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Abstract: Retrieval-Augmented Generation (RAG) has established itself as the standard for reducing hallucinations in Large
Language Models (LLMs) by grounding generation in external knowledge. However, conventional RAG implementations
rely on static vector stores, limiting their utility in dynamic environments where information evolves rapidly. This reliance
on fixed knowledge bases restricts adaptability and long-term scalability. This paper synthesizes recent literature on RAG
system design, specifically focusing on mechanisms for continuous learning. Building on frameworks by Zheng et al. and
Zhang et al., we analyze architectures that support continuous memory addition, deletion, consolidation, and re-weighting.
These mechanisms transition RAG from static retrieval to incremental learning, mirroring biological memory processes.
Our analysis demonstrates that dynamic memory architectures outperform static systems in adaptability, robustness to
distribution shifts, and long-term retention. We conclude that dynamic memory updating is not merely an optimization but
a fundamental architectural requirement for sustaining lifelong learning in RAG systems.
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L INTRODUCTION rigorous design principles regarding memory management

» Background and Motivation

Despite their fluency, Large Language Models (LLMs)
remain prone to hallucinations and are constrained by the
static nature of their pre-training data. To address this,
Retrieval-Augmented  Generation (RAG) integrates
parametric memory with non-parametric external knowledge
[22].

However, many deployed RAG systems persist in using
static information retrieval pipelines. While these pipelines
minimize the need to update model parameters, they fail to
account for the evolving nature of user needs and real-world
data. As noted by Mohammed [14] and Fan et al. [13], static
systems suffer from knowledge staleness, domain drift, and
the accumulation of redundant content. This degradation over
time erodes the initial advantages of the RAG architecture.

The integration of LLMs into continuous
applications—such as autonomous agents and personalized
assistants—exacerbates these challenges. These systems
must retrieve accurate information and adapt autonomously
without frequent retraining. Current static architectures are
ill-equipped for this reality, highlighting a critical need for
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and updates.

» The Relevance of RAG and Dynamic Memory

Lifelong learning requires systems to acquire, store, and
refine knowledge perpetually within non-stationary
environments. For RAG systems to achieve this, memory
components must adapt to incoming data. Jiang et al. [2] and
Zheng et al. [8] argue that static memory fundamentally
contradicts continual learning principles by assuming a
closed-world knowledge distribution.

Dynamic memory in RAG redefines external
knowledge repositories as active, mutable components rather
than permanent archives. This involves mechanisms for
adding, updating, and re-sequencing structures to reflect
revised information. By leveraging temporal dynamics,
systems can prioritize recent or frequently accessed data
while pruning obsolete content.

Furthermore, dynamic memory is essential for self-
regulation in agentic architectures. Liang et al. [9] emphasize
that agents performing multi-step reasoning require memory
that records and updates itself to reflect interaction history.
Similarly, Hu et al. [12] posit that without flexible, adaptive
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memory, agents are restricted to reactive behaviors and
cannot achieve true autonomy.

» Current Knowledge and Gaps

Prior research has largely prioritized retrieval quality,
focusing on embedding models, re-ranking, and query
reformulation. While studies by Mao et al. [10] and Jeong et
al. [16] demonstrate improvements in document merging and
generation fusion, they often overlook the necessity of
mutable memory systems.

Consequently, the evolution of memory structures
remains under-explored. Engineering approaches often
bypass critical questions regarding update frequency,
retention policies, and the stability-plasticity dilemma. Zhang
et al. [7] identify a lack of unifying principles for memory
updates in RAG, noting that existing solutions are fragmented
across disparate domains. Gruia and lonescu [19] further
argue that this fragmentation hinders meaningful comparison
and long-term system reasoning.

» Purpose and Objectives

This research addresses these gaps by analyzing
dynamic memory updating mechanisms in RAG systems. We
aim to map the design space of adaptive architectures,
moving beyond single-algorithm evaluations to a broader
conceptual analysis. Specifically, we assess techniques for
memory addition, updating, consolidation, and elimination.

Our objectives are twofold: first, to critique dynamic
updating systems in recent literature, identifying their
architectural strengths and assumptions; and second, to
synthesize these findings into foundational design principles
for scalable, enduring RAG systems, drawing on the
roadmaps proposed by Zheng et al. [3] and Lei et al. [15].

II. METHODOLOGY

» Research Design

We employ a qualitative meta-analysis and architectural
comparison to evaluate dynamic memory mechanisms.
Rather than benchmarking a single model, we synthesize
insights across the literature to identify emerging best
practices and conceptual frameworks. This approach aligns
with methodologies used in recent surveys on memory and
RAG [25, 8], bridging the systemic gap between retrieval,
generation, and continual learning.

» Selection Criteria

We filtered the literature based on scope, relevance, and
recency, focusing primarily on works published between
2023 and 2025—the period marking significant
advancements in RAG and agentic systems. We included
peer-reviewed publications (e.g., EMNLP, ACL, SIGIR) and
high-impact preprints.

Selected works address one of three core themes: (i)
RAG system design, (ii) memory mechanisms in LLMs, or
(iii) continual learning in neural systems. We excluded
studies focused solely on static retrieval optimization,
ensuring our analysis remains centered on memory evolution.
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» Analysis Framework
To systematize our review, we utilized an analytical
framework based on three dimensions [4, 20]:

e Memory Persistence: The duration of information
retention and the presence of explicit forgetting
mechanisms.

e Update Frequency: How often memory is modified (e.g.,
batch vs. real-time).

e Integration Depth: The degree to which memory
influences the broader RAG pipeline.

II1. LITERATURE REVIEW

» From Static to Memory-Augmented RAG

Early RAG architectures were designed to mitigate
knowledge cutoffs using static vector stores [22]. While
effective for fixed domains, these models oversimplify
knowledge distribution. As Mohammed [14] observes, static
stores inevitably accumulate noise and stale data, degrading
retrieval precision.

Memory-augmented RAG represents a paradigm shift,
treating external knowledge as an adaptive resource.
Research in this vein prioritizes the lifecycle of knowledge—
encoding, retention, and elimination—transforming retrieval
from a passive lookup into an active cognitive process.

» Foundations of Continual Learning

Dynamic RAG draws heavily from continual learning
principles. Jiang et al. [2] identify the stability-plasticity
paradox and memory consolidation as central challenges.
Wang et al.'s Lifespan Cognitive Systems framework [11] is
particularly relevant, suggesting that intelligent systems must
integrate perception and memory over extended timescales.

» Dynamic Memory Architectures

Technical implementations of dynamic memory vary.
Gutiérrez et al. [S5] propose adaptive stores that refresh
content based on usage and relevance decay. Qin et al. [4]
demonstrate that selective retention of frequently accessed
items improves robustness during distribution shifts.

More advanced architectures introduce hierarchy.
Memorage [18] distinguishes between local (task-specific)
and global (long-term) memory, while Comorag [20]
integrates this hierarchy with reasoning control. These
designs balance short-term flexibility with long-term
stability.

» Agent-Centric Models

In autonomous agents, memory supports planning and
reflection. Liang et al. [9] introduce agents with reflective
memory logs, while Hu et al. [12] argue that self-updating
memory is a prerequisite for autonomy. In robotics, systems
like RoboMemory [15] demonstrate how memory updates
allow agents to adapt to physical environments without
retraining [1].
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» Multimodal and Domain Extensions

Recent work extends dynamic RAG to new domains.
Multi-RAG [21] integrates video and image retrieval,
addressing spatio-temporal challenges. In industrial settings,
Choi and Jeong [24] and Shan [17] emphasize the necessity
of real-time memory updates to maintain safety and
operational efficiency.

» Problem Statement

While RAG is pivotal for grounding LLMs, operational
implementations largely rely on static vector stores. This
creates a "memory problem": systems cannot learn or adapt
in fluid environments. Static memories enforce a closed
knowledge distribution [7, 13], leading to performance
degradation due to concept drift [14].

The core issue is the failure to integrate lifelong
learning principles into RAG design. Without mechanisms
for adaptive memory, selective forgetting, and incremental
integration, systems cannot achieve true autonomy.
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Iv. RESULTS

» Key Observations
Our analysis confirms distinct advantages for memory-
evolving architectures.

Improved Task Adaptation Dynamic systems
demonstrate superior adaptation to new tasks and data
distributions. Qin et al. [4] and Long et al. [1] show that
unlike static systems, which degrade under drift, dynamic
architectures maintain performance by updating retrieval
relevance.

Mitigation of Catastrophic Forgetting Gutiérrez et al.
[5] highlight the efficacy of "memory refreshing" and
"selective forgetting." These strategies prevent information
overload, whereas static systems suffer from "retrieval
forgetting" due to accumulated noise.

» Comparative Summary

Table 1 Comparative Summary

Memory Type Update Strategy Adaptability Forgetting Resistance
Static Vector Store Offline embedding; periodic re- Low (degrades under Low (retrieval noise accumulates)
indexing domain shift)
Dynamic Flat Memory | Online insertion and selective Medium (adapts to new Medium (partial retention via re-
refresh data) weighting)
Hierarchical Memory Multi-level (local + global) High (supports task/domain High (separation of short/long-
updates shifts) term)
Cognitive / Agent Event-driven, reflective updates | Very High (context-aware) | High (consolidation via reflection)
Memory

» Performance Metrics

Quantitative evidence supports these architectural
shifts. Qin et al. [4] report a 10-18% improvement in
retention on continual learning benchmarks with dynamic
updating. Conversely, Fan et al. [13] observe significant
performance drops in static systems. In long-horizon
evaluations, Gutiérrez et al. [S] note that retrieval error grows
by 30% in systems lacking memory updates.

V. LIMITATIONS

Despite these findings, dynamic RAG faces practical
constraints. Much of the evidence is derived from highly
regulated  environments  [3], potentially limiting
generalizability. Furthermore, dynamic updates introduce
computational overhead. As Mohammed [14] warns, frequent
pruning and re-indexing can increase latency. Finally, the
field lacks unified standards for measuring memory behavior
[6], resulting in fragmented evaluation metrics.

VI DISCUSSION

» Interpretation of Findings

The data suggests that update frequency and quality
outweigh raw memory size. Large, static memories often
dilute relevance with noise. In contrast, frequent, selective
updates improve the signal-to-noise ratio [4]. Wang et al. [20]
further demonstrate that frequent updates deepen system
integration, capturing transient context more effectively.
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» Comparison with Prior Studies

Our results validate Wang et al.'s Lifespan Cognitive
Systems Theory [11], which posits that adaptive systems must
revise rather than merely accumulate memory. This contrasts
with earlier works [16, 10] that optimized retrieval algorithms
while assuming static memory structures.

» Discrepancies

Interestingly, some dynamic systems underperform
static baselines in short-term tasks. Fan et al. [13] and Shan
[17] attribute this to instability caused by overly aggressive
update frequencies, which can induce transient accuracy
drops.

» Implications

For autonomous agents, flexible memory is a non-
negotiable requirement for autonomy [12]. In enterprise Al,
static RAG poses operational risks by surfacing outdated
organizational knowledge [23].

VIIL CONCLUSION

This review underscores the necessity of dynamic
memory updating in RAG frameworks. The static vector store
model, while useful for establishing baselines, is insufficient
for lifelong learning. To achieve resilience against
distributional shift and knowledge obsolescence, RAG
systems must adopt dynamic, hierarchical memory
architectures. We recommend that future research focuses on
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establishing

standardized benchmarks and evaluation

procedures to operationalize these concepts [19, 25].
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