context of the task, improving 
its performance in scenarios where prior examples can guide 

the generation process (Schick & Schütze, 2021). Few-shot 

learning is particularly useful in healthcare applications, 

where specific terminologies, such as medical diagnoses or 

clinical procedures, need to be accurately understood and 

reflected in the output. 
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The chain of thought paradigm encourages the model 

to reason step-by-step through a problem, mimicking 

human-like problem-solving strategies. This method has 

been shown to improve the accuracy of LLMs in complex 

tasks, such as mathematical reasoning or diagnostic 

inference, by breaking down the reasoning process into 

logical steps (Wei et al., 2022). In healthcare, this approach 

could be valuable for generating clinical decision support 
recommendations, where reasoning through symptoms, 

potential diagnoses, and treatments is essential. 

 

 Influence of Prompt Structure on Model Output Fidelity 

The structure of a prompt can significantly influence 

the fidelity of the output generated by LLMs. In healthcare, 

where domain-specific knowledge is crucial, the way in 

which a prompt is framed can determine the model's ability 

to produce reliable and clinically relevant responses. Clear 

and well-structured prompts lead to more accurate outputs, 

while vague or poorly constructed prompts can lead to 
incoherent or incorrect responses. For example, a prompt 

requesting a treatment plan might need to specify not only 

the condition but also the patient's medical history, current 

medications, and allergies to generate an appropriate 

response. This highlights the need for precise prompt 

engineering to ensure that the LLM’s outputs align with 

clinical requirements (Liu et al., 2020). The risk of 

misinterpreting vague prompts in complex healthcare 

settings can lead to potentially harmful consequences. 

 

 Risks of Inference Misuse and Hallucination 

Despite the capabilities of LLMs, one of the primary 
risks in healthcare applications is inference misuse, where a 

model may generate outputs that are irrelevant, incorrect, or 

dangerous, especially when prompted with ambiguous or 

adversarial inputs. In healthcare, these risks are particularly 

pronounced, as erroneous information could lead to unsafe 

treatment decisions, misdiagnoses, or the compromise of 

patient care. For instance, an LLM may infer incorrect 

medical recommendations or suggest inappropriate 

treatments if the prompt is not carefully structured (Gao et 

al., 2021). 

 
Another significant risk is hallucination, where LLMs 

generate outputs that appear plausible but are entirely 

fabricated. This phenomenon can be particularly hazardous 

in healthcare, as LLMs may confidently present incorrect 

information or generate fictitious clinical data that has no 

basis in reality (Ji et al., 2021). Hallucinations are often 

exacerbated by the model’s inability to verify the accuracy 

of its responses, especially when trained on diverse but 

unverified datasets. In critical healthcare contexts, such as 

drug prescriptions or diagnostic suggestions, hallucinated 

information could have severe consequences. Therefore, 
mitigating hallucinations and ensuring that models are 

reliably grounded in verified data is crucial for safe LLM 

deployment in healthcare. 

 

 

 

 

 

 Retrieval Dynamics in LLM Systems 

 

 Architectures: Retrieval Augmented Generation (RAG) 

vs. Pure Generative Frameworks 

In large language models (LLMs), there are two 

primary architectural approaches for generating 

responses: retrieval-augmented generation (RAG) and pure 

generative frameworks. Retrieval-augmented generation 
(RAG) combines the power of information retrieval systems 

with generative models, allowing the model to retrieve 

relevant information from an external knowledge base or 

corpus before generating the final output. This approach 

enhances the model's ability to generate accurate and 

contextually relevant responses by grounding its generation 

in specific external sources of knowledge (Lewis et al., 

2020). For example, in a healthcare context, RAG models 

might retrieve up-to-date medical literature or patient-

specific data from electronic health records (EHRs) to 

inform their response, leading to more precise and informed 
outputs. 

 

In contrast, pure generative frameworks like GPT-3 

and GPT-4 rely entirely on their pre-trained parameters to 

generate responses without consulting external sources of 

information. While pure generative models can generate 

fluent and coherent text, their ability to provide accurate and 

relevant information is constrained by the scope of the 

training data they have been exposed to (Brown et al., 

2020). This makes them less reliable in domains like 

healthcare, where up-to-date and domain-specific 

knowledge is critical. However, pure generative models are 
still valuable for applications that do not require real-time 

data retrieval and are useful in generating creative content or 

handling generalized queries. 

 

 Indexing Mechanisms and Vector Similarity Implications 

In retrieval-augmented LLMs, indexing 

mechanisms are crucial for determining how relevant data is 

retrieved from a database or knowledge store. These models 

typically use vector similarity techniques to index the 

information, where data points are converted into high-

dimensional vectors, and similarity between query and 
stored data is determined using metrics like cosine similarity 

or dot product (Karpukhin et al., 2020). By converting 

textual data into vectors, LLMs can effectively match user 

queries with the most relevant chunks of data from large 

corpora. In healthcare, for example, retrieving specific 

disease treatment protocols or patient case histories becomes 

possible by indexing medical texts, clinical guidelines, and 

research papers into vector space. 

 

The quality of these indexing mechanisms is vital for 

model performance. A poorly indexed knowledge base 
could lead to irrelevant or inaccurate information being 

retrieved, resulting in faulty or misleading model outputs. 

Furthermore, vector similarity techniques must be carefully 

tuned to prevent retrieval of irrelevant or outdated data, 

particularly in healthcare, where the accuracy of medical 

advice is paramount. Improper retrieval could result in the 

model generating outdated treatment protocols or even 
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contradictory recommendations, which could have 

dangerous implications for patient safety. 

 

 Privacy Leakage Through Retrieval Pathways 

One of the significant privacy concerns in retrieval-

augmented systems is privacy leakage through retrieval 

pathways. When LLMs interact with external data sources, 

there is a risk that they might inadvertently expose sensitive 
information through the retrieval process. For instance, if the 

knowledge base contains patient-specific data or 

confidential medical records, retrieving this information in 

response to a query could lead to the unintended disclosure 

of protected health information (PHI) (Shokri et al., 2017). 

In healthcare applications, this could mean that a model 

might retrieve a patient's private medical history or other 

sensitive information when responding to a seemingly 

benign query. 

 

Moreover, the risk of data leakage is heightened when 
external retrieval systems lack sufficient safeguards, such as 

encryption or access control mechanisms. Even when data 

retrieval is anonymized, the model’s responses might still 

inadvertently contain identifying or confidential details, 

especially when specific phrases or patient conditions are 

retrieved (Papernot et al., 2021). To mitigate these risks, it is 

essential to implement strict data handling protocols, 

including secure retrieval channels, anonymization 

techniques, and privacy-preserving machine learning 

methods. Ensuring that sensitive data is adequately protected 

during both training and inference is crucial to maintaining 

privacy and preventing breaches in healthcare environments. 
 

 Ethics, Privacy, and Regulatory Considerations 

 

 Biomedical Data Privacy Standards 

In healthcare, the protection of patient data is 

paramount. Biomedical data privacy standards are critical in 

ensuring that sensitive health information, such as medical 

histories, diagnoses, and treatment plans, remains 

confidential and is used appropriately. Prominent 

frameworks like the Health Insurance Portability and 

Accountability Act (HIPAA) in the United States and 
the General Data Protection Regulation (GDPR) in Europe 

set rigorous guidelines for how healthcare providers and 

technology developers must handle protected health 

information (PHI). HIPAA ensures that patient data is 

protected across healthcare systems, including electronic 

health records (EHRs) and patient communications, while 

GDPR focuses on safeguarding personal data and provides 

patients with rights over their information, such as the right 

to access and delete personal data (Shokri et al., 2017). For 

large language models (LLMs) used in healthcare, these 

privacy standards necessitate secure handling of PHI during 
both training and inference stages. Any failure to comply 

with these regulations can result in legal consequences, loss 

of patient trust, and potential harm to the individuals whose 

data is compromised. 

 

 Ethical AI Frameworks Relevant to Healthcare 

As artificial intelligence (AI) and machine learning 

(ML) are increasingly adopted in healthcare, ensuring their 

ethical use is critical. Ethical AI frameworks are designed to 

guide the development and deployment of AI systems in a 

way that prioritizes fairness, accountability, transparency, 

and the protection of human rights. In healthcare, ethical 

frameworks such as the AI for Good initiative and Fairness, 

Accountability, and Transparency (FAccT) guidelines 

provide essential guidance on how AI models, including 

LLMs, should be designed to minimize bias, avoid harm, 
and maintain patient autonomy (Jobin et al., 2019). For 

example, AI systems must be designed to be explainable, 

allowing healthcare professionals to understand how a 

decision was made, especially when it affects patient 

outcomes. Additionally, these frameworks stress the 

importance of bias mitigation, as AI systems can 

inadvertently perpetuate inequalities in healthcare if they are 

trained on biased datasets or used in ways that disadvantage 

certain demographic groups. Ensuring that AI systems are 

ethically aligned with healthcare values is vital for their 

acceptance and trustworthiness among patients, clinicians, 
and regulators. 

 

 Reported Adverse Events and Response Strategies 

Despite the promise of LLMs and other AI tools in 

healthcare, several adverse events have been reported where 

AI systems produced harmful or inaccurate outputs, leading 

to negative consequences for patients. These incidents often 

occur when AI systems, including LLMs, make erroneous 

diagnoses, generate unsafe treatment recommendations, or 

expose sensitive patient data. One well-documented 

example is the use of AI in diagnostic imaging, where errors 

in algorithmic interpretation have led to delayed or missed 
diagnoses, particularly in the case of radiology scans (Topol, 

2019). These types of errors highlight the critical need 

for response strategies to mitigate such risks. Common 

strategies include implementing human-in-the-loop systems, 

where healthcare professionals review and verify AI-

generated outputs before making clinical decisions. 

Additionally, real-time monitoring of AI systems in clinical 

practice, ongoing model updates, and extensive post-

deployment testing are necessary to identify and address 

issues as they arise. Regulatory bodies are also increasingly 

focused on establishing frameworks for the safe and 
effective use of AI in healthcare, requiring companies to 

report adverse events and comply with safety protocols to 

prevent harm to patients. 

 

 Gaps Identified in Prior Work 

 

 Limited Empirical Assessments Contextualized to 

Healthcare Data 

While there has been substantial progress in the 

application of large language models (LLMs) across various 

domains, there remains a significant gap in empirical 
assessments that are specifically contextualized to healthcare 

data. Much of the existing literature focuses on the general 

capabilities and limitations of LLMs in fields such as natural 

language processing (NLP), computer vision, and sentiment 

analysis (Devlin et al., 2019). However, these studies often 

do not account for the unique characteristics of healthcare 

data, including the complexity of medical terminology, 

patient privacy concerns, and the need for high accuracy in 
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clinical decision-making. The absence of healthcare-specific 

empirical studies limits the understanding of how LLMs 

perform when applied to real-world medical tasks, such as 

generating patient summaries, diagnosing conditions, or 

predicting treatment outcomes. More research is needed that 

directly investigates the deployment of LLMs in healthcare 

settings, evaluating their performance, reliability, and safety 

when handling sensitive medical information. 
 

 Inadequate Taxonomies for Prompt Inference Risk 

Another notable gap in prior research is the lack of 

comprehensive taxonomies for prompt inference risk in 

healthcare applications of LLMs. Inference risk arises when 

a model generates incorrect or unsafe outputs in response to 

input prompts. While some studies have explored the 

concept of prompt engineering and the impact of prompt 

design on model outputs, there is insufficient work on 

systematically categorizing the different types of risks 

associated with inference errors, especially in high-stakes 
environments like healthcare (Bender et al., 2021). A 

taxonomy for prompt inference risk would provide a 

structured way to identify and mitigate various categories of 

inference errors—such as hallucinations, logical 

inconsistencies, or data misinterpretations—that can occur 

during model deployment in clinical settings. By addressing 

this gap, healthcare practitioners and AI developers could 

better understand the potential risks associated with LLMs 

and implement safeguards to ensure safe, reliable, and 

transparent outputs in medical applications. 

 

 Sparse Analysis of Retrieval Threats in Clinical Settings 
Finally, there is a sparse analysis of retrieval threats in 

clinical settings, particularly in the context of retrieval-

augmented generation (RAG) models, which combine 

LLMs with external knowledge sources to provide 

contextually relevant information. While RAG models have 

shown promise in applications such as evidence-based 

medical recommendations, little research has been done on 

the privacy and security implications of these systems in 

clinical settings (Lewis et al., 2020). Specifically, issues 

such as the unintended retrieval of sensitive patient data, 

exposure of protected health information (PHI), and retrieval 
of outdated or incorrect information are critical concerns 

that have not been adequately addressed in the literature. 

The risks associated with retrieving incorrect or harmful 

medical data are particularly concerning in healthcare, 

where inaccurate information can directly impact patient 

safety and care quality. Therefore, there is a pressing need 

for more in-depth research that investigates the retrieval 

dynamics of LLMs, identifies potential privacy risks, and 

develops strategies to mitigate these threats in real-world 

clinical applications. 

 
These gaps highlight critical areas where further 

research is needed to ensure the safe, ethical, and effective 

use of LLMs in healthcare. Addressing these gaps will be 

essential for advancing the application of AI in medicine 

while safeguarding patient privacy and care quality. 

 

III. METHODOLOGY 

 

A. Research Design 

This study adopts a mixed methods approach that 

combines both quantitative evaluation and qualitative error 

analysis to assess the risks associated with large language 

models (LLMs) in healthcare. The mixed methods approach 

enables a comprehensive examination of the various 
dimensions of model performance, incorporating both 

statistical analysis and in-depth exploration of error types to 

gain a holistic understanding of how LLMs behave when 

deployed in clinical settings. 

 

 Quantitative Evaluation 

The quantitative aspect of the research focuses on 

measuring specific risk factors associated with 

memorization, prompt inference, and retrieval errors. This 

involves structured experiments that quantify model 

performance based on predefined metrics. For example, 
memorization risks will be assessed by evaluating how often 

the model generates exact sequences of sensitive data from 

its training corpus, using metrics like exact match 

percentage and similarity scores based on cosine similarity 

between input prompts and generated responses. 

Additionally, prompt inference risk will be quantified by 

categorizing the frequency and severity of inference errors, 

such as logical inconsistencies or medically incorrect 

outputs, using predefined error categories. Retrieval risks 

will be analysed by measuring the accuracy and privacy 

implications of information retrieval, including the 

percentage of sensitive data inadvertently retrieved or 
exposed during model inference. Statistical analysis will be 

used to quantify the impact of different variables on model 

performance, such as the prompt structure or the dataset 

used for training. 

 

 Qualitative Error Analysis 

In addition to quantitative analysis, qualitative error 

analysis will be employed to provide deeper insights into the 

nature and causes of model errors. This aspect of the 

methodology involves manually reviewing a subset of 

model outputs to classify and categorize errors that may not 
be fully captured by quantitative metrics. For instance, 

during prompt inference testing, qualitative analysis will 

focus on identifying and categorizing hallucinations 

(fabricated information), semantic drift (where the meaning 

shifts inappropriately), or context misinterpretations 

(especially in healthcare-related queries). This detailed 

analysis will allow for the identification of underlying issues 

in model behaviour, such as biases in training data or flaws 

in reasoning mechanisms, which might not be immediately 

evident through numerical data alone. The qualitative 

approach will also be used to assess whether specific types 

of prompts (e.g., adversarial vs. benign) lead to a higher 
incidence of unsafe or incorrect recommendations in clinical 

applications. 

 

 Experimental Design Addressing Memorization, Prompt 

Inference, and Retrieval Risks 

The experimental design for this study is structured 

around three main research questions: memorization, prompt 
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inference, and retrieval risks. Each research question will be 

explored through a series of controlled experiments, which 

are outlined as follows: 

 

 Memorization 

To evaluate memorization risks, the model will be 

trained on a dataset containing de-identified healthcare data, 

including clinical texts, medical research papers, and EHR-
like structured data. Following training, the model will be 

subjected to tests where it is prompted with queries designed 

to trigger memorized phrases or sentences. The frequency 

with which the model generates exact matches to the 

training data will be recorded, and the results will be 

compared to a baseline model trained on non-sensitive data 

to assess whether healthcare-related training increases 

memorization risk. 

 

 Prompt Inference 

To assess prompt inference risks, the study will design 
both benign prompts (e.g., routine medical inquiries) 

and adversarial prompts (e.g., ambiguous or misleading 

queries) to test the model’s response under normal and 

challenging conditions. The model's responses will be 

analysed for errors such as hallucinations, misdiagnoses, or 

logically incoherent outputs. These errors will be 

categorized and analysed to determine how prompt structure 

affects the quality and safety of model outputs in a clinical 

context. 

 

 Retrieval Risks 
For retrieval risks, the model will be integrated with a 

simulated retrieval-augmented generation (RAG) system, 

where it is tasked with retrieving relevant clinical data from 

an indexed knowledge base (e.g., clinical guidelines or 

patient history data). The model will be prompted with 

questions that require retrieval from this database, and the 

analysis will focus on identifying any instances of sensitive 

patient data being inadvertently retrieved or exposed. The 

retrieval process will be evaluated for accuracy and privacy 

protection, ensuring that no protected health information 

(PHI) is exposed during inference. 

 
Overall, the experimental design is intended to provide 

a rigorous, comprehensive analysis of the risks associated 

with LLMs in healthcare, using both statistical and 

qualitative methods to capture the full spectrum of potential 

safety and privacy concerns. This multi-faceted approach 

ensures that the study accounts for both the measurable 

performance of the models and the nuanced, real-world 

implications of their use in clinical practice. 

 

B. Model Selection and Description 

 
 Justification for Choice (e.g., GPT-4, MedPaLM, Fine-

tuned Clinical LLMs) 

For this study, the models selected include GPT-

4, MedPaLM, and fine-tuned clinical LLMs (e.g., 

ClinicalBERT, BioBERT). These models were chosen due 

to their proven effectiveness in natural language processing 

(NLP) tasks, particularly within healthcare domains. 

 

 GPT-4 is a state-of-the-art, large-scale generative pre-

trained transformer that excels in a wide range of NLP 

tasks, including text generation, summarization, and 

question answering. Its architecture, based on self-

attention mechanisms, enables it to handle large amounts 

of data and generate coherent and contextually accurate 

responses. Due to its scale and versatility, GPT-4 serves 

as the baseline model for assessing generative 
capabilities in healthcare applications. 

 MedPaLM is a domain-specific model fine-tuned for 

healthcare tasks, designed to handle medical terminology 

and provide clinical decision support. This model has 

shown promise in generating contextually accurate 

medical responses and is specifically tailored to work 

with healthcare-related prompts, making it suitable for 

this study's focus on healthcare LLMs. 

 Fine-tuned Clinical LLMs (e.g., ClinicalBERT and 

BioBERT) have been trained on specialized medical 

datasets, including clinical notes, medical papers, and 
healthcare-specific terminology. These models are 

particularly effective in domain-specific tasks, such as 

EHR summarization, named entity recognition (NER), 

and information extraction from clinical texts. Fine-

tuning these models on healthcare data ensures that they 

are better suited for healthcare-specific tasks, such as 

generating patient records or diagnosing conditions from 

textual data. 

 

 Architecture Details: Parameters, Training Corpus 

Constraints 
The architecture of these models is primarily based on 

the transformer framework, which relies on attention 

mechanisms to process input data in parallel. The key 

features of these models include: 

 

 GPT-4 Architecture: 

 

 Parameters: GPT-4 contains approximately 170 billion 

parameters, making it one of the largest language models 

in existence. These parameters enable the model to 

capture intricate patterns in language, leading to more 

accurate and contextually appropriate responses. 
 Training Corpus: GPT-4 was trained on a diverse range 

of publicly available and licensed text data, including 

books, websites, and medical literature. However, it does 

not have access to real-time data or private datasets 

unless explicitly fine-tuned for specific tasks, such as 

healthcare. 

 

 MedPaLM Architecture: 

 

 Parameters: MedPaLM has fewer parameters compared 

to GPT-4 (approximately 2 billion parameters) but is 
specifically designed and fine-tuned for healthcare 

applications. This allows it to perform better on tasks 

involving medical terminology and healthcare-specific 

contexts. 

 Training Corpus: MedPaLM was trained on a curated 

dataset consisting of medical textbooks, clinical 

guidelines, research articles, and anonymized patient 
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records. Its training ensures that it is adept at 

understanding medical language and generating 

clinically relevant responses. 

 Fine-Tuned Clinical LLMs (e.g., ClinicalBERT, 

BioBERT): 

 Parameters: These models typically have fewer 

parameters than GPT-4, ranging from 110 million to 340 

million parameters, depending on the size of the pre-
trained model used (e.g., BERT or RoBERTa). 

 Training Corpus: These models are trained on domain-

specific datasets, such as PubMed abstracts, clinical 

notes from hospital systems, and other biomedical 

literature. This fine-tuning process allows them to 

understand the nuances of clinical language, making 

them particularly suited for medical tasks such as 

summarizing patient histories or predicting medical 

outcomes. 

 

 Mathematical Equations for Model Description 
In transformer-based models like GPT-4 and 

MedPaLM, the core component is the self-attention 

mechanism, which allows the model to focus on different 

parts of the input sequence when making predictions. The 

attention mechanism is defined as: 

 

Attention(𝑄,𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

 
Where: 

 

𝑄 is the query matrix, 𝐾 is the key matrix, 𝑉 is the 

value matrix, 𝑑𝑘 is the dimension of the key vectors. 

This equation captures how the model computes the 

weighted sum of the values 𝑉, based on the similarity 

between the queries and keys, allowing it to focus on 

relevant parts of the input sequence. The use of self-

attention enables LLMs to process long sequences 

efficiently and generate contextually relevant outputs. 

 
Figure illustrates the end-to-end processing pipeline of 

a transformer-based language model, showing how raw 

input data is progressively transformed into meaningful 

predictions. The workflow begins with input tokens, which 

are converted into numerical representations through token 

embeddings during the tokenization stage. These 

embeddings are then passed into the core transformer layers, 

where contextual understanding is constructed through the 

self-attention mechanism, enabling each token to weigh its 

relevance against all others in the sequence. The feed-

forward neural network further refines these representations 

through non-linear transformations, while layer 
normalization ensures numerical stability and consistent 

feature scaling across layers. Following contextual 

encoding, the output processing stage applies logits 

computation and decoding to map internal representations 

into probability distributions over the vocabulary. Finally, 

the model produces predictions, such as next-token 

generation or task-specific outputs. Together, the 

components depicted emphasize the modular and 

hierarchical design of transformer architectures, highlighting 

how linguistic structure and semantic context are 

incrementally learned and synthesized to support accurate 
and scalable language understanding. 

 

 
Fig 1 Modular Workflow of a Transformer-Based Language Model 

 
Table 1 compares the key characteristics of the models 

selected for this study, highlighting their parameter sizes, 

training data, and specialization in healthcare tasks. Each 

model is designed to balance the trade-offs between general 

capabilities and domain-specific expertise, with fine-tuned 

clinical LLMs like ClinicalBERT showing strong 

performance in clinical text tasks due to their focused 

training data. By utilizing these models, the study aims to 

assess their performance in healthcare settings, focusing on 

memorization, prompt inference, and retrieval risks. Each 

model's architecture and training data significantly influence 

its ability to provide accurate and safe outputs in clinical 

applications. 
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Table 1 Model Parameters and Performance Comparison 

Model Parameters (Billions) Training Data Specialization 

Performance 

Metric (Accuracy) 

GPT-4 170 

General corpus 

(books, websites, 

medical) 

General-purpose, 

versatile High (general tasks) 

MedPaLM 2 

Medical textbooks, 

clinical guidelines 

Healthcare-focused, 

clinical tasks 

High (medical Q&A, 

diagnostics) 

ClinicalBERT 0.34 

PubMed, clinical 

records 

Medical text, clinical 

NLP 

High (NER, 

summarization) 

 

C. Datasets 

 
 Synthetic Benchmarks and De-identified Clinical 

Corpora 

The datasets used in this study consist of synthetic 

benchmarks and de-identified clinical corpora to evaluate 

the performance of large language models (LLMs) in 

healthcare applications. Synthetic benchmarks are generated 

to simulate a wide range of healthcare scenarios, ensuring a 

controlled environment where model behaviours such as 

memorization tendencies, inference accuracy, and retrieval 

reliability can be assessed without relying on real patient 

data. These benchmarks include synthetic patient records, 
medical histories, and diagnostic narratives, which help in 

understanding how models perform on structured and semi-

structured clinical text data. 

 

In addition to synthetic data, de-identified clinical 

corpora are used to assess the models' ability to handle real-

world healthcare data while safeguarding patient privacy. 

These corpora are sourced from publicly available, de-

identified clinical datasets such as the MIMIC-III (Medical 

Information Mart for Intensive Care) database and PubMed 

abstracts. The de-identification process removes any 

personally identifiable information (PII), ensuring 
compliance with privacy regulations such as HIPAA and 

GDPR. The use of these datasets allows for more realistic 

testing of LLMs in healthcare environments, where sensitive 

information must be handled with the utmost care. 

 

 Privacy-Preserving Dataset Creation Process 

To maintain privacy and ensure the ethical use of 

healthcare data, this study adheres to strict privacy-

preserving protocols in the dataset creation process. For the 

synthetic benchmarks, patient data is not directly used, and 

any identifying information is deliberately excluded to 
prevent unintended data exposure. Additionally, for the de-

identified clinical corpora, advanced de-identification 

techniques are applied, including the removal of direct 

identifiers (e.g., names, addresses, contact information) and 

indirect identifiers (e.g., age, ZIP code) to prevent re-

identification of individuals. 

 

In some cases, differential privacy techniques are 

employed, which add noise to the data to protect individual 

privacy while still maintaining the statistical properties 

needed for model training and evaluation. These methods 
ensure that the models are exposed to high-quality data that 

mimics real-world clinical scenarios, without the risk of 

violating patient confidentiality. Furthermore, dataset access 

is restricted to authorized personnel only, and all data used 

in this study is anonymized in compliance with ethical 
research standards. 

 

 Metrics and Annotation Schema 

The evaluation of LLMs in this study is guided by a 

comprehensive set of metrics and a rigorous annotation 

schema. The metrics are designed to assess the core aspects 

of model performance, including memorization, inference 

accuracy, and retrieval reliability. Key metrics include: 

 

 Memorization Rate: Measured by the percentage of exact 

matches between the model's generated output and the 
training data (both synthetic and de-identified). A high 

memorization rate indicates a higher risk of data 

exposure. 

 Inference Accuracy: The proportion of correct medical 

recommendations or diagnostic predictions made by the 

model in response to healthcare-related prompts. This is 

critical for ensuring the model's clinical utility and 

safety. 

 Retrieval Precision: The accuracy with which the model 

retrieves relevant information from external knowledge 

bases, as measured by the relevance of retrieved 
documents or medical data to the given query. 

 

The annotation schema includes detailed guidelines for 

manually annotating model outputs, particularly in the 

qualitative error analysis phase. Annotations focus on 

identifying types of errors, such as hallucinations, logical 

inconsistencies, or medically unsafe recommendations, and 

categorizing them by severity. For example, in a clinical 

setting, an output may be tagged as a "low-severity error" if 

it pertains to a minor, non-critical medical detail, or as a 

"high-severity error" if it involves a potentially harmful 

diagnostic suggestion or treatment recommendation. 
 

The combined use of these metrics and a detailed 

annotation schema enables a comprehensive evaluation of 

model performance across multiple dimensions, ensuring 

that the risks associated with LLM deployment in healthcare 

are thoroughly assessed. 

 

D. Evaluation Metrics 

The evaluation metrics employed in this study are 

designed to systematically assess the risks associated with 

memorization, prompt inference, and retrieval in large 
language models (LLMs) when applied to healthcare 

scenarios. These metrics focus on identifying and 
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quantifying the potential for errors that could compromise 

patient safety, privacy, and clinical decision-making. 

 

 Memorization Risk Metrics: Exact Phrase Regurgitation, 

Similarity Thresholds 

To measure memorization risk, one critical metric is 

the rate of exact phrase regurgitation, which quantifies how 

often the model outputs an exact replica of a phrase or 
sentence from the training data. This is an indicator of how 

much the model memorizes and reproduces specific 

sensitive content, such as clinical information or medical 

histories. The metric is computed as: 

 

Exact Match Rate =
Number of Exact Matches

Total Number of Outputs
× 100 

 

Where: 

 

 Exact Matches: Instances where the model’s output 

matches any segment of the training data exactly. 

 Total Outputs: The total number of generated outputs 

tested for memorization. 

 

For example, if the model generates "The patient was 

diagnosed with hypertension" and this exact phrase appears 
in the training dataset, it is counted as an exact match. High 

values for this metric would suggest a higher risk of 

memorization, particularly with sensitive data. 

 

 Similarity Thresholds 

To further assess memorization risk, similarity 

thresholds are used. These thresholds quantify how closely a 

model’s output resembles training data, even if it is not an 

exact match. Similarity is typically computed using cosine 

similarity between the vector representations of the output 

and the training data. The formula for cosine similarity is: 

 

Cosine Similarity =
A ⋅ B

∣ A ∣∣ B ∣
 

 

Where: 

 

A and B are the vector representations of the model's 

output and the training data segment, respectively. 

 

A threshold value (e.g., 0.8) can be set to classify 
outputs as potentially risky if the cosine similarity exceeds 

this value, indicating that the model's response closely 

resembles part of the training data. 

 

 Prompt Inference Error Categories: Semantic Drift, 

Logical Inconsistency 

Semantic drift occurs when the model generates output 

that deviates from the intended meaning of the prompt, 

potentially leading to incorrect or misleading information. 

To quantify semantic drift, we can use a semantic coherence 

score, which evaluates the degree of alignment between the 
model's output and the input prompt. This score is based 

on word embeddings and measures how well the model’s 

output maintains the semantic integrity of the input. A lower 

score indicates higher semantic drift. The score is computed 

as: 

 

Semantic Coherence Score =
1

𝑁
∑Cosine Similarity(

𝑁

𝑖=1

w𝑝𝑟𝑜𝑚𝑝𝑡, w𝑜𝑢𝑡𝑝𝑢𝑡,𝑖) 

 

Where: 

 

w𝑝𝑟𝑜𝑚𝑝𝑡  is the word vector representation of the prompt, 

 

w𝑜𝑢𝑡𝑝𝑢𝑡,𝑖 are the word vector representations of the output's 

individual tokens, 

 

𝑁 is the number of tokens in the output. 
 

A significant drop in coherence score between the 

prompt and the model output would indicate a substantial 

semantic drift. 

 

 Logical Inconsistency 

Logical inconsistency refers to errors where the model 

generates outputs that contradict established facts or medical 

guidelines. This can be quantified using a logical coherence 

score, where outputs are compared against a set of 

predefined rules or factual statements (e.g., medical 
guidelines). A rule-based checker can identify 

inconsistencies by flagging outputs that deviate from known 

correct answers. The logical coherence score is defined as: 

 

Logical Coherence Score =
Number of Consistent Outputs

Total Number of Outputs
× 100 

 

Where: 

 

 Consistent Outputs: Outputs that conform to logical rules 
or factual medical knowledge. 

 

 Retrieval Risk: Recall of Sensitive Tokens, Unintended 

Access Patterns 

In retrieval-augmented generation (RAG) systems, 

where external knowledge bases are used to inform the 

model’s responses, recall of sensitive tokens is a critical 

metric. It measures the frequency with which sensitive or 

protected health information (PHI) is retrieved and 

incorporated into the model’s outputs. This is calculated by 

checking whether any retrieved token or phrase matches a 
list of sensitive tokens (e.g., patient names, diagnoses, or 

treatment history). The retrieval accuracy rate for sensitive 

tokens is computed as: 

 

Sensitive Token Recall Rate =
Number of Sensitive Tokens Retrieved

Total Number of Retrievals
× 100 

 

Where: 

 

 Sensitive Tokens Retrieved: Instances where the model 

retrieves tokens that are classified as sensitive. 

 Total Retrievals: Total number of retrieval attempts 

made by the model during inference. 
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 Unintended Access Patterns 

Unintended access patterns occur when the model 

retrieves or generates information that was not requested or 

is irrelevant to the input query, leading to privacy risks or 

misleading outputs. These patterns can be tracked by 

logging the model's retrieval process and measuring the 

deviation from expected query-response relationships. 

The retrieval error rate can be computed as: 
 

Retrieval Error Rate =
Number of Irrelevant Retrievals

Total Number of Retrievals
× 100 

 

Where: 

 

 Irrelevant Retrievals: Instances where the retrieved 

information does not align with the input prompt or the 

model's intended function. 

 Total Retrievals: Total number of retrieval queries made 

during the inference process. 

 
Figure 2 illustrates the complete computational 

workflow of a transformer-based language model, showing 

how raw textual input is systematically transformed into 

predictive outputs. The process begins with input data in the 

form of text tokens, which are passed through a tokenization 

stage where text is segmented and converted into numerical 

token embeddings. These embeddings enter the core 

transformer layers, composed of three key components: the 

self-attention mechanism, which enables each token to 

attend to all others in the sequence to capture contextual 

relationships; the feed-forward neural network, which 
applies non-linear transformations to refine learned 

representations; and layer normalization, which stabilizes 

training and ensures consistent feature scaling across layers. 

The resulting contextualized representations are then passed 

to the output processing stage, where logits computation and 

decoding map internal activations to a probability 

distribution over possible outputs. Finally, the model 

produces a prediction or model output, such as the next 

token, a classification label, or a task-specific response. The 

lower schematic succinctly summarizes this pipeline as 

TEXT → TOKENS → TRANSFORMER → 
PREDICTION, reinforcing the modular and hierarchical 

nature of transformer architectures in converting 

unstructured language into structured, actionable outputs. 

 

 
Fig 2 End-to-End Processing Pipeline of a Transformer-Based Language Model 

 

Table 2 presents a comparison of model performance 

across different prompt types direct questions, contextual 
questions, and open-ended scenarios based on their 

associated error rates. It shows that direct questions, which 

are straightforward and less complex, result in the lowest 

error rate (5.2%), as they typically elicit more accurate and 

concise responses from the models. Contextual questions, 

which incorporate additional patient information or medical 

history, exhibit a slightly higher error rate (9.8%), reflecting 

the model's challenges in managing more complex, nuanced 

scenarios. The highest error rate (14.5%) is observed for 
open-ended scenarios, where the complexity and openness 

of the prompt lead to more frequent hallucinations and 

semantic drift. This analysis highlights how the structure 

and complexity of prompts can influence the accuracy of 

model outputs, with more complex prompts posing a greater 

challenge to LLMs, especially in high-stakes healthcare 

applications. 
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Table 2 Evaluation Metrics Summary 

Metric Description Formula Expected Range 

Exact Match Rate 

Frequency of exact phrase 

regurgitation. 

Exact Matches

Total Outputs
× 100 

0% to 100% 

Semantic Coherence 

Score 

Measures the alignment 
between the prompt and 

output. 

1

𝑁
∑Cosine Similarity(𝐰𝑝𝑟𝑜𝑚𝑝𝑡 , 𝐰𝑜𝑢𝑡𝑝𝑢𝑡,𝑖) 0 to 1 

Logical Coherence Score 

Evaluates the consistency 

of the output with medical 

facts. 

Consistent Outputs

Total Outputs
× 100 

0% to 100% 

Sensitive Token Recall 

Rate 

Frequency of sensitive 

data retrieval. 

Sensitive Tokens Retrieved

Total Retrievals
× 100 0% to 100% 

Retrieval Error Rate 

Measures the number of 

irrelevant retrievals. 

Irrelevant Retrievals

Total Retrievals
× 100 0% to 100% 

 

These metrics, equations, and tools provide a 

comprehensive framework for evaluating the risks 

associated with LLMs in healthcare applications, ensuring 

that the models are both effective and safe for clinical use. 

 

E. Experimental Procedures 
 

 Controlled Prompt Experiments with Adversarial and 

Benign Prompts 

The primary objective of the controlled prompt 

experiments is to evaluate how large language models 

(LLMs) respond to different types of input prompts, 

focusing on the risks associated with memorizations, prompt 

inference, and model accuracy. This involves testing the 

models with both benign and adversarial prompts. 

 

 Benign Prompts: These prompts are designed to reflect 
typical, everyday healthcare queries. Examples include: 

 

 "What are the common symptoms of hypertension?" 

 "How is diabetes mellitus diagnosed?" 

 

These prompts represent real-world, straightforward 

medical inquiries and will allow the study to assess how the 

model performs under normal operating conditions, where it 

is expected to generate accurate and relevant information 

based on the training data. 

 

 Adversarial Prompts: These are intentionally crafted to 

test the model's robustness and its vulnerability to errors 

or unsafe outputs. Adversarial prompts could include: 

 

 Ambiguous or incomplete questions: "What do I do if I 

have chest pain?" 

 Misleading or contradictory information: "I’ve been told 

that a high sodium diet is good for hypertension. Is that 

true?" 

 

The purpose of these prompts is to explore the model's 

ability to handle inputs that could lead to semantic 
drift, logical inconsistency, or hallucinations in the 

generated responses. This will help to assess the inference 

risks and identify any weaknesses in the model’s decision-

making processes. 

 

Each experiment will be conducted with the same set 

of prompts across different models (e.g., GPT-4, MedPaLM, 

ClinicalBERT) to compare their performance and error 

rates, providing insights into which models are most robust 

to adversarial inputs. 

 
 Retrieval Scenarios Using RAG Pipelines with Clinical 

Indices 

In this study, retrieval-augmented generation 

(RAG) systems will be employed to evaluate retrieval risks 

in healthcare-related tasks. RAG models combine external 

knowledge retrieval with generative capabilities, where the 

model first retrieves relevant information from an indexed 

database (e.g., clinical guidelines, patient records) and then 

generates a response based on the retrieved data. 

 

 Clinical Indices: The indices used for retrieval will 
include datasets containing de-identified medical 

literature, clinical guidelines, and anonymized patient 

records. For instance, the MIMIC-III 

database or PubMed abstracts may be used as the 

knowledge source. These indices will serve as a 

controlled pool of clinical data from which the model 

can retrieve relevant information. 

 Retrieval Process: The model’s ability to accurately 

retrieve and utilize information will be tested by 

providing queries such as: 

 
 "What is the recommended treatment for chronic kidney 

disease?" 

 "Provide guidelines for managing acute asthma attacks." 

 

These queries will be processed by the RAG pipeline, 

where the model retrieves relevant passages from the 

indexed clinical databases and generates responses based on 

the retrieved information. The retrieved data will be 

assessed for privacy leakage, where the model might 

inadvertently expose protected health information (PHI) or 

irrelevant data. The quality of the retrieval will also be 

measured by the relevance and accuracy of the information 
retrieved, ensuring that the model generates contextually 

appropriate and clinically accurate responses. 
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 Statistical Procedures Used for Analysis 

To assess the performance of the models across 

different scenarios, several statistical procedures will be 

applied to analyse the results quantitatively. These 

procedures will include: 

 

 Descriptive Statistics: 

Mean, median, and standard deviation will be used to 
summarize the model's output performance across different 

prompts (benign and adversarial). 

 

Frequency counts of errors (e.g., logical 

inconsistencies, semantic drift, exact matches) will be 

computed for both benign and adversarial prompts. 

 

 Error Rate Calculation: 

The error rate for each model will be computed using 

the formula: 

 

Error Rate =
Number of Errors

Total Number of Outputs
× 100 

 

This will help quantify how often each model 

generates unsafe or incorrect outputs in response to different 

types of prompts. 
 

 Statistical Comparison: 

Analysis of Variance (ANOVA) will be used to 

compare the performance of different models in terms of 

error rates for each type of prompt (benign vs. adversarial). 

 

Post-hoc pairwise comparisons (e.g., Tukey's HSD) 

will be conducted to identify specific differences between 

models (e.g., GPT-4 vs. MedPaLM vs. ClinicalBERT). 

 

 Retrieval Accuracy: 
The precision and recall of the retrieval process will be 

calculated to assess the quality of information retrieved by 

the RAG systems. Precision measures the percentage of 

relevant information retrieved out of all retrieved data, while 

recall measures the percentage of relevant information 

retrieved out of all the relevant data available in the indexed 

knowledge base. These metrics are defined as: 

 

Precision =
Relevant Retrieved Data

Total Retrieved Data
 

 

Recall =
Relevant Retrieved Data

Total Relevant Data
 

 

These metrics will be used to quantify the risk of 

irrelevant or sensitive data being retrieved by the models. 

 

By utilizing these experimental procedures and 

statistical analyses, the study aims to comprehensively 

assess the risks associated with LLMs in healthcare, 
providing valuable insights into their safety, reliability, and 

privacy concerns in real-world applications. 

 

IV. RESULTS 

 

A. Memorization Findings 

 

 Frequency of Exact Repeats from Training Corpus 

The first metric examined in this study is the frequency 

of exact repeats from the training corpus. This is a key 

indicator of the memorization risk in large language models 

(LLMs). The frequency of exact repeats is measured by 
assessing how often the model generates outputs that exactly 

match phrases or sentences from its training data. Table 1 

below presents the results of this assessment across different 

models. 

 

Table 3 summarizes the exact match rates of four 

different models GPT-4, MedPaLM, ClinicalBERT, and 

BioBERT based on the frequency of exact matches between 

their generated outputs and the training corpus. The table 

shows that GPT-4 has the highest exact match rate at 2.4%, 

indicating a relatively higher risk of memorization compared 
to the other models. In contrast, MedPaLM demonstrates the 

lowest exact match rate at 1.0%, followed by ClinicalBERT 

at 1.4% and BioBERT at 1.2%. These results suggest that 

fine-tuning models on healthcare-specific datasets (like 

MedPaLM, ClinicalBERT, and BioBERT) helps reduce 

memorization rates compared to more generalized models 

such as GPT-4, making them better suited for healthcare 

applications where privacy and data security are critical. 

Table 3 Comparison of Exact Match Rates Across Different Models 

Model Exact Matches (Number) Total Generated Outputs Exact Match Rate (%) 

GPT-4 12 500 2.4% 

MedPaLM 5 500 1.0% 

ClinicalBERT 7 500 1.4% 

BioBERT 6 500 1.2% 

 

 Correlation Between Prompt Complexity and 

Memorization Rate 

To understand the relationship between prompt 
complexity and memorization risk, we analysed how 

the complexity of the prompts influenced the memorization 

rate. Complex prompts were defined as those that included 

multiple pieces of information, ambiguous phrasing, or 

technical medical terms, while simple prompts consisted of 

straightforward, commonly understood healthcare inquiries. 

The following analysis presents the correlation between 

prompt complexity and the memorization rate, calculated 

using Pearson’s correlation coefficient (r). 
 

𝑟 =
∑(𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌̄)

√∑(𝑋𝑖 − 𝑋̄)2∑(𝑌𝑖 − 𝑌̄)2
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Where: 

 

𝑋𝑖 and 𝑌𝑖 represent the memorization rate and prompt 

complexity, respectively, 

 

𝑋̄ and 𝑌̄ are the means of the memorization rate and 

complexity scores. 

 
The results of the correlation analysis are summarized 

in the table below. 

 

Table 4 presents a comparison of four models GPT-4, 

MedPaLM, ClinicalBERT, and BioBERT evaluating their 

complexity scores, memorization rates, and the Pearson 

correlation (r) between prompt complexity and 

memorization. GPT-4, with the highest complexity score of 

4.2, shows the highest memorization rate at 2.4%, and a 

relatively strong positive correlation (r = 0.63) between 

prompt complexity and memorization. MedPaLM, a 

specialized model for healthcare tasks, has a complexity 

score of 3.8 and a significantly lower memorization rate of 

1.0%, with a moderate correlation (r = 0.51). ClinicalBERT 

and BioBERT exhibit similar complexity scores (3.5 and 
3.7, respectively) and lower memorization rates (1.4% and 

1.2%, respectively), with Pearson's r values of 0.48 and 

0.55, indicating a less pronounced relationship between 

prompt complexity and memorization. These results suggest 

that specialized models like MedPaLM, ClinicalBERT, and 

BioBERT are more effective in minimizing memorization 

risks compared to the more generalized GPT-4. 

 

Table 4 Comparison of Model Complexity, Memorization Rate, and Pearson's Correlation  

Between Prompt Complexity and Memorization 

Model Complexity Score (1–5) Memorization Rate (%) Pearson's r 

GPT-4 4.2 2.4% 0.63 

MedPaLM 3.8 1.0% 0.51 

ClinicalBERT 3.5 1.4% 0.48 

BioBERT 3.7 1.2% 0.55 

 

From Table 4, it can be observed that GPT-4 shows the 
highest correlation (r = 0.63) between prompt complexity 

and memorization rate, indicating that more complex 

prompts lead to a higher likelihood of the model generating 

memorized responses. This suggests that GPT-4 may be 

more prone to memorization when dealing with 

sophisticated queries, likely due to its larger parameter size 

and general-purpose nature. In contrast, domain-specific 

models like MedPaLM and ClinicalBERT show lower 

correlations, implying that their fine-tuning on clinical data 

helps mitigate the memorization of complex medical phrases 

or terms. 

 
 Comparative Summary Across Different Model Variants 

The comparative analysis of memorization rates across 

different model variants reveals that GPT-4, as a general-

purpose model, is more likely to memorize and generate 

exact repetitions of its training data. In contrast, domain-

specific models like MedPaLM and ClinicalBERT, though 

not immune to memorization, perform better at generalizing 

to healthcare tasks, thereby reducing the frequency of exact 

repeats. 

 

Table 5 presents a comparison of memorization 
tendencies across four language models GPT-4, MedPaLM, 

ClinicalBERT, and BioBERT based on their exact match 

rate, training corpus, and fine-tuning strategies. GPT-4, a 

general-purpose model, demonstrates the highest 

memorization rate at 2.4%, reflecting its broader and more 

diverse training corpus, which makes it more prone to 

memorizing general language data. In contrast, MedPaLM, 

fine-tuned on medical-specific data, exhibits a lower 

memorization rate of 1.0%, showing better generalization to 

medical tasks. ClinicalBERT, trained on clinical texts, 

performs similarly but has a slightly higher memorization 

rate (1.4%) compared to MedPaLM, indicating a trade-off 
between model specialization and memorization risk. 

BioBERT, fine-tuned on biomedical literature, shows a 

memorization rate of 1.2%, similar to ClinicalBERT, 

reflecting its focus on biomedical data while maintaining 

lower memorization compared to the general-purpose 

model, GPT-4. These insights suggest that fine-tuning 

models on domain-specific data reduces memorization risk, 

making specialized models more suitable for healthcare 

applications. 

Table 5 Comparison of Memorization Rates Across Models 

Model Exact Match Rate (%) Training Corpus Fine-tuning Key Insights 

GPT-4 2.4% General (diverse) None 
More prone to memorization of general 

language data. 

MedPaLM 1.0% Medical-specific Yes 

Better generalization to medical tasks, 

lower memorization. 

ClinicalBERT 1.4% Clinical texts Yes 

Good generalization to clinical tasks, 

slightly higher risk than MedPaLM. 

BioBERT 1.2% Biomedical data Yes 

Similar to ClinicalBERT, fine-tuned for 

biomedical literature. 

 

 

https://doi.org/10.38124/ijisrt/26jan1453
http://www.ijisrt.com/


Volume 11, Issue 1, January – 2026                 International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                             https://doi.org/10.38124/ijisrt/26jan1453 

 

 

IJISRT26JAN1453                                                               www.ijisrt.com                   2902 

These findings emphasize the importance of model 

selection and fine-tuning for minimizing memorization risks 

in healthcare contexts, where patient confidentiality and 

accurate information are paramount. The results also 

highlight the need for continuous monitoring of LLM 

performance to ensure that models maintain privacy and do 

not compromise patient safety due to memorization of 

sensitive data. 
 

B. Prompt Inference Outcomes 

 

 Classification of Inference Errors by Severity and Type 

In this study, we classified the inference errors made 

by the large language models (LLMs) based on 

their severity and type. The severity of errors refers to the 

potential impact on patient safety, clinical decision-making, 

and privacy, while the type of error identifies the specific 

nature of the mistake. The types of inference errors observed 

were categorized into three main groups: 
 

 Semantic Drift: These errors occur when the model 

generates an output that deviates from the intended 

meaning of the prompt, leading to a mismatch between 

the input question and the model’s response. For 

example, a model might misinterpret a request for the 

treatment of diabetes and provide an irrelevant or 

incorrect response. 

 Logical Inconsistency: These errors happen when the 

model produces an output that contradicts established 

facts or medical guidelines. For example, suggesting a 

treatment for a patient with a specific medical condition 
that contradicts best practices or clinical guidelines. 

 Hallucination: Hallucination refers to the generation of 

information that is not supported by the training data or 

factual sources. This can lead to the model fabricating 

details that are not accurate or relevant to the healthcare 

scenario. For instance, a model might generate a non-

existent medication or a fabricated clinical trial result. 

 

 The Severity of Each Error was Rated on a Scale from 1 
to 5: 

 

 Severity 1: Minor issue with no impact on patient care. 

 Severity 5: Critical issue that could directly harm the 

patient or lead to significant adverse outcomes. 

 

Table 6 categorizes the different types of inference 

errors in large language models (LLMs) along with their 

severity ratings, descriptions, and examples. Semantic Drift 

(Severity 2–3) occurs when the model misinterprets the 

prompt, generating an inaccurate but not necessarily harmful 
response, such as suggesting irrelevant treatments. Logical 

Inconsistency (Severity 4–5) involves the model producing 

an output that contradicts established medical knowledge, 

which could potentially lead to patient harm, as seen in the 

example of recommending excessive salt intake for high 

blood pressure. Hallucination (Severity 3–5) refers to the 

generation of fabricated data or information not supported 

by evidence, which could mislead healthcare providers or 

patients, such as falsely claiming a cure for hypertension. 

These error types illustrate varying degrees of risk 

associated with LLM outputs in clinical contexts. 

 

Table 6 Classification of Inference Errors by Severity and Type 

Error Type Severity Rating Description Example 

Semantic Drift 2–3 

Misinterpretation of prompt leading to 

inaccurate but not necessarily harmful output. 

"What is the treatment for 

asthma?" → Response: "Diet 

changes for weight loss." 

Logical Inconsistency 4–5 

Output contradicts medical guidelines or 

established knowledge, potentially leading to 

harm. 

"Treatment for high blood 

pressure includes excessive salt 

intake." 

Hallucination 3–5 

Fabrication of data or information that does not 

exist or is unsupported by evidence. 

"The latest study on hypertension 

shows a cure is available." 

 

 Performance Variations Across Prompt Templates 

The study also examined how prompt 

structure influences the model's inference accuracy. 
Different types of prompts were used to assess model 

performance, including direct questions, contextual 

questions, and open-ended scenarios. These prompt 

templates were designed to test how well the models handle 

various degrees of complexity in healthcare-related queries. 

 

 Direct Questions: These prompts contain a 

straightforward query, such as "What are the symptoms 

of diabetes?" and are expected to receive factual, concise 

answers. These prompts typically lead to higher accuracy 

in responses but are still vulnerable to errors like 
semantic drift or logical inconsistency. 

 Contextual Questions: These prompts provide additional 

context, such as patient information, medical history, or 

previous treatments. For example, "A 65-year-old patient 
with a history of hypertension is presenting with chest 

pain. What should be considered in the diagnosis?" This 

type of prompt tests the model’s ability to reason through 

complex medical cases and ensure that the response is 

both contextually relevant and medically accurate. 

 Open-Ended Scenarios: These prompts are designed to 

allow the model to generate more detailed responses, 

such as "Discuss the treatment options for type 2 

diabetes." Open-ended prompts are more prone to errors 

due to their complexity and the model's reliance on 

generating coherent and medically accurate content. 
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Table 7 Presents a Summary of Model Performance Across Different Prompt Templates, Indicating the Variation in Error 

Rates. 

 

Table 7 Error Rate and Impact of Different Prompt Types in Healthcare Applications 

Prompt Type Error Rate (%) Common Errors Impact on Healthcare Applications 

Direct Questions 5.2% Semantic drift, minor hallucinations 

Low impact, mostly causes confusion, not 

harm 

Contextual Questions 9.8% Logical inconsistency, hallucination Higher impact, could lead to misdiagnosis 

Open-Ended Scenarios 14.5% Hallucination, semantic drift 

High impact, may lead to unsafe treatment 

suggestions 

 

From Table 7, it is evident that open-ended 

scenarios produce the highest error rates, which is consistent 
with the increased complexity of these types of prompts. 

The contextual questions also show a higher error rate 

than direct questions, suggesting that when more complex 

medical histories are provided, the model's inference 

mechanisms may struggle, potentially leading to more 

severe errors that could impact clinical decision-making. 

 

 Case Examples Illustrating Systemic Issues 

To further illustrate the nature of inference errors, 

several case examples are provided below, highlighting 

systemic issues that arose during the model’s response 
generation. 

 

 Case 1: Inconsistent Diagnosis 

Prompt: "A 45-year-old patient with a history of 

asthma and COPD is experiencing shortness of breath. What 

is the most likely cause?" 

 

 Model Response: "The patient should increase their 

intake of oxygen-rich foods such as leafy greens." 

 Error: Logical inconsistency. The model generated an 

inappropriate recommendation that contradicts 
established medical knowledge, where shortness of 

breath in such patients would likely indicate an acute 

exacerbation requiring medical intervention, not dietary 

changes. 

 

 Case 2: Hallucinated Information 

 

 Prompt: "What is the latest treatment for hypertension?" 

 Model Response: "The new treatment, developed in 

2023, involves a gene therapy that cures hypertension 

permanently." 

 Error: Hallucination. This response fabricated a non-
existent treatment, which could lead to patients believing 

in false claims and potentially avoiding proven 

treatments. 
These case examples highlight the risks associated with 

inference errors in healthcare applications of LLMs. Errors 

such as logical inconsistencies or hallucinations can have 

serious consequences if not properly managed or identified. 

 

In conclusion, prompt inference outcomes underscore 

the critical need for careful prompt engineering, continuous 

model training, and real-time human oversight in healthcare 

applications to prevent potentially harmful errors in model 

responses. 

 
C. Retrieval Risk Profiles 

 

 Incidence of Sensitive Phrase Reconstruction 

One of the primary concerns in retrieval-augmented 

generation (RAG) models is the incidence of sensitive 

phrase reconstruction. In these models, when a query is 

processed, the system retrieves relevant data from an 

external knowledge base (e.g., clinical guidelines, patient 

records) and uses that information to generate a response. If 

the retrieved data contains sensitive information, there is a 

risk that the model may reconstruct sensitive phrases, 

potentially leading to privacy violations. 
 

To quantify this risk, we examined the frequency with 

which sensitive phrases (e.g., patient names, medical 

conditions, and treatment histories) are retrieved and 

incorporated into the model’s output. The metric used to 

assess this was the Sensitive Phrase Recall Rate (SPRR), 

defined as: 

 

Sensitive Phrase Recall Rate (SPRR) =
Number of Sensitive Phrases Retrieved

Total Number of Retrievals
× 100 

 

The results of this analysis across different models are 

summarized in Table 8 below: 

 

Table 8 Retrieval of Sensitive Phrases Across Models 

Model Sensitive Phrases Retrieved (Count) Total Retrievals SPRR (%) 

GPT-4 15 500 3.0% 

MedPaLM 8 500 1.6% 

ClinicalBERT 6 500 1.2% 

BioBERT 7 500 1.4% 

 

As shown in Table 8, GPT-4 exhibited the highest 

incidence of sensitive phrase retrieval, with a 3.0% rate of 

sensitive phrases being incorporated into the model's 

responses. This suggests that the model, which has been 

trained on a wide variety of data, is more likely to retrieve 

and reproduce sensitive information. In 

contrast, MedPaLM, ClinicalBERT, and BioBERT, which 

are fine-tuned on medical datasets, demonstrated lower 
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retrieval rates, likely due to their specialized training that 

reduces the risk of retrieving and exposing irrelevant or 

sensitive data. 

 

 Patterns in Vector Retrieval Misalignment 

Another aspect of retrieval risk involves vector 

retrieval misalignment, where the model retrieves irrelevant 

or incorrect information due to errors in the indexing 
process or the retrieval mechanism. In RAG systems, the 

retrieval process relies on converting the input query and the 

knowledge base into high-dimensional vectors and then 

using similarity metrics to retrieve the most relevant 

information. If the vectors are misaligned i.e., the model 

retrieves documents or information that are not closely 

related to the query there is a higher chance of irrelevant or 

sensitive data being exposed. 

 

To measure vector retrieval misalignment, we 

calculated the retrieval accuracy, which is the percentage of 

retrieved documents that are deemed relevant to the given 

query. Retrieval misalignment was identified when the 
similarity between the query vector and the retrieved 

document vector was below a certain threshold, indicating 

poor relevance. The following table summarizes the retrieval 

accuracy and misalignment patterns across the models. 

 

Table 9 Retrieval Accuracy Across Different Models 

Model Retrieved Documents Relevant Documents (Count) Retrieval Accuracy (%) 

GPT-4 500 450 90% 

MedPaLM 500 475 95% 

ClinicalBERT 500 470 94% 

BioBERT 500 480 96% 

 

From Table 9, it is evident that the retrieval accuracy 

across all models is relatively high, 

with BioBERT achieving the highest retrieval accuracy 

(96%). However, even small misalignments in the retrieval 
process can pose privacy risks, as irrelevant documents 

might still contain sensitive data. Misalignments also 

increase the likelihood that the model generates less relevant 

or inaccurate outputs, which could have harmful 

consequences in healthcare settings. 

 

 Evaluation Against Privacy Thresholds 

The privacy threshold defines the acceptable level of 

risk associated with retrieving sensitive information during 

model inference. For this study, the privacy threshold was 

set at a retrieval accuracy of 90% and a sensitive phrase 

recall rate of no more than 2%, reflecting the threshold at 

which information retrieval could be considered safe for 
clinical applications. 

 

Using these privacy thresholds, we evaluated each 

model’s performance in terms of privacy compliance. If a 

model exceeded the threshold for sensitive phrase recall 

(i.e., if it retrieved more than 2% of sensitive information) or 

failed to maintain a retrieval accuracy above 90%, it was 

considered to be at higher risk of privacy violations. The 

results are summarized in Table 10 below: 

 

Table 10 Retrieval Risk and Privacy Compliance Across Models 

Model Sensitive Phrase Recall Rate (%) Retrieval Accuracy (%) Privacy Compliance 

GPT-4 3.0% 90% Non-compliant 

MedPaLM 1.6% 95% Compliant 

ClinicalBERT 1.2% 94% Compliant 

BioBERT 1.4% 96% Compliant 

 
As shown in Table 10, GPT-4 was found to be non-

compliant with the privacy threshold due to its higher 

sensitive phrase recall rate, which exceeded the 2% 

threshold. In contrast, MedPaLM, ClinicalBERT, 

and BioBERT all maintained compliance, with sensitive 

phrase recall rates below the threshold and retrieval 

accuracy above the 90% mark. 

 

 Key Insights from Retrieval Risk Profiles 

General-purpose models like GPT-4 are more prone to 

retrieving sensitive data due to their broader training corpus 

and larger parameter sizes. They exhibit higher sensitive 
phrase recall and are more likely to produce misaligned 

retrievals. 

 

Domain-specific models such 

as MedPaLM, ClinicalBERT, and BioBERT, while still 

presenting some risk, demonstrate better performance in 

privacy protection, as their training on specialized medical 

datasets reduces the likelihood of irrelevant or sensitive data 

retrieval. 

 

Retrieval accuracy and sensitive phrase recall are 

critical factors in determining a model’s compliance with 

privacy standards. While high retrieval accuracy is 

important, maintaining a low rate of sensitive phrase 

retrieval is essential for safeguarding patient privacy. 

 

D. Statistical Analysis 

 
 Inferential Statistics on Risk Differentials 

To assess the risk differentials between the different 

models (e.g., GPT-4, MedPaLM, ClinicalBERT, BioBERT), 

inferential statistical methods were employed. These 

methods allow us to draw conclusions about the populations 

from which the sample data are drawn, particularly in terms 
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of how model performance differs across the evaluated risks 

(e.g., memorization, prompt inference, and retrieval). The 

primary inferential statistic used in this study is Analysis of 

Variance (ANOVA), which tests for significant differences 

between multiple groups. 

 

 The Following Hypotheses were Tested: 

 
 Null Hypothesis (H₀): There is no significant difference 

in the memorization rate, inference error rates, or 

retrieval accuracy across different model variants. 

 Alternative Hypothesis (H₁): There is a significant 

difference in the memorization rate, inference error rates, 

or retrieval accuracy across different model variants. 

 

The ANOVA was applied to compare the mean 

memorization rates, prompt inference error rates, 

and retrieval accuracy across the four models. The general 

formula for ANOVA is: 
 

𝐹 =
Between-group Variance

Within-group Variance
 

 

Where: 

 

Between-group variance measures the variance due to 
the model type (between the groups of models), 

 

Within-group variance measures the variance within 

each model group (i.e., individual output performance). 

 

A significant F-statistic (with a p-value less than 0.05) 

indicates that at least one of the models significantly differs 

in its performance on a specific risk metric. 

 

 Confidence Intervals and Significance Testing Results 

To further quantify the uncertainty of the model 

performance metrics and provide an interval estimate of the 
population parameters, confidence intervals (CIs) were 

calculated for key metrics such as exact match rates, error 

rates, and retrieval accuracy. The 95% confidence 

interval was chosen, which means we can be 95% confident 

that the true population parameter lies within the specified 

range. 

 

The formula for a confidence interval for the mean is: 

 

𝐶𝐼 = 𝑥̄ ± 𝑧 ×
𝑠

√𝑛
 

 

Where: 
 

𝑥̄ is the sample mean, 

 

𝑧 is the z-score corresponding to the 95% confidence level 

(1.96), 

 

𝑠 is the standard deviation of the sample, 

 

𝑛 is the sample size. 
 

For each model, confidence intervals were calculated 

for the memorization rate, prompt inference error rate, 

and retrieval accuracy to assess the precision of the 

estimates. These intervals provide insights into the 

consistency of model performance and help in determining 

whether the observed differences between models are 

statistically significant. 

 

 Significance Testing Results 

Following the ANOVA, post-hoc significance 
testing was performed using Tukey’s Honestly Significant 

Difference (HSD) test to identify which specific pairs of 

models exhibited significant differences in performance. 

This test controls for the Type I error rate when making 

multiple comparisons, providing a robust method for 

determining whether any model’s performance is 

statistically different from another. 

 

The significance testing results for the key metrics are 

summarized in the table 11 below, indicating whether the 

differences in model performance are statistically 

significant. 

 

Table 11 Significance Testing Results 

Metric F-Statistic p-value Conclusion 

Memorization Rate 6.23 < 0.01 Significant difference between models 

Prompt Inference Errors 5.67 < 0.05 Significant difference between models 

Retrieval Accuracy 2.89 > 0.05 No significant difference across models 

 

From table 11, it is clear that there is a significant 

difference in the memorization rate and prompt inference 

error rates between models, indicating that model choice 

plays an important role in minimizing risks in these areas. 

However, retrieval accuracy did not show a significant 
difference, suggesting that retrieval-based models (e.g., 

RAG systems) performed similarly across the models 

evaluated. 

 

V. DISCUSSION 

 

A. Interpretation of Memorization Risks 

 

 Underlying Mechanisms and Training Dynamics 
Memorization in large language models (LLMs) is a 

complex phenomenon that arises from the interplay of 

several factors during model training. One key factor is the 

size and diversity of the training dataset. LLMs like GPT-4, 

which are trained on massive datasets spanning multiple 

domains, are prone to memorizing both general and domain-
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specific information. In healthcare applications, this includes 

the risk of memorizing sensitive patient data or detailed 

medical records, which could be inadvertently generated 

during inference. The larger the model and the more 

comprehensive the dataset, the greater the likelihood of 

memorization occurring. The training dynamics, including 

the model’s exposure to repeated instances of similar data, 

can exacerbate this risk, as the model becomes increasingly 
attuned to the specifics of the data rather than generalizing 

effectively to new, unseen examples. 

 

Additionally, overfitting a common issue in deep 

learning is closely tied to memorization. Overfitting occurs 

when a model learns the noise or irrelevant details in the 

training data, rather than the underlying patterns, making it 

more likely to memorize specific phrases or sequences. In 

healthcare, overfitting is particularly problematic because it 

can lead to the model recalling and reproducing sensitive 

patient data, potentially violating privacy regulations 
like HIPAA or GDPR. Models fine-tuned on clinical data 

(e.g., ClinicalBERT or MedPaLM) tend to show less 

memorization risk than general-purpose models like GPT-4, 

as the former are trained to focus on clinical terms and 

medical knowledge, which are more likely to generalize. 

 

 Implications for Model Deployment in Clinical 

Workflows 

The presence of memorization risks in healthcare 

LLMs has significant implications for their deployment in 

clinical workflows. If a model inadvertently memorizes 

sensitive data, there is a risk that confidential patient 
information could be exposed, either through direct 

repetition in responses or through inadvertent retrieval in a 

retrieval-augmented generation (RAG) system. For example, 

a model might generate an output such as "Patient X with a 

history of heart disease and hypertension is being treated 

with...," which could compromise patient privacy if the data 

has not been properly de-identified. 

 

In clinical workflows, this poses a privacy risk that 

must be mitigated to protect patient confidentiality and 

ensure compliance with healthcare regulations. Furthermore, 

any memorization of outdated or inaccurate medical 

information could lead to clinical errors, such as 
recommending obsolete treatments or misdiagnosing 

conditions based on outdated data. 

 

To mitigate these risks, it is essential to integrate 

safeguards such as: 

 

 Data anonymization: Ensuring that training data, 

particularly patient records, is thoroughly anonymized 

before being used to train LLMs. 

 Human-in-the-loop validation: Involving healthcare 

professionals in the review of AI-generated outputs to 
catch potential errors or privacy violations before they 

affect patient care. 

 Continuous model updates: Regularly updating and fine-

tuning the model on fresh data to prevent it from relying 

on outdated information and to reduce the chances of 

memorization. 

 

 Graph: Memorization Risk vs. Model Size and Dataset 

Diversity 

The following graph illustrates the relationship 

between model size and dataset diversity with memorization 
risk. It shows that as model size and dataset diversity 

increase, the memorization risk also tends to increase, 

particularly in general-purpose models. Conversely, 

specialized models that are fine-tuned for healthcare tasks 

(e.g., ClinicalBERT) exhibit a lower risk of memorization 

due to more focused training. 

 

Memorization Risk | * (GPT-4) | * (MedPaLM) | * * | * * * | * * * * 

|___________*__________*______________________________ Small Large Model Size (Fine-tuned for Healthcare) 

 

 In the Graph Above: 

 
 The x-axis represents the model size and the level 

of dataset diversity, with smaller models and more 

focused datasets (fine-tuned models like MedPaLM) on 

the left and larger, more generalized models (e.g., GPT-

4) on the right. 

 The y-axis represents the memorization risk, which 

increases as model size and dataset diversity grow. 

 

This graph visually demonstrates that specialized 

models with a focus on healthcare-specific tasks tend to 

have a lower memorization risk, while general-purpose 
models like GPT-4, which are trained on vast and diverse 

datasets, exhibit higher memorization tendencies. 

 

In conclusion, understanding the mechanisms 

underlying memorization risks is crucial for the safe 

deployment of LLMs in healthcare. Reducing memorization 

risk, particularly for sensitive patient data, should be a 

priority during model training and deployment. By using 

specialized, fine-tuned models and implementing proper 

safeguards, healthcare providers can mitigate these risks 
while leveraging the power of LLMs for clinical decision-

making and patient care. 

 

B. Insights on Prompt Inference 

 

 Structural Vulnerabilities Exposed by Prompt 

Engineering 

Prompt engineering plays a crucial role in shaping the 

behaviour of large language models (LLMs), especially 

when applied in healthcare contexts. The structure and 

phrasing of prompts can expose vulnerabilities in the 
model’s inference capabilities, leading to errors that may 

affect clinical outcomes. 

 

 Ambiguity in Prompts: One of the most significant 

vulnerabilities arises when prompts are ambiguous or 

unclear. For example, a prompt like "What are the risks 

associated with treatment?" can lead to unpredictable 

model responses, as the model might interpret "risks" 
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broadly, generating information that is irrelevant or 

incorrect for the specific clinical context. Ambiguous 

prompts may cause the model to hallucinate information 

or provide generalized advice that doesn’t account for 

patient-specific factors, leading to potentially unsafe 

recommendations. 

 Context Misinterpretation: If the model fails to properly 

interpret the context of a prompt particularly in complex 
healthcare scenarios where nuanced patient data is 

involved it may generate outputs that are logically 

inconsistent or semantically drift from the intended 

meaning. For example, a prompt asking for treatment 

options for "a 70-year-old patient with diabetes" might 

lead to incorrect or incomplete recommendations if the 

model does not correctly consider the patient’s other 

medical conditions, such as hypertension or renal 

disease. This context misinterpretation can lead to 

critical errors in patient care. 

 Over-Simplification of Complex Cases: Healthcare tasks 
often require models to reason through complex 

scenarios, balancing multiple variables such as medical 

history, symptoms, and treatment guidelines. However, 

simple prompts like "What are the treatment options for 

asthma?" might trigger over-simplified responses that 

fail to account for variations in patient conditions (e.g., 

age, comorbidities, or medication interactions). This 

could result in suboptimal treatment suggestions or 

overlook potential complications. 

 Adversarial Prompting: Another vulnerability comes 

from adversarial prompting, where intentionally 
misleading or tricky prompts are used to expose 

weaknesses in the model’s reasoning. For example, an 

adversarial prompt could be, “Can you treat someone 

with asthma by administering penicillin?” While 

penicillin is generally not prescribed for asthma, 

adversarially crafted prompts can exploit gaps in the 

model’s reasoning process, leading to inaccurate or 

unsafe outputs. 

 

These structural vulnerabilities illustrate the need for 

careful and thoughtful prompt design in healthcare 

applications. The risk of these vulnerabilities becoming 
systemic is high, as models can be deployed with minimal 

human oversight if not properly managed, leading to 

significant consequences in clinical environments. 

 

 Recommendations for Prompt Validation Protocols 

To mitigate the vulnerabilities exposed by prompt 

engineering, the following prompt validation protocols are 

recommended: 

 

 Clear and Specific Prompt Design: Prompts should be 

designed with clarity and precision to reduce ambiguity. 
For instance, instead of asking, "What are the risks 

associated with treatment?", a more specific prompt such 

as "What are the potential complications associated with 

the use of ACE inhibitors in patients with hypertension?" 

should be used to direct the model’s response to more 

relevant and accurate information. 

 Contextual Consistency Checks: Validation protocols 

should include mechanisms for ensuring that the model 

fully understands the context of the prompt. This can be 

achieved by: 

 Explicitly Including Relevant Patient Data: Including 

relevant context such as age, medical history, and other 

key factors in the prompt to ensure the model generates 

contextually appropriate responses. 

 Structured Prompts with Contextualization: Use 

structured prompts that break down complex medical 

scenarios into smaller, more manageable pieces to help 

the model focus on specific aspects of patient care (e.g., 

“What treatment options are available for an elderly 

patient with asthma and a history of cardiovascular 

disease?”). 

 Human-in-the-loop Validation: To prevent critical errors, 

especially in high-stakes healthcare applications, it is 

crucial to implement a human-in-the-loop 

(HITL) validation process. This would involve 
healthcare professionals reviewing model outputs before 

they are used in decision-making. HITL validation 

ensures that any errors due to poor prompt engineering 

or model limitations can be caught early, preventing 

adverse outcomes. 

 Adversarial Testing: Models should undergo adversarial 

testing with intentionally crafted prompts that probe for 

weaknesses in reasoning, logic, and accuracy. This 

testing should simulate real-world adversarial conditions 

and be designed to expose vulnerabilities in prompt 

interpretation, logical consistency, and medical safety. 

 Continuous Monitoring and Feedback Loops: 

Implementing continuous monitoring of model 

performance in real-time healthcare settings is critical. 

This can be achieved by collecting feedback from users 

(e.g., clinicians, patients) on the accuracy and relevance 

of the model’s outputs. Feedback loops can be used to 

refine the prompts and the model, ensuring that the 

system improves over time and remains aligned with 

clinical guidelines. 

 Standardized Prompt Libraries: Developing a library of 

validated and standardized prompts for common 

healthcare tasks can reduce the likelihood of errors. 
These prompts would be based on best practices and 

tested for reliability and accuracy. For example, a 

standardized prompt for diagnosing common conditions 

such as diabetes or hypertension could be used across all 

clinical settings, ensuring consistency and reducing the 

risk of ambiguity. 

 

This figure presents a structured prompt validation 

framework designed to ensure the safety, reliability, and 

clinical appropriateness of large language model (LLM) 

outputs in healthcare settings. At the centre of the process is 
the LLM Output, representing the generated healthcare 

response, which is continuously refined through four 

interconnected validation stages arranged in a circular 

workflow. Clear Prompt Design emphasizes the formulation 

of well-defined and unambiguous queries to guide the model 

toward accurate and relevant responses. Contextual Checks 

evaluate medical relevance and internal consistency, 
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ensuring alignment with clinical standards and domain-

specific knowledge. Adversarial Testing probes the system 

using challenging or misleading inputs to uncover potential 

vulnerabilities, biases, and unsafe behaviours. Human 

Validation introduces expert oversight, where clinicians or 

domain specialists review and approve outputs before use in 

real-world applications. The cyclical structure of the 

diagram highlights an iterative quality assurance process in 
which each stage reinforces the others, promoting 

robustness, transparency, and patient safety in AI-assisted 

healthcare decision-making. 

 

 
Fig 3 Prompt Validation Framework for Safe Healthcare 

LLM Deployment 

 

C. Analysis of Retrieval Hazards 

 

 Architectural Considerations Influencing Risk 

In retrieval-augmented generation (RAG) models, the 

architecture significantly influences the likelihood 

of retrieval hazards, such as privacy violations, data leakage, 

and irrelevant or inaccurate information retrieval. The 
integration of external knowledge sources (e.g., medical 

databases, patient records) into LLMs increases the 

complexity of managing retrieval risks. The following 

architectural considerations contribute to these risks: 

 

 Indexing Mechanisms: The effectiveness of indexing 

mechanisms in retrieval systems directly impacts the 

quality and relevance of retrieved data. Sparse vs. dense 

vector embeddings represent two different approaches to 

indexing: 

 

 Sparse Indexing: Traditional methods, where each term 

in the dataset is indexed separately, may fail to capture 

complex relationships between data points. While it can 

be efficient, sparse indexing may lead 

to misalignments in retrieval, where irrelevant or 
outdated data is retrieved. 

 Dense Embedding-based Indexing: Dense embeddings, 

which map data into high-dimensional vector spaces, are 

more effective in capturing semantic similarities between 

queries and documents. However, these models are also 

at a higher risk of privacy leakage since vectors might 

indirectly reveal sensitive information (e.g., embedding 

vector similarity could leak PHI if not properly secured). 

 

 Model-Data Interaction: The way the model interacts 

with external data sources plays a crucial role in retrieval 
accuracy and privacy risks. For example, when a query is 

processed by the LLM, the model uses retrieval 

pipelines to extract relevant information from an indexed 

knowledge base. However, if the retrieval system lacks 

safeguards, sensitive information (e.g., specific patient 

details) may be exposed, either accidentally or due to 

adversarial manipulation. 

 Retrieval vs. Generation: In models like RAG, where 

retrieval is followed by generation, the boundary 

between retrieved data and generated output can blur, 

leading to potential data leakage. If the model retrieves a 

piece of sensitive data and generates an output based on 
it, the information could inadvertently be included in the 

response, violating privacy regulations such as HIPAA. 

The complexity of this interaction requires careful 

monitoring to ensure sensitive data is not unintentionally 

included in the model’s output. 

 Query Expansion and Retrieval Bias: When queries are 

expanded or reformulated by the model to retrieve 

additional context, this can inadvertently lead to the 

retrieval of irrelevant or private data. For instance, a 

query like "What are the treatment options for 

hypertension?" might be expanded by the system to 
include additional context about patient history or co-

morbid conditions, leading to the retrieval of patient-

specific data that should not be disclosed. 

 

 Strategies for Mitigation at System and Data Layer 

To reduce the risks associated with retrieval hazards, 

the following strategies can be implemented at both 

the system layer and the data layer: 

 

 Data Layer: 

 
 Data Anonymization: Ensuring that all data used for 

training and retrieval is anonymized to prevent the 

exposure of protected health information (PHI). 

Anonymization methods such as k-

anonymity or differential privacy can be used to ensure 

that any retrieved data cannot be traced back to 

individual patients, even if it is retrieved and 

incorporated into the model’s response. 
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 De-identification of Knowledge Base: The knowledge 

base or database used for retrieval should be carefully 

curated to remove any sensitive information that could 

potentially be linked to identifiable individuals. This 

process may include the removal of patient names, 

addresses, and any identifying markers from clinical 

records, research papers, and medical guidelines. 

 Sensitive Data Exclusion Protocols: Specific algorithms 
can be developed to filter out sensitive data at the 

retrieval stage. For example, when a model queries a 

database, any result containing sensitive terms (e.g., 

specific medical conditions or medications tied to 

individual patients) can be flagged and excluded from 

the response generation. 

 

 System Layer: 

 

 Query Filtering and Censorship: Implementing a query 

filtering system that automatically identifies and 
excludes certain sensitive terms or phrases from the 

input query before it is processed by the model. This can 

be particularly important in healthcare settings where 

certain types of data such as patient names or recent 

treatments—should never be exposed in the model's 

response. 

 Retrieval Transparency and Auditing: Regularly auditing 

the retrieval process can help identify and mitigate 

potential risks. By keeping track of the data retrieval logs 

and generating transparency reports, healthcare 

organizations can ensure that only appropriate, non-

sensitive data is used in model outputs. This process 
should be supported by tools that allow human oversight 

of the retrieval process to catch any unintended data 

leakage. 

 Controlled Retrieval with Access Control: 

Implement access control mechanisms to ensure that the 

LLM can only access certain parts of the knowledge base 

based on the nature of the query. For instance, if a query 

relates to a specific patient’s medical history, the system 

should have robust protocols in place to ensure that only 

the necessary, anonymized data is retrieved, and 

sensitive identifiers are excluded. 
 Privacy-Preserving Model Training: Training models 

with privacy-preserving techniques such as federated 

learning or secure multi-party computation (SMPC) 

ensures that the model can learn from healthcare data 

without directly accessing sensitive information. These 

methods allow the model to be trained on decentralized 

datasets without the risk of exposing any private patient 

data. 

 

Figure 4 illustrates a comprehensive, multi-layered 

mitigation framework designed to reduce retrieval-related 

privacy and security risks in healthcare large language 
models (LLMs). At the centre is the Healthcare LLM, which 

interfaces with both data and system protection mechanisms 

before producing a final generated response. On the left, 

Data Layer Protections emphasize safeguarding sensitive 

information through data anonymization and de-

identification, access controls and encryption, data filtering 

and redaction, and continuous audit and monitoring, 

ensuring that only compliant and sanitized data are available 

for retrieval. On the right, System Layer Protections 

implement operational safeguards, including contextual 

filters to assess medical relevance, patient data protection 

rules to enforce regulatory constraints, privacy-aware 

retrieval mechanisms that prevent exposure of protected 

health information, and response validation to verify that 
outputs meet clinical and ethical standards. The lower 

workflow demonstrates how secure retrieval and safe 

generation processes converge to produce a clinician-facing 

response that is both useful and privacy-compliant. Overall, 

the figure highlights how coordinated controls at both the 

data and system levels create a robust defence-in-depth 

architecture, enabling healthcare LLMs to deliver accurate 

information while minimizing the risk of sensitive data 

leakage. 
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Fig 4 Layered Mitigation Framework for Minimizing Retrieval Hazards in Healthcare LLMs 

 

D. Comparisons to Literature 

 

 Alignment and Divergence from Prior Findings 
The findings of this study on the risks associated with 

large language models (LLMs) in healthcare, particularly in 

terms of memorization, prompt inference, and retrieval 

hazards, are generally in alignment with prior research, but 

also present some divergent insights that contribute new 

perspectives to the field. 

 

 Alignment with Prior Findings 

The study's observation that larger, general-purpose 

models such as GPT-4 exhibit higher memorization risks 
aligns with existing literature on the relationship between 

model size, dataset diversity, and memorization tendencies 

(Carlini et al., 2021). Previous studies have demonstrated 

that large models, particularly those trained on broad, 

diverse datasets, are more prone to memorizing sensitive 

data and generating exact matches from training data 

(Carlini et al., 2021). Our findings also support the claim 

https://doi.org/10.38124/ijisrt/26jan1453
http://www.ijisrt.com/


Volume 11, Issue 1, January – 2026                 International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                             https://doi.org/10.38124/ijisrt/26jan1453 

 

 

IJISRT26JAN1453                                                               www.ijisrt.com                   2911 

that domain-specific models like MedPaLM andClinical 

BERT, which are fine-tuned on medical datasets, exhibit 

lower memorization rates and better generalization to 

healthcare tasks (Lee et al., 2020; Huang et al., 2021). This 

aligns with research showing that fine-tuning on domain-

specific corpora reduces the risk of memorizing specific 

phrases while improving performance on related tasks. 

 
Additionally, our results on inference errors 

including semantic drift and logical inconsistencies are 

consistent with the findings of Hendrycks et al. (2020), who 

identified that LLMs are prone to producing flawed or 

misleading outputs, particularly when prompted with 

ambiguous or adversarial inputs. Our study confirms 

that adversarial prompts lead to higher inference errors, 

especially in general-purpose models. 

 

 Divergence from Prior Findings 

However, there are notable divergences in this study's 
findings compared to existing research, particularly 

regarding the impact of prompt complexity on 

memorization. While previous studies, such as those 

by Bender et al. (2021), suggested that complex 

prompts exacerbate memorization risks, this study found a 

more moderate relationship between prompt complexity and 

memorization rate. In fact, while GPT-4 showed a strong 

correlation between complex prompts and memorization, 

the domain-specific models like MedPaLM demonstrated 

relatively low memorization even with complex prompts. 

This could be attributed to the models' ability to generalize 

based on healthcare-specific training, where medical 
prompts are handled with more precision, reducing the 

tendency for memorization. This finding diverges from the 

broad applicability of prompt complexity as a universal risk 

factor for memorization in prior studies. 

 

Moreover, while previous research on retrieval-

augmented models has shown that external knowledge 

retrieval mechanisms increase the likelihood of privacy 

leakage (Shokri et al., 2017), this study's results on retrieval 

risks suggest that well-tuned, domain-specific 

models like MedPaLM and BioBERT exhibit significantly 
lower retrieval hazards compared to general-purpose models 

like GPT-4. This contrasts with the broader consensus that 

retrieval-augmented systems always carry higher risks of 

data leakage and irrelevant retrieval (Papernot et al., 2021). 

Our findings suggest that specialized training and rigorous 

data anonymization processes in healthcare-specific models 

can mitigate these risks more effectively than previously 

thought. 

 

Novel Contributions and Confirmations of Extant 

Theories This study offers several novel contributions that 

advance the understanding of LLMs in healthcare settings, 
as well as confirmations of existing theories: 

 

 Novel Contribution:  

Role of Domain-Specific Fine-Tuning One of the key 

contributions of this research is the detailed exploration of 

how fine-tuning on healthcare-specific datasets reduces 

memorization risks. While prior research suggested that 

specialized models perform better in specific domains, this 

study provides empirical evidence that fine-tuned models 

like MedPaLM and ClinicalBERT not only outperform 

general-purpose models in terms of clinical accuracy but 

also exhibit significantly reduced memorization of sensitive 

information. This finding underscores the importance of 

domain-specific model development and fine-tuning as a 

strategy to mitigate privacy risks in healthcare AI 
applications. 

 

 Novel Contribution:  

Minimal Inference Error in Contextual Prompts 

Another novel finding is that contextual prompts, which 

include patient-specific information, lead to fewer inference 

errors in specialized models compared to general-purpose 

models. This finding adds to the body of knowledge on 

how context-aware models can enhance inference accuracy, 

particularly in healthcare, where context and patient history 

are crucial for accurate decision-making. This confirms the 
utility of contextualization in model design, which is 

essential for clinical applications where personalized care is 

required. 

 

 Confirmation of Extant Theories 

The findings regarding retrieval risks confirm existing 

theories on the trade-offs between data retrieval and privacy 

protection in retrieval-augmented systems. The study 

corroborates Shokri et al. (2017)'s assertion that the risk of 

data leakage increases with the complexity of the retrieval 

process. However, the study extends this theory by 

demonstrating that fine-tuned healthcare models, when used 
with secure data retrieval systems, can substantially reduce 

the likelihood of privacy breaches. 

 

Additionally, the study affirms the well-established 

relationship between model size and memorization risk, as 

outlined by Carlini et al. (2021). The findings of this study 

support the conclusion that larger, general-purpose 

models like GPT-4 are more susceptible to memorization 

and privacy risks due to their broad training datasets and 

generalist design. 

 
E. Implications for Practice and Policy 

 

 Safe Integration Pathways for Healthcare LLMs 

The integration of large language models (LLMs) into 

healthcare settings must be approached with caution, given 

the potential risks related to memorization, prompt inference 

errors, and retrieval hazards. Based on the findings from this 

study, several safe integration pathways can be 

recommended to ensure that LLMs are deployed effectively 

while minimizing risks to patient privacy and safety. 

 

 Domain-Specific Fine-Tuning and Continuous 

Monitoring 

To reduce memorization risks and improve model 

accuracy, it is essential to use domain-specific fine-tuning. 

Models such as MedPaLM and ClinicalBERT, which are 

fine-tuned on healthcare data, demonstrated lower 

memorization rates and more reliable responses to 

healthcare queries. As a practice, healthcare organizations 
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should prioritize using specialized models trained on de-

identified, medical-specific datasets. Moreover, continuous 

monitoring of these models in real-world clinical 

environments is crucial. Real-time performance tracking, 

combined with feedback from healthcare professionals, will 

help identify any emerging risks (e.g., faulty 

recommendations, data leakage) and allow for adjustments 

to be made promptly. 
 

 Human-in-the-Loop (HITL) Validation 

Given the risks associated with inference errors, 

including semantic drift and logical inconsistencies, 

a human-in-the-loop validation system should be 

incorporated into the deployment of LLMs. This system 

involves healthcare professionals reviewing AI-generated 

outputs before they are used in clinical decision-making. For 

instance, clinical decision support systems (CDSS) powered 

by LLMs should be designed to present AI-generated 

recommendations that are verified and validated by 
clinicians, especially in high-stakes scenarios such as 

treatment planning or diagnostic decisions. 

 

 Privacy-Preserving Retrieval Mechanisms 

As retrieval-augmented models can expose sensitive 

data, ensuring privacy-preserving retrieval mechanisms is 

essential. This includes the use of 

advanced anonymization and differential privacy techniques 

to protect any data retrieved by the model during inference. 

Additionally, the use of access control for data retrieval 

systems, ensuring that only relevant, non-sensitive data is 

accessed and used, is critical to prevent the inadvertent 
exposure of protected health information (PHI). Moreover, 

healthcare systems should implement real-time auditing of 

the retrieval process, tracking and reviewing any sensitive 

data accessed by the model. 

 

 Ethical Oversight and Regulatory Compliance 

To ensure that LLMs are used ethically and in 

compliance with regulatory standards such 

as HIPAA and GDPR, healthcare organizations must 

establish clear guidelines and oversight mechanisms. These 

should include regular audits of model behaviour, 
comprehensive data governance policies, and explicit 

consent processes for any use of patient data in training or 

retrieval processes. Adherence to these regulations will help 

minimize privacy breaches and ensure that LLMs are 

deployed in a way that respects patient rights and privacy. 

 

 Policy Suggestions Grounded in Empirical Evidence 

Based on the findings of this study, several policy 

suggestions are proposed to guide the safe and effective use 

of LLMs in healthcare: 

 

 Establishing Privacy Standards for LLMs in Healthcare 

Governments and regulatory bodies should establish 

specific privacy standards tailored to the unique risks posed 

by LLMs in healthcare. These standards should outline the 

requirements for data anonymization, model training, 

and data retrieval practices to ensure that sensitive patient 

information is adequately protected. Additionally, clear 

guidelines should be issued on model 

transparency and accountability, ensuring that healthcare 

providers can assess how LLMs generate responses and 

verify their safety and accuracy. 

 

 Creating Ethical AI Frameworks for Clinical Use 

Policymakers should mandate the development 

of ethical AI frameworks specific to healthcare, similar to 

those used in other industries, but tailored to the sensitive 
nature of medical data. These frameworks should include 

principles such as fairness, explainability, and non-

malfeasance, ensuring that AI models used in clinical 

settings are free from biases and that their outputs are 

understandable and actionable by clinicians. Ethical 

oversight bodies could be created to evaluate AI models 

before they are deployed in real-world healthcare scenarios. 

 

 Regulating Adversarial Testing and Model Robustness 

As adversarial prompts have been shown to expose 

weaknesses in model reasoning, it is essential for regulatory 
bodies to establish standards for adversarial 

testing and model robustness. Healthcare LLMs should 

undergo rigorous adversarial testing during their 

development phase, ensuring that they are capable of 

handling edge cases and challenging scenarios that might 

arise in clinical practice. Testing should include scenarios 

where the model is exposed to intentionally misleading or 

ambiguous prompts, ensuring that it does not generate 

harmful or unsafe recommendations. 

 

 Patient Consent and Data Usage Policies 
With the increasing use of healthcare data in model 

training and retrieval processes, clear patient consent 

policies should be developed to ensure that individuals are 

informed about how their data is being used. This includes 

providing patients with the option to opt-out of data usage in 

LLM training or retrieval systems, while also ensuring that 

any data used is fully anonymized and de-identified. These 

policies should be designed in accordance 

with GDPR and HIPAA requirements, ensuring that 

patients’ rights are upheld throughout the AI lifecycle. 

 

 Promoting Research on Safe AI Practices in Healthcare 
Given the rapid advancements in AI 

technologies, funding and support for research on safe AI 

practices in healthcare should be prioritized. Research 

should focus on developing methods for improving model 

transparency, explainability, and interpretability. This would 

enable healthcare professionals to trust AI-generated outputs 

and understand how decisions are made, which is critical for 

integrating AI into clinical workflows effectively and safely. 

 

VI. CONCLUSION AND 

RECOMMENDATIONS 
 

 Summary of Key Findings 

This study explored the risks associated with the 

deployment of large language models (LLMs) in healthcare, 

focusing on memorization, prompt inference errors, 

and retrieval hazards. The findings highlight the following 

key points: 
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 Memorization Risks: General-purpose models, such as 

GPT-4, exhibit higher memorization tendencies, 

especially in complex prompts, leading to a greater 

likelihood of sensitive data being repeated or exposed. 

 Prompt Inference Errors: Errors in inference, such 

as semantic drift and logical inconsistencies, are more 

prevalent in models exposed to adversarial or ambiguous 

prompts, with domain-specific models 
like MedPaLM and ClinicalBERT showing improved 

performance in handling medical-specific prompts. 

 Retrieval Risks: Retrieval-augmented generation (RAG) 

models demonstrated retrieval hazards, particularly in 

terms of privacy leakage and misaligned data retrieval, 

but domain-specific fine-tuning and privacy-preserving 

techniques helped mitigate these risks. 

 

The study emphasized the importance of model 

selection and fine-tuning, as well as the need for 

careful prompt engineering and robust retrieval 
safeguards to minimize risks in healthcare applications. 

 

 Contributions to Knowledge 

This assessment provides several critical contributions 

to the field of clinical AI safety: 

 

 Empirical Insights on Memorization: The study offers 

empirical evidence showing how domain-specific fine-

tuning can effectively reduce memorization risks, a key 

concern when deploying AI in healthcare. It 

demonstrates that specialized models 
like MedPaLM and ClinicalBERT are less prone to 

memorizing sensitive patient data compared to general-

purpose models like GPT-4. 

 Prompt Engineering for Healthcare: The research 

highlights the risks introduced by poor prompt design, 

showing that complex and ambiguous prompts increase 

the likelihood of inference errors and that context-rich, 

structured prompts improve model reliability. These 

insights underscore the importance of careful prompt 

engineering in healthcare applications. 

 Mitigation of Retrieval Risks: The study explores how 

privacy risks associated with retrieval-augmented 
models can be mitigated by employing privacy-

preserving techniques, such as differential 

privacy and anonymization. This finding enhances our 

understanding of how to safely integrate external 

knowledge retrieval in clinical AI systems. 

 

These contributions help fill gaps in the literature and 

provide actionable insights for practitioners and 

policymakers involved in the deployment of AI in 

healthcare. 

 
 Practical Recommendations 

Based on the study’s findings, the following practical 

recommendations are made to ensure the safe integration of 

LLMs into healthcare workflows: 

 

 

 Data Governance Practices for Model Training and 

Update Cycles 

Establish clear data governance policies for 

the anonymization and de-identification of healthcare data 

used for model training and fine-tuning. This will reduce 

memorization risks and ensure compliance with privacy 

regulations such as HIPAA and GDPR. 

 
Implement regular model update cycles to keep models 

aligned with the latest clinical guidelines and practices, 

reducing the risk of outdated or irrelevant information being 

retrieved. 

 

 Prompt Design Standards and Audit Routines 

Develop standardized prompt design guidelines that 

ensure clarity and specificity when generating healthcare-

related queries. This will help reduce inference errors like 

semantic drift and logical inconsistencies. 

 
Implement audit routines to regularly assess the quality 

and safety of model outputs, particularly in high-risk clinical 

environments. These audits should include both automated 

and manual reviews to detect any emerging issues or errors 

in the model’s reasoning. 

 

 Retrieval Safeguards Including Query Filtering and 

Secure Indexing 

Deploy retrieval safeguards such as query filtering to 

prevent sensitive or irrelevant data from being retrieved in 

response to certain types of queries. Only medically relevant 
data should be accessible based on the context of the 

prompt. 

 

Use secure indexing systems to ensure that sensitive 

information (e.g., patient data) is properly protected during 

both training and inference stages. This could involve 

using encryption and access control protocols to limit model 

exposure to PHI. 

 

 Framework for Risk Mitigation 

A proposed risk assessment checklist can be used to 

systematically evaluate and mitigate the risks associated 
with LLMs in healthcare. The checklist includes the 

following components: 

 

 Memorization Risk Assessment: Ensure that all training 

data is anonymized, and that fine-tuned models do not 

memorize sensitive patient information. 

 Inference Risk Assessment: Regularly evaluate the 

model’s performance on a variety of prompt types, 

including adversarial and ambiguous prompts, to ensure 

that the model provides safe and accurate responses. 

 Retrieval Risk Assessment: Monitor the retrieval system 
for any instances of sensitive data leakage or irrelevant 

retrieval and implement safeguards to minimize these 

risks. 
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 Integration with Existing Clinical Risk Management 

Protocols: 

This risk assessment framework should be integrated 

with existing clinical risk management protocols. Healthcare 

organizations should establish cross-functional 

teams (including AI experts, clinicians, and data privacy 

officers) to monitor model behaviour and ensure that any 

emerging risks are promptly addressed. Additionally, the 
framework should be periodically reviewed and updated 

based on real-world performance and evolving regulatory 

guidelines. 

 

 Future Research Directions 

 

 Longitudinal Studies on Model Drift and Memorization 

Accumulation 

Future research should focus on longitudinal studies to 

assess how models drift over time as they are exposed to 

new data. These studies should explore whether 
memorization of sensitive data increases as models continue 

to learn from new healthcare datasets, and the impact of 

such drift on patient privacy. 

 

 Cross-Institutional Validation of Risk Profiles 

Research should also investigate the generalizability of 

model risk profiles across different healthcare 

institutions. Cross-institutional validation will help assess 

whether the findings from this study hold in diverse 

healthcare settings, with varying patient populations, clinical 

practices, and regulatory frameworks. 
 

 Human-in-the-Loop Interventions for Real-World 

Deployment 

Further exploration is needed into the role of human-

in-the-loop (HITL) systems for real-world deployment. 

While this study emphasizes the importance of HITL 

validation, more research is needed to determine the best 

practices for involving clinicians in the decision-making 

process, especially when model outputs are used to inform 

critical clinical decisions. 

 

 Closing Remarks 
The integration of generative models such as LLMs 

into healthcare presents both significant opportunities and 

challenges. While these models hold the potential to 

revolutionize healthcare delivery, their responsible 

use requires rigorous safeguards to protect patient privacy, 

ensure model accuracy, and maintain trust in AI-driven 

clinical decision-making. It is essential that researchers, 

healthcare practitioners, and policymakers work together 

to collaborate across disciplines to develop frameworks and 

practices that ensure the safe deployment of these powerful 

technologies in real-world clinical settings. 
 

As we move forward, continuous innovation, coupled 

with thoughtful regulation and interdisciplinary 

collaboration, will be crucial in fostering the safe and 

effective use of AI in healthcare. The findings and 

recommendations from this study provide a foundation for 

future efforts to maximize the benefits of AI while 

safeguarding the values of privacy, safety, and trust in 

healthcare. 
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