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Abstract: Retrieval-Augmented Generation (RAG) has established itself as the standard for reducing hallucinations in Large 

Language Models (LLMs) by grounding generation in external knowledge. However, conventional RAG implementations 

rely on static vector stores, limiting their utility in dynamic environments where information evolves rapidly. This reliance 

on fixed knowledge bases restricts adaptability and long-term scalability. This paper synthesizes recent literature on RAG 

system design, specifically focusing on mechanisms for continuous learning. Building on frameworks by Zheng et al. and 

Zhang et al., we analyze architectures that support continuous memory addition, deletion, consolidation, and re-weighting. 

These mechanisms transition RAG from static retrieval to incremental learning, mirroring biological memory processes. 

Our analysis demonstrates that dynamic memory architectures outperform static systems in adaptability, robustness to 

distribution shifts, and long-term retention. We conclude that dynamic memory updating is not merely an optimization but 

a fundamental architectural requirement for sustaining lifelong learning in RAG systems. 
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I. INTRODUCTION 

 

 Background and Motivation 

Despite their fluency, Large Language Models (LLMs) 

remain prone to hallucinations and are constrained by the 

static nature of their pre-training data. To address this, 

Retrieval-Augmented Generation (RAG) integrates 
parametric memory with non-parametric external knowledge 

[22]. 

 

However, many deployed RAG systems persist in using 

static information retrieval pipelines. While these pipelines 

minimize the need to update model parameters, they fail to 

account for the evolving nature of user needs and real-world 

data. As noted by Mohammed [14] and Fan et al. [13], static 

systems suffer from knowledge staleness, domain drift, and 

the accumulation of redundant content. This degradation over 

time erodes the initial advantages of the RAG architecture. 
 

The integration of LLMs into continuous 

applications—such as autonomous agents and personalized 

assistants—exacerbates these challenges. These systems 

must retrieve accurate information and adapt autonomously 

without frequent retraining. Current static architectures are 

ill-equipped for this reality, highlighting a critical need for 

rigorous design principles regarding memory management 

and updates. 

 

 The Relevance of RAG and Dynamic Memory 

Lifelong learning requires systems to acquire, store, and 

refine knowledge perpetually within non-stationary 

environments. For RAG systems to achieve this, memory 
components must adapt to incoming data. Jiang et al. [2] and 

Zheng et al. [8] argue that static memory fundamentally 

contradicts continual learning principles by assuming a 

closed-world knowledge distribution. 

 

Dynamic memory in RAG redefines external 

knowledge repositories as active, mutable components rather 

than permanent archives. This involves mechanisms for 

adding, updating, and re-sequencing structures to reflect 

revised information. By leveraging temporal dynamics, 

systems can prioritize recent or frequently accessed data 
while pruning obsolete content. 

 

Furthermore, dynamic memory is essential for self-

regulation in agentic architectures. Liang et al. [9] emphasize 

that agents performing multi-step reasoning require memory 

that records and updates itself to reflect interaction history. 

Similarly, Hu et al. [12] posit that without flexible, adaptive 
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memory, agents are restricted to reactive behaviors and 
cannot achieve true autonomy. 

 

 Current Knowledge and Gaps 

Prior research has largely prioritized retrieval quality, 

focusing on embedding models, re-ranking, and query 

reformulation. While studies by Mao et al. [10] and Jeong et 

al. [16] demonstrate improvements in document merging and 

generation fusion, they often overlook the necessity of 

mutable memory systems. 

 

Consequently, the evolution of memory structures 
remains under-explored. Engineering approaches often 

bypass critical questions regarding update frequency, 

retention policies, and the stability-plasticity dilemma. Zhang 

et al. [7] identify a lack of unifying principles for memory 

updates in RAG, noting that existing solutions are fragmented 

across disparate domains. Gruia and Ionescu [19] further 

argue that this fragmentation hinders meaningful comparison 

and long-term system reasoning. 

 

 Purpose and Objectives 

This research addresses these gaps by analyzing 

dynamic memory updating mechanisms in RAG systems. We 
aim to map the design space of adaptive architectures, 

moving beyond single-algorithm evaluations to a broader 

conceptual analysis. Specifically, we assess techniques for 

memory addition, updating, consolidation, and elimination. 

 

Our objectives are twofold: first, to critique dynamic 

updating systems in recent literature, identifying their 

architectural strengths and assumptions; and second, to 

synthesize these findings into foundational design principles 

for scalable, enduring RAG systems, drawing on the 

roadmaps proposed by Zheng et al. [3] and Lei et al. [15]. 
 

II. METHODOLOGY 

 

 Research Design 

We employ a qualitative meta-analysis and architectural 

comparison to evaluate dynamic memory mechanisms. 

Rather than benchmarking a single model, we synthesize 

insights across the literature to identify emerging best 

practices and conceptual frameworks. This approach aligns 

with methodologies used in recent surveys on memory and 

RAG [25, 8], bridging the systemic gap between retrieval, 

generation, and continual learning. 
 

 Selection Criteria 

We filtered the literature based on scope, relevance, and 

recency, focusing primarily on works published between 

2023 and 2025—the period marking significant 

advancements in RAG and agentic systems. We included 

peer-reviewed publications (e.g., EMNLP, ACL, SIGIR) and 

high-impact preprints. 

 

Selected works address one of three core themes: (i) 

RAG system design, (ii) memory mechanisms in LLMs, or 
(iii) continual learning in neural systems. We excluded 

studies focused solely on static retrieval optimization, 

ensuring our analysis remains centered on memory evolution. 

 Analysis Framework 
To systematize our review, we utilized an analytical 

framework based on three dimensions [4, 20]: 

 

 Memory Persistence: The duration of information 

retention and the presence of explicit forgetting 

mechanisms. 

 Update Frequency: How often memory is modified (e.g., 

batch vs. real-time). 

 Integration Depth: The degree to which memory 

influences the broader RAG pipeline. 

 

III. LITERATURE REVIEW 

 

 From Static to Memory-Augmented RAG 

Early RAG architectures were designed to mitigate 

knowledge cutoffs using static vector stores [22]. While 

effective for fixed domains, these models oversimplify 

knowledge distribution. As Mohammed [14] observes, static 

stores inevitably accumulate noise and stale data, degrading 

retrieval precision. 

 

Memory-augmented RAG represents a paradigm shift, 
treating external knowledge as an adaptive resource. 

Research in this vein prioritizes the lifecycle of knowledge—

encoding, retention, and elimination—transforming retrieval 

from a passive lookup into an active cognitive process. 

 

 Foundations of Continual Learning 

Dynamic RAG draws heavily from continual learning 

principles. Jiang et al. [2] identify the stability-plasticity 

paradox and memory consolidation as central challenges. 

Wang et al.'s Lifespan Cognitive Systems framework [11] is 

particularly relevant, suggesting that intelligent systems must 

integrate perception and memory over extended timescales. 
 

 Dynamic Memory Architectures 

Technical implementations of dynamic memory vary. 

Gutiérrez et al. [5] propose adaptive stores that refresh 

content based on usage and relevance decay. Qin et al. [4] 

demonstrate that selective retention of frequently accessed 

items improves robustness during distribution shifts. 

 

More advanced architectures introduce hierarchy. 

Memorage [18] distinguishes between local (task-specific) 

and global (long-term) memory, while Comorag [20] 
integrates this hierarchy with reasoning control. These 

designs balance short-term flexibility with long-term 

stability. 

 

 Agent-Centric Models 

In autonomous agents, memory supports planning and 

reflection. Liang et al. [9] introduce agents with reflective 

memory logs, while Hu et al. [12] argue that self-updating 

memory is a prerequisite for autonomy. In robotics, systems 

like RoboMemory [15] demonstrate how memory updates 

allow agents to adapt to physical environments without 

retraining [1]. 
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 Multimodal and Domain Extensions 
Recent work extends dynamic RAG to new domains. 

Multi-RAG [21] integrates video and image retrieval, 

addressing spatio-temporal challenges. In industrial settings, 

Choi and Jeong [24] and Shan [17] emphasize the necessity 

of real-time memory updates to maintain safety and 

operational efficiency. 

 

 Problem Statement 

While RAG is pivotal for grounding LLMs, operational 

implementations largely rely on static vector stores. This 

creates a "memory problem": systems cannot learn or adapt 
in fluid environments. Static memories enforce a closed 

knowledge distribution [7, 13], leading to performance 

degradation due to concept drift [14]. 

 

The core issue is the failure to integrate lifelong 

learning principles into RAG design. Without mechanisms 

for adaptive memory, selective forgetting, and incremental 

integration, systems cannot achieve true autonomy. 

 

IV. RESULTS 

 

 Key Observations 

Our analysis confirms distinct advantages for memory-

evolving architectures. 

 

Improved Task Adaptation Dynamic systems 

demonstrate superior adaptation to new tasks and data 

distributions. Qin et al. [4] and Long et al. [1] show that 

unlike static systems, which degrade under drift, dynamic 

architectures maintain performance by updating retrieval 

relevance. 
 

Mitigation of Catastrophic Forgetting Gutiérrez et al. 

[5] highlight the efficacy of "memory refreshing" and 

"selective forgetting." These strategies prevent information 

overload, whereas static systems suffer from "retrieval 

forgetting" due to accumulated noise. 

 

 Comparative Summary 

Table 1 Comparative Summary 

Memory Type Update Strategy Adaptability Forgetting Resistance 

Static Vector Store Offline embedding; periodic re-

indexing 

Low (degrades under 

domain shift) 

Low (retrieval noise accumulates) 

Dynamic Flat Memory Online insertion and selective 

refresh 

Medium (adapts to new 

data) 

Medium (partial retention via re-

weighting) 

Hierarchical Memory Multi-level (local + global) 

updates 

High (supports task/domain 

shifts) 

High (separation of short/long-

term) 

Cognitive / Agent 

Memory 

Event-driven, reflective updates Very High (context-aware) High (consolidation via reflection) 

 

 Performance Metrics 

Quantitative evidence supports these architectural 

shifts. Qin et al. [4] report a 10–18% improvement in 

retention on continual learning benchmarks with dynamic 

updating. Conversely, Fan et al. [13] observe significant 

performance drops in static systems. In long-horizon 

evaluations, Gutiérrez et al. [5] note that retrieval error grows 

by 30% in systems lacking memory updates. 

 

V. LIMITATIONS 

 

Despite these findings, dynamic RAG faces practical 

constraints. Much of the evidence is derived from highly 

regulated environments [3], potentially limiting 

generalizability. Furthermore, dynamic updates introduce 

computational overhead. As Mohammed [14] warns, frequent 

pruning and re-indexing can increase latency. Finally, the 

field lacks unified standards for measuring memory behavior 

[6], resulting in fragmented evaluation metrics. 

 

VI. DISCUSSION 

 

 Interpretation of Findings 

The data suggests that update frequency and quality 

outweigh raw memory size. Large, static memories often 

dilute relevance with noise. In contrast, frequent, selective 

updates improve the signal-to-noise ratio [4]. Wang et al. [20] 

further demonstrate that frequent updates deepen system 

integration, capturing transient context more effectively. 

 Comparison with Prior Studies 

Our results validate Wang et al.'s Lifespan Cognitive 

Systems Theory [11], which posits that adaptive systems must 

revise rather than merely accumulate memory. This contrasts 

with earlier works [16, 10] that optimized retrieval algorithms 

while assuming static memory structures. 

 

 Discrepancies 

Interestingly, some dynamic systems underperform 
static baselines in short-term tasks. Fan et al. [13] and Shan 

[17] attribute this to instability caused by overly aggressive 

update frequencies, which can induce transient accuracy 

drops. 

 

 Implications 

For autonomous agents, flexible memory is a non-

negotiable requirement for autonomy [12]. In enterprise AI, 

static RAG poses operational risks by surfacing outdated 

organizational knowledge [23]. 

 

VII. CONCLUSION 

 

This review underscores the necessity of dynamic 

memory updating in RAG frameworks. The static vector store 

model, while useful for establishing baselines, is insufficient 

for lifelong learning. To achieve resilience against 

distributional shift and knowledge obsolescence, RAG 

systems must adopt dynamic, hierarchical memory 

architectures. We recommend that future research focuses on 
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establishing standardized benchmarks and evaluation 
procedures to operationalize these concepts [19, 25]. 
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