Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/26jan1576

Usage of LLM for Generation of UML Class
Diagrams from UML Use-Case Diagrams

Martina Basict; Marko Vujasinovic!

tUniversity of Applied Sciences Aspira
Department of Computer Engineering
Split

Publication Date: 2026/02/07

Abstract: LLMs have become increasingly popular tools for assisting software engineering tasks and specifically with
automating the creation of UML design artefacts from requirements specified in a natural language. This work reports on
the effectiveness of using LLM technologies to perform the translation of UML use-case diagrams into UML class
Diagrams. Such task is traditionally performed by a human and requires both domain understanding and modeling
expertise, however, it can be a tedious and labor-intensive manual task prone to errors during its process. Automated
creation of UML class Diagrams from UML use-case diagrams requires LLMs to identify the domain entities, the
responsibilities of each of those domain entities, and how domain entities relate to each other and therefore creating
unique classes. The evaluation part of the work uses several use-case diagrams of varying levels of complexity to complete
this task. The results showed that LLMs can effectively identify the crucial domain entities and provide class structures,
and to alleviate the modelling efforts. However, there are still issues with the interpretation of ambiguous requirements
and the maintenance of their associated semantics. Overall, LLM technologies are an effective aid to the early-stage
development of UML class Diagrams; however, the final quality of the UML models is very dependent upon the domain

experts that provide further guidance to the LLMs.

Keywords: LLM; UML Class Diagram; UML Use-Case Diagram, Requirements Specification.

How to Cite: Martina Basic; Marko Vujasinovic (2026) Usage of LLM for Generation of UML Class Diagrams from UML
Use-Case Diagrams. International Journal of Innovative Science and Research Technology, 11(1), 3226-3245.

https://doi.org/10.38124/ijisrt/26jan1576
. INTRODUCTION

According to the Object Management Group (2017),
Unified Modeling Language — UML is a standardized visual
language used for modeling, visualizing, specifying,
constructing, modifying and documenting complex software
systems and business processes. UML is used in all phases of
software engineering from specification through design and
implementation to system maintenance. By using UML
diagrams, it is easier to understand the functioning of the
system, to define goals, to plan resources, to improve and
optimize existing systems, and to facilitate the maintenance
and evaluation of the system. Due to its standardization and
ease of understanding, it enables and improves
communication between all the participants in software
design and implementation, from the client to designers,
programmers and testers. In the early stages of software
development, the UML use case diagrams help to define the
requirements expected from the software (these requirements
should be understandable to both the client and the
developer), and then UML classes and relationships between
classes are generated either from it and from the
accompanying textual descriptions in natural language.

NISRT26JAN1576

In software engineering, certain processes in software
development are standardized, and manual modeling
unnecessarily wastes time on models that are already idle,
and reduces the time invested in analyzing more complex
processes. Manual creation of UML diagrams has been
described in the literature as a tedious and time-consuming
process, particularly for large or complex systems (Rouabhia
& Hadjadj, 2024). The need for automation of UML diagram
creation arose, which was realized with the advent of large
language models (LLM, in short). LLMs are advanced
artificial intelligence systems designed to process,
understand, and generate human-like text. LLMs are
beginning to make it easier to create UML diagrams from
user descriptions, saving time (Camara et al., 2023; Al-
Ahmad et al., 2025). Automated creation of UML Class
Diagrams from UML use-case diagrams requires LLMs to
identify the domain entities, the responsibilities of each of
those domain entities, and how domain entities relate to each
other and therefore creating the classes.

The goal of work described in this paper is to use LLM
tooling such as ChatGPT (https://chatgpt.com/) to do
automated creation of UML Class Diagrams from UML use-
case diagrams and then to evaluate and discuss the

WWW.ijisrt.com 3226

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/26jan1576
https://chatgpt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

completeness and correctness of the generated UML class
diagrams. The specific focus is to evaluate if the generated
results match the UML class diagrams obtained by manually
creating diagrams in the modeling tool by a human expert,
then to evaluate if the generated UML class diagrams are
functional for further use and how they can be improved by
giving the additional instructions. The structure of paper is as
follows. In the second chapter the related work is presented.
Chapter 3 and 4 introduce theoretical background and
methodology for the research done. Chapter 5 presents case
studies and experimental work. Chapter 6 provides
discussion of results and finally there is a conclusion.

1. RELATED WORK

Automated generation of UML diagrams has been one
of main topics and challenges in software engineering.
Traditional work on automated UML diagram generation
focuses on natural language processing (NLP) methods that
extract classes, relationships, and design elements from
textual requirements, including also textual description of
UML use-cases. NLP and machine-learning based
frameworks have been proposed to classify sentences and
construct UML class diagrams, leveraging classic text
classification and feature extraction techniques (Zhao et al.,
2021). These approaches demonstrate feasibility but are
constrained by the quality of linguistic analysis and the need
for extensive engineering of extraction rules. In contrary to
that, Large language models (LLMs) has opened new
possibilities for UML model generations and verifications.
Several empirical studies have already demonstrated that
LLMs such as GPT agents can generate UML models from
natural language inputs with varying levels of correctness
and completeness, producing UML textual notations such as
PlantUML and also transforming the models from those
textual notations into visual diagrams (Camara et al., 2023).
Recent research has also evaluated LLM-assisted UML
modeling in educational settings, showing that GPT models
can aid students in producing class, use-case, and sequence
diagrams, though evaluations often focus on syntactic
correctness rather than semantic alignment (Al-Ahmad et al.,
2025). Further, there are more specialized studies about how
LLM systems can specifically generate UML class diagrams
from natural language requirements, introducing
architectures that decompose modeling tasks into subtasks
such as entity extraction and relationship classification (De
Bari et al., 2024; Giannouris & Ananiadou, 2025; Babaalla et
al., 2025). LLMs can enrich UML class diagrams with
interactions diagrams such as UML sequence diagram, also
from natural language requirements (Ferrari et al., 2024).

Despite these advances and related works, according to
our best knowledge, evaluation of completeness and
correctness of transformation from UML use-case diagrams
to class diagrams using LLM tools has not be addressed.
UML use-case diagrams are first diagrams to be created
during early phase of software design and requirements
specification, then usually followed by UML class diagrams.
Our hypothesis, in contrary to other works, are that UML
use-case diagrams, with the assistance of LLM tools, can be
directly used for UML class diagram generation. Our study

NISRT26JAN1576

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1576

empirically evaluates how LLM capabilities can be used to
generate UML class diagrams from UML use-case diagrams,
with respect to desired completeness and correctness.

1. THEORETICAL BACKGROUND

An UML use case diagram belong to the group of the
UML behavioral diagrams. UML use case diagrams are
primarily related to the presentation of the system
functionality from the perspective of end users and other
systems (so called, actors) and their interaction with the
system. This facilitates communication between technical
and non-technical participants in a software development
process, as it allows an abstract and visual presentation of
user requirements without going into technical details. UML
use case diagram has several basic elements, namely actors,
system, use cases and links. The links can be between use
cases and actors, between actors, and between use cases. An
actor is any person or system that uses or communicates with
a system. A use case is an action that an actor or system
needs to perform. The most common link between a use case
and an actor is an association link. Generalization serves to
connect two or more actors or two or more use cases and take
on characteristics from a more abstract artifact. For example,
Person is a generalization of Student, Login Use case is a
generalization of PIN Based Login. «include» and «extend»
are links between use cases used to show how use cases are
related and how behavior is reused or conditionally added.

An UML class diagram is a static and structural
diagram used to visualize the structure of object-oriented
systems. It shows classes, their attributes, operations, and
relationships between classes. There are two basic types of
relationships between classes, namely association and
generalization.

Association shows a relationship between two classes,
for example <hasEnroled> can be relationship between
Student and Course classes. Associations have multiplicities.
Multiplicity can be specified in several ways, by an exact
number, a range of numbers using two dots between pairs of
numbers, or an indefinite number using an asterisk.

Generalization represents inheritance, i.e. when class A
and class B share the same attributes or the same methods.
Further, special types of associations are aggregation and
composition. An aggregation a special form of association
that represents a whole—part relationship, in which the
observed class belongs to a relationship within some other
class, i.e. one class contains others (parts). A part has an
independent lifecycle and may exist separately from the
whole. Composition is similar to aggregation, but denotes a
stronger relationship of whole-part relationship, in which a
part cannot exist without the whole; if the whole is
destroyed, all its parts are destroyed.

Conceptually and from an UML expert perspective, a
first step in generating a UML class diagram from a use case
diagram is a detailed analysis of the use case diagram. The
use case diagram defines the actors who communicate with
the system, i.e. the nouns from the use case diagram most

WWW.ijisrt.com 3227

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

often represent UML classes. The functionalities of the
system are represented by use cases, i.e. verb actions that
refer to methods of the UML classes. In addition to the use
case diagram, there may be additional text descriptions that
represent attributes of the UML classes. Based on the
scenarios from the use case diagram, relationships between
UML classes are defined. Correctly identified and defined
relationships are key to the accuracy and expressiveness of
the UML class diagram.

Large Language Models (LLMs) are advanced artificial
intelligence systems designed to process, understand, and
generate human/natural language-like text. LLMs are based
on deep learning techniques and trained on huge datasets that
typically contain billions of words from various sources such
as websites, books, and articles. The way LLM tools work is
that the user interacts with LLM with natural language
queries in the form of questions, tasks, or descriptions, and
the LLM generates responses in the form of text or code
based on the context and learned patterns. Some of the most
important and well-known LLMs are: OpenAl GPT series,
Anthropic Claude, Meta LLaMA (and Gemma), Google
PaLM/Gemini, and BLOOM.

(AVA METHODOLOGY

In this work, to generate UML class diagrams from
UML use case diagrams, with assistance of an LLM, one of
the most well-known and most widely used LLMs for
generating UML diagrams was chosen - the OpenAl GPT
with ChatGPT chatbot. More specifically, a free version of
GPT-40, an advanced multimodal version that generates text,
understands images and audio, and responds to complex
queries, was used.

As a sample use-case diagram used for experimentation
and evaluation, the process of creating the final thesis at the
Aspira University of Applied Science is used. The process in
described in the beginning of next chapter.

The use-case diagram, as a base for UML class diagram
creation, is created in three ways: (1) by ChatGPT that was
given only an instruction to generate a use-case diagram for
the process of creating the final thesis at the Aspira, without
additional details, (2) by human expert in the UML modeling
software tool and (3) by human expert in the form of text
document.

NISRT26JAN1576

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1576

More precisely, in the first case, ChatGPT was given
the command to create a use case diagram, and then it
generated a textual description of the diagram and the
PlantUML (https://plantuml.com/) code to visualize diagram.
ChatGPT is then instructed to create a class diagram from the
previously described use case diagram, and it generates a
textual description of the class diagram and the PlantUML
code for visualizing the diagram. In addition to specifying a
text command to create a class diagram, it is possible to load
an image of a use case diagram obtained from the PlantUML
code and then issue a command to create a class diagram.

In second case, ChatGPT was given an UML use case
diagram image previously created by a human UML expert,
with a command to ChatGPT to generate an UML class
diagram for the loaded image.

In the third case, ChatGPT is provided with a text
document describing a UML diagram of a use case
previously created by a human UML expert, instructing
ChatGPT to generate a UML class diagram for the loaded
document.

The resulting UML class diagrams were compared with
the loaded use case diagrams and with the UML class
diagrams is generated manually based on the use case
diagrams. Actor from the use case diagrams are compared
with corresponding UML classes, use cases are compared
with the generated methods within classes, and links from the
use case diagrams are compared with the relationships
between classes.

WWW.ijisrt.com 3228

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/26jan1576

UML Class Diagram Generation Using GPT-40
i

k‘} GPT-40
Multimodal Model
(Text, Images, Audio)

Final Thesis Creation Process at Aspira
University of Applied Sciences

=

Three Methods for Generating Use Case Diagrams

m

{20

@ Human Expert

Y ChatGPT

.

(Modeling Tool)
= Text Prompt {

= PlantUML Output 2

S =

(Text Document)

=
——
UML Use Case tool

= UML
‘ Diagram

= UML Diagram
Description

Result Evaluation ’

© Actors to Classes
& Use Cases to Methods

@ Links to Relationships

PlantUML Code ==

H

Result Evaluation

@ Actors to Classes
@& Use Cases to Methods
& Links to Relationships

Fig 1 Methodology Overview Created in ChatGPT

V. CASE STUDY AND EXPERIMENT As stated previously, the use case diagram for creating a final

thesis at Aspira Polytechnic was created by ChatGPT in three

At Aspira University of Applied Science, the process of ways: (1) by giving the command to ChatGPT to create a use

creating the final thesis begins with a student selecting and
submitting a thesis topic, usually in coordination with a
proposed mentor. After the topic is approved by the
academic and administrative office, the student develops the
thesis under the mentor’s supervision. Once completed, the
thesis is submitted for evaluation, reviewed by a committee,
and, if necessary, revised. The process concludes with the
thesis defense and final approval, after which the thesis is
officially archived. It is a medium-complexity system
example and as such representative for the evaluation.

NISRT26JAN1576

www.ijisrt.com

case diagram for creating a final thesis at Aspira Polytechnic,
(2) by uploading an image of the diagram that was created in
the Modelio modeling tool and (3) by uploading text
document with textual description of creating a final thesis at
Aspira Polytechnic.

In first case, after ChatGPT was given the command to
create a use case diagram of the thesis production process at
Aspira Polytechnic, it generated a description of the diagram
and code that is implemented in the PlantUML diagram
generation tool. This process is shown with a UML use case
diagram, visible in Figure 2, that is created by ChatGPT.

3229

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026

International Journal of Innovative Science and Research Technology
ISSN No: -2456-2165

https://doi.org/10.38124/ijisrt/26jan1576

o N N P
_Process Topic Submission
— —

R |
2

H::)F’(ecord Thesis Submissi

P - ——

Student ,’Qﬁ‘a‘irs Offi ce\

-f_j:{ecord Defense Gra de-‘_';-

¢ Select Thesis Top_ig__ P

(:Epprove Thesis Topic
-(;igljlbmit Thesis Top_)

< Supervise Thesis

- I;r_c; vide Feedba_cil_{:"‘-

A

N T —

-:":_,;pprove Thesis for Defens;é'_':]

T GetenaThesiE >
) ’—/’/*——-,_, TEEIS__

< Develop Th esis

<~ Submit Thesis

:::ﬁevi ew Thesi;::' 3

= :

——%uig;'a luate ﬂ\e;ii;‘;:-

PN

Thesis E:on:\mittee\

_Participate in Defenséj;-

Fig 2 UML Use-Case Diagram Created b_yichatGI;'I:

Using ChatGPT, a class diagram was created from the use case diagram (command: create UML class diagram from the use

case diagram). The class diagram is created in two ways by generating the code or directly generating the image in ChatGPT.
Figure generated directly in ChatGPT is provided below.

Student
« studentid: String
« name: String
- email: String
+selectTopic()
+submitProposal()
+writeThesis()
+submitDraft()
+submitFinalThesis()
+defendThesis()
Supervisor 7 Thesis 1 3
— writes supervises
« supervisorld: String - thesisld: String l
- name: String - title: String 1 | ThesisDefense |1 Thesi B=r - S
—- > esisDefense . Thesis Committee
- academicTitle: String - status: String has-» g 4
> - submissionDate: Date - defenseDate: Date - defenseDate: Date | | - committeeld: String
orevnewPropc_bsal() — - grade: int - grade: int | | » evaluateDefense()
»apprpveTop-c() - f f - approveThesis()
+provideFeedback() ThesisDraft |1 _consists of =
- draftVersion: int evaluated by
15 submissionDate: Date
AcademicAdministration | _[PlagiarismReport | » PlagiarismReport Library
- check Requirements() [- similarityPercentage: float ‘ - similarityPercentage: float + archiveThesis()
« perform PlagiarismCheck() < generares1 « result: String = result: String
- scheduleDefense() : :

Fig 3 UML Class Diagram Generated from UML Use-Case Diagram

IJISRT26JAN1576 www.ijisrt.com 3230

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026

ISSN No: -2456-2165

ChatGPT also generated PlantUML code, shown in Listing

below.

@startuml

class Student {
studentld
firstName
lastName
email
studyStatus
selectTopic()
submitTopic()
developThesis()
submitThesis()
defendThesis()

}

class Supervisor {
supervisorld
firstName
lastName
title
approveTopic()
monitorThesis()
giveGuidelines()
approveThesisForDefense()

}

class Topic {
topicld
title
description
status
approve()
reject()

}

class Thesis {
thesisld
title
description
applicationDate

NISRT26JAN1576

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1576

submissionDate
status
changeStatus()

}

class Committee {
committeeld
name
reviewThesis()
evaluateThesis()
participatelnDefense()

}

class Defense {
defenseld
date
location
grade
scheduleDefense()

}

class StudentOffice {
officerld
firstName
lastName
recordTopic()
recordSubmission()
recordGrade()

}

Student "1" -- "1" Topic
Student "1" -- "1" Thesis
Supervisor "1" -- "*" Thesis
Topic "1" -- "1" Supervisor
Thesis "1" -- "1" Defense
Committee "1" -- "*"' Defense

@enduml

UML class diagram generated from code in the PlantUML
tool that was provided by ChatGPT is given in Figure 4.

WWW.ijisrt.com 3231

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/26jan1576

@ Student

studentlid @ StudentOffice
Firsth ame

lastName officerid

email firstName
studyStatus lastMNarme
selectTopic{) recordTopici)
submItTopic() recordSubmission()
developThesis() recordGrade()

submitThesis ()
defendThesis()

1
1
@ Topic

topicild

title
description
status

approwel()
reject()

1?
@ Supenrvisor

supervisorid
firsthd amnme
lasth arnme
title

approwve Topic()
monitorThesis()
giveSGuidelinaes()
approveThesisForDefenseael()

1\)

@ Thesis

thesisid
title
description

status

applicationDate
submissionDate

@ Committee

committesld
narme

rewview T hesis()
evaluateThesis()
participateinDefense()

changeStatus()

1\)

@ Defense

defenseld
date
location
grade

scheduleDefense()

Fig 4 UML Class Diagram G

From the Figure 4, it can be observed that the UML
class diagram that is generated from the code has a
StudentOffice class that is not connected to other diagram
classes, although in the process of the final paper, the student
department communicates with the student because the topic
selection takes place through it. Apart from the unrelated
StudentOffice class, it is evident that there is no connection

enerated from PlantUML of ChatGPT

between the mentor and the thesis committee, and that there
is no connection between the topic and the thesis.

Further instruction was given to ChatGPT - that the
mentor is a member of the committee, that the topic and final
paper should be connected and the StudentOffice and topic
should be connected. The new UML class diagram created is
shown in Figure 5.

NISRT26JAN1576 WWW.ijisrt.com 3232

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/26jan1576

@ Student

studentld
firstMName
lastName
email
studyStatus

selectTopic()
submitTopic()
developThesis()

@ StudentOffice

officerid
firstName
lastName

recordTopic()
recordsubmission()
recordGradel)

submitThesis()
defendThesis() 1 1

1

records

@ Topic
topicld
title
description
status

approwe()
reject()

1

records

@ Supervisor

supervisorid
firstName
lastMName
title

approveTopic()
monitortThesis()
giveGuidelines()

approveTl hesisForDefense()

resultsin records

@ Thesis

thesisid

title

description
applicationDate
submissionDate
status

@ Committes

committeeld
narme

reviewT hesis()
evaluateThesis()
participateilnDefense()

1

changesStatus() 1

+]

@ Defense *

defenseld
date
location
grade

scheduleDefense()

Fig 5 UML Class Diagram Refined~1 by ChatGPT

Then, the instruction was given to optimize the diagram and adapt it to the process of creating the final thesis at the Aspira.
New diagram is shown in Figure 6.

IJISRT26JAN1576 www.ijisrt.com 3233

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026

ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1576

@ Student
-studentlid: int © StudentOffice
= . | ThesisStatus -firstName: String
@TOD‘CStatUS -lastName: String -officerld: int
SUBMITTED IN_PROGRESS -email: String -firstName: String
APPROVED SUBMITTED -studyStatus: StudyStatus -lastName: String
REJECTED RELroED +selectTopic(): void +recordTopic(): void
+submitTopic(): void +recordSubmission(): void
+developThesis(): void +recordGrade(): void
+submitThesis(): void
+defendThesis(): void 1 1
: !
records
© Topic
(@ studystatus -topicld: int
-title: String
ENROLLED -description: String
GRADUATED i -status: TopicStatus
+approve(): void
+reject(): void
1
records
1
@ Supervisor
-supervisorld: int
-firstName: String
-lastName: String
resultsin | _title: String records
+approveTopic(): void
+monitorThesis(): void
+giveGuidelines(): void
+approveThesisForDefense(): void
1 *
@ Thesis
Committee
-thesisid: int ©
-title: String -committeeld: int
-description: String -name: String
-applicationDate: Date +reviewThesis(): void
-:ral)tt:s?gggzgaa a:e +evaluateThesis(): int
: +participateinDefense(): void
+changeStatus(status: ThesisStatus): void 3
1
- .
(©) Defense
-defenseld: int
-date: Date
-location: String
-grade: int
+scheduleDefense(): void

Fig 6 UML Class Diagram Refined~2 by ChatGPT

By continuing the conversation with ChatGPT and repeating the command to create a UML use case diagram for the process
of creating a final thesis at Aspira, the following diagram was generated (Figure 7).

IJISRT26JAN1576 www.ijisrt.com 3234

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026

ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/26jan1576

Head of Study Program™—_|

L

A,

Supervisor |

_

Supervisor Il

N
(]
L

/
Academic Oﬁice\

Fina System

-'_:':Approve Defense Eligibility_'_'_'_'.- _Approve Thesis To;_:_i_;_ > _f_\f_sign Supervisc_:!'_s]

(5 ubmit Thesis Topii:_'_'::,

::éonduct Thesis 5upervi5ion:;-
(Attend Thesis Defense)

/

—.’_':ﬁttend Proposal Semina-_r'__'.,

-;.__'_-i'i_g;vise Thesi_s_'_'_:..

S~

¢ Submit Final Thesis Files

—_— R ~——
T_Supervise Thesis >

< _&Eprove Manuscrig_t_)

“Conduct Thesis Defense)

T~

N (_Assess and Request Revision s)

(Schedule Thesis Defense _

_ Evaluate Proposal

— ::'Schedule Proposal Seminar:__'.-

(Verify Academic Requirements

¢ Plagiarism Check

i".lssue Library Clearance)

_Archive Final Thesis

Exémiher

—

M

Library Sffstem

Fig 7 UML Use-Case Diagram by ChatGPT, Specific to Aspira

From UML use-case shown in Figure 7, by giving an command: create UML class diagram from the use case diagram, an
UML class diagram was created by ChatGPT and it is shown in Figure 8.

IJISRT26JAN1576

www.ijisrt.com 3235

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/26jan1576

Final Thesis System - Class Diagram (Aspira Polytechnic)
@ HeadOfStudyProgram
headid "
name
approveThesisTopic()
assignSupervisors()
approveDefenseEligibility()
(©) student
Studentid , .
L © b © LibrarySystem
Etr:t?JTm supervisord systemid
name Y
submitThesisTopic() role plagiarismCheck()
attendProposalSeminar() . . archiveFinalThesis()
reviseThesis() ;upf[:‘:rﬁgrl:fsﬂi’ {) issueLibraryClearance()
submitManuscript() RS P
submitFinalThesisFiles()
atte ndThesisDefense()
1
approves archives |ssues
© Thesis © Examiner © AcademicOffice
' LibraryClearance
- thesisld ﬁ:?nn;merld officeld u
sUomits title 2 clearanceld
status evaluateProposal() ;::ggﬂ::%‘;?:;g:ﬂg&?m issueDate
conductThesisDefense() i "
updateStatus(}. assessAndRequesthevisons() verifyAcademicRequirements()
evaluates \conducts schedules erifies
©Thesi5T0pit @ Manuscript @ Proposal @Thesisnefense @ T
topicld manuscriptld proposalld defenseld .
tte version submissionDate| | date ;Sﬁﬁgfi”‘e"”“
approvalStatus approvalStatus status result

Fig 8 UML class diagram generated by ChatGPT, from use case in figure 7

Another experiment was to upload an image of the use case diagram into ChatGPT which was created in modeling tool

Modelio by expert. This input is shown in Figure 9.

IJISRT26JAN1576

www.ijisrt.com

3236

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/26jan1576

/7 Sunittesisto -
/\ studentservee i S T P
J \\,._ S // (hoose co-mentor \‘\\ / Organlze thessis ‘\“ . /_.---" . "--._x\
! ey ‘\ ‘ \ defense /] J /ﬂ NO"fyswdem \\‘.
— PN J/ \ S \ T dotthess)
Student /" Choase toic , 7 — —_ | . Subrission_~
hspira - A
Univkriy ot /" loste certfcate of tudent
P g P | completedstudes | Senceat
// Choose mentor '\\ l,/" Create thesis “\\ ‘ i
| stucture/
\ +Chocsecomenr /__:3\.___ Iy
\'». /f A — P
\-.___ _.--"" /'. - N . '\.\
T * Check plagiarism
o e o (Py \‘:I
/ Wietess N\~ /" Reditewe AN /
[|y j -
\\\ z/‘ sl \\ J
/’/Corrmunicale with \\\ <<|ndud§> /'_‘ ~.
\ mentor | /" Revisethesis
\\ ,/ |
e A \\\ / .
— —— g e Ve] .,
_ /" Provide comments
[hosherstdents /" Reattesi \’(ontresis |
‘\\ questions , /3' ‘\\ , /:' <nuges> \ S/
: e | - .
/" 7 Provide \\\. / P // Evaluate writien \
ahies o instetionsfor)) ———/ Euutethess | gt
T 0 thesiswitng T \ BTN
/ Commnicsewith oy - \. /. —
‘ ‘l e “'\. —r——
\\ stdent / Thesis Committee at Aspira R ~.
- 7 o University <<|ndude;‘r“}/’ Evalouate thesis \
. \ i |
//I Definethesis P \ e J/
| assgment /P -
- - / /’/ pppmve thesis \\\ ‘\\ thesis defense /-‘
\ topic | S e P
/ N\ y, — e/ Bekouestions
— |)
\ \\‘ i/
- P
Mentor at Aspira
University
Fig 9 UML Use-Case Diagram Created by Expert
From the image of the use case diagram (Figure 9), a UML class diagram was generated in ChatGPT (Figure 10).
3237

NISRT26JAN1576

www.ijisrt.com

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576
@Person
personld
name
email
. . . © Student
@ Mentor @Thesmtommlttee ©5tudent59rwce
academicTitle committeeld serviceld zmgeg::nd ram
department decision name statlfs 9
1
1 1
supervises evaluates [manages writes receives
0.* 1
© 0.1
Thesis
Certificate
thesisld @
title certificateld chooses
status 1 issueDate
submissionDate
1
1 1
©ThesisDefense © Evaluation @Comment ©ThesisTopir:
defenseld evaluationid topicld
date writtenScore Egnmtgﬁni"tld title
location presentationScore date description
result finalGrade approved

Fig 10 UML Class Diagram Created by ChatGPT from Figure 9

By providing instructions that the attribute visibility is -studyProgram : String
missing, that the mentor is a member of the Thesis)
Committee and that the StudentService and ThesisCommitte -status : String}

are Person, ChatGPT generated PlantUML code, shown in

Listing 2. class Mentor {

-academicTitle : String
@startuml)
-department : String}
skinparam classAttributelconSize 0

class StudentService {
class Person {

-serviceld : int
-personld : int)]
-officeName : String}
-name : String))
class ThesisCommittee {
-email : String}

-committeeld : int

-decision : String}
class Student {

class Thesis {
-studentld : int

NISRT26JAN1576 WWW.ijisrt.com 3238

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026

ISSN No: -2456-2165

-thesisld : int
-title : String
-status : String
-submissionDate : Date}
class ThesisTopic {
-topicld : int
-title : String
-description : String
-approved : boolean}
class ThesisDefense {
-defenseld : int
-date : Date
-location : String
-result : String}
class Evaluation {
-evaluationld : int
-writtenScore : int
-presentationScore : int
-finalGrade : int}
class Comment {
-commentld : int
-content : String
-date : Date}

class Certificate {

NISRT26JAN1576

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1576

-certificateld : int

-issueDate : Date}

' INHERITANCE

Person <|-- Student
Person <|-- Mentor
Person <|-- StudentService

Person <|-- ThesisCommittee

' RELATIONSHIPS

Student "1" -- "1" Thesis : writes

Student "1" -- "1" ThesisTopic : chooses

Mentor "1" -- "0..*" Thesis : supervises

Mentor "1" -- "0..*" ThesisCommittee : member of
Thesis "1" -- "1" ThesisTopic

Thesis "1" -- "1" ThesisDefense

Thesis "1" -- "1" Evaluation

Thesis "1" -- "0..*" Comment

ThesisCommittee "1" -- "0..*" Thesis : evaluates
StudentService "1" -- "0..*" Thesis : manages
Student "1" -- "0..1" Certificate : receives

@enduml

UML class diagram generated from code in the PlantUML
tool that was provided by ChatGPT is given in Figure 11.

WWW.ijisrt.com 3239

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026 International Journal of Innovative Science and Research Technology
ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

@ Persomn

-personld : int
-name : String
-email : String

{C) Mentor
—academicTitle : String

~-department : String

StudentSerwvice

member of -serwviceld : int
—officeMName : String

o..
@Thesis(‘_‘.ommittee @ Student
P 5 A -studentid : int
Superwvises ~-commiitteeld : int manages = A
-decision : String -studyProgram : String
= -status : String

1 1
evaluates writes receives
(o] Lo a
Lo .

@ Thesis

-thesisid : int
-title : String -certificateld : int chooses
-status : String -issueDate : Date
-submissionDate : Date

(C) Certificate

@ThesusDefense @ Evaluation @ o @ ThesisTopic
-defenseld : int —evaluationld : int — -topicld : int

~-date : Date -writtenScore : int :Eg:;r:netntlscirir']nt -title : String
-location : String -presentationScore : int —date - Déte 9 ~-description : String
-result : String -finalGrade : int - —approwved : boolean

Fig 11 UML Class Diagram Created by ChatGPT

Person < FinalThesisCommittee
1 *id: string + readFinalThesis()
+firstheme - string | Mentor + commentFinalThesis()
+ lastName : string + writeFinalThesisAssignment() + evaluateFinalThesis()
+ email : string + provideWritinglnstructions() + approveFinalThesisTopic()
- + answerStudentQuestions() + participatelnDefense()
1 1 !
FinalThesis T
. + topic : string ;
+ assignment : string
Student 1 + sfatus : string
+ studentNumber : string o defens_eDate - date
+ studyProgram : string + grade © integer
+ communicateWithMentor(in p1: string): string g
+ submitThesisToStudentService(in p1: sitring). boolean
+ selectMentor()
+ selectThesisTopic()
+ selectCoMentor() 1
+ writeFinalThesis() -
+ createThesisStructure() StudentService
+ readLiterature() + officialTime - string
* reviseThesis() + organizeFinalThesisDefense(in p1: date): string
1.x 1| + informaStudentAboutSubmissionDeadline()
+ checkPlagiarism()

+ 1ssueCertificateOfCompletion()

Fig 12 UML Class Diagram Created from UML Use Case in Figure 9 Created by Expert

The third experiment was to load a text document with a use case description into ChatGPT. This input is shown in Figure
13.

IJISRT26JAN1576 www.ijisrt.com 3240

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026 International Journal of Innovative Science and Research Technology
ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

Mailings Review View Developer Help Acrobat

= LT v | == 8LA
— 3— i— —_ = | Z
I E] - o Normal No Spacing Head"‘]g " Heading2 |~
Paragraph = Styles
1 l-5-!-1-|-2-|-3-|-4-|-5-|-6-|-?-I-B-I-Q-l-ltl-|-11-|-12-|-13-|-14-|-15-|-16-|13-|-|

The process of writing a final thesis at Aspira Polytechnic involves the student, mentor, final
thesis committee and student services. The student selects a mentor, selects the topic of
the final thesis, communicates with the mentor and writes the final thesis. Optionally, in
addition to selecting a mentor, the student can also select a reviewer. Writing a final thesis
includes creating a thesis structure, reading literature and correcting the thesis according to
the mentor's instructions.

The mentor writes the final thesis assignment and communicates with the student.
Communication with the student includes answering student gquestions and providing
instructions for writing the final thesis. The mentoris a member of the final thesis committee.
The final thesis committee approves the final thesis topic, reads the thesis, evaluates the
thesis and participates in the thesis defense. Reading the thesis includes providing
comments on the thesis. Evaluating the thesis includes evaluating the written thesis and
evaluating the presentation of the thesis. Participation in the final thesis defense includes
asking the student questions.

The student services check for plagiarism, organizes the thesis defense, informs the student
of the deadline for submitting the thesis and issues a certificate of completion. During the
organization of the thesis defense, the student service communicates with the thesis
committee and informs the student about the defense date.

The student, mentor, committee, and student service are individualsvl

Fig 13 Text Document with a Use Case Description Created by Expert

ChatGPT - B Free offer

What's on your mind today?

Aspira_Final Thesis.docx L <]
S
Document

-+ create a UML class diagram from the attached document

o

Fig 14 Uploading Document to ChatGPT and Command to Create UML Class Diagram

From the text document (Figure 13), ChatGPT generated use case diagram (Figure 15).

NISRT26JAN1576 WWW.ijisrt.com 3241

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026 International Journal of Innovative Science and Research Technology
ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

— L WWrine Timnad e sis

-
- e B e

R
/ . _'_._'_'___'_,_,_.—'—'—'_'_ Correct thesis accordiing Do e mor S Do G res

s read 1R ra e e
—— - e -

Create Bhefis Strociure
|I l.'III L Sedech rmenbor
Sl O e e e

e S ke L HNeESiS Do ke

| ! !
| lII T Coamnarnenicat e wwE i eree o
|I /
f !
I 'Il £ Suberat final thaesis
f !
'II —i DeTend Teal thesis
[/
| ! |
I)

T ormETiankca e weith Shueri-eaet

1
e e -
.

Fromriade e ritimg instraectiomns

"-\.___
,..I
i
d—

| | A
|II L P AnSWE T SDdent questions
.
I':[\ e i s e T

Dt el sl e el Ehesis
w

‘?III = i e s
.
\ Prowiche Ehesis oorrm-ervts:
\

lIIIIII | — = Evaluste thesis
Fimal Theesis oo e -

- irchuden

- -
= e gl B b a e s 5 (e o o ol -y

T e Ewaluabe werittem thesis

B i e e R i e

w
i Bt -
-

Sm B Lok T G L e O e
lIIII T Adpproeoens Dieeesiis o
h - - B S = pr e B

- |n-|:luél1= -

.
Braforem SEaedEerl Sl el s rses o &b

o e e B e B i B

v e e elia o o rreesarens

Bouddemn Serwices

———
e
\ PO TTs & Bt S ssiom e aalire

\—‘___\—‘_‘_‘—\——

s saae Certifiec ate o f ol et i e

Fig 15 UML Use Case Diagram Generated by ChatGPT, from Text Document Figure 13

IJISRT26JAN1576 www.ijisrt.com 3242

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/26jan1576

UML class diagram generated from code in the PlantUML tool that was provided by ChatGPT is given in Figure 15.

@ Individual

firstName
lastName
email

© Mentor

+writeThesisAssignment()
+answerQuestions()
+ providelnstructions()

title

4 reviews \\ mentors
o..

topic
status
structure

o..*
» has
1

(©) Evaluation

writtenThesisGrade
presentationGrade

1

name

» consists of

© CommitteeMember
role

+approveThesisTopic()
+readThesis()
+evaluateThesis()
+askQuestions()

/AN

+checkPlagiarism()
+organizeDefense()
+informSubmissionDeadline()
+issueCertificate()

(©) FinalThesis

+createStructure()
+readlLiterature()
+correctThesis()

1

A evaluates

@Committee

© student

studentid

+selectMentor()
+selectReviewer()
+selectThesisTopic()
+writeFinalThesis()
+submitFinalThesis()
+defendFinalThesis()

(©) studentServicesOfficer

» checks

¥ organizes 4 defended by

A defended at

© Defense

date
location
.

» attended by
1

Fig 16 UML Class Diagram Created from PlantUML Code by ChatGPT

V1. RESULTS AND DISCUSSION

As described in the previous chapter, as a starting point
for creating a use case diagram of the process of creating a
final thesis at Aspira Polytechnic in ChatGPT, three methods
were used: giving a command to ChatGPT to create a use
case diagram, loading an image of the use case diagram
created by a modeler in the modeling tool, and by loading a
text document with a description of the participants and links
in the use case diagram of the process of creating a final
thesis at Aspira Polytechnic. ChatGPT described the obtained
diagrams and generated PlantUML code for diagram
visualization. After receiving the command to create the
class diagram, ChatGPT generated a textual description and
PlantUML code to visualize the diagram as described in the
previous chapter.

NISRT26JAN1576

www.ijisrt.com

ChatGPT was prompted to create a use case diagram to
show the process of creating a final thesis at Aspira
Polytechnic. The result obtained after that command is a
universal use case diagram for creating the final thesis, it is
not specific to Aspira Polytechnic.

From the use case diagram, a class diagram was
generated as an image directly in ChatGPT and as code that
needs to be implemented in the PlantUML program tool. The
image generated by ChatGPT and the diagram obtained in
PlantUML are different.

The generated image shows UML classes from the
Plagiarism process that do not exist in the UML use case
diagram. There is no connection between the Topic/Paper
and the Student that should exist because one student

3243

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

chooses one topic and only one final paper can be generated
from one topic. There is a Library class that does not exist in
the use case diagram. There is also a lack of relationship
between the StudentService and the Student.

In the class diagram generated from the code, the
StudentService class was left unconnected to other classes.
ChatGPT explains this case as follows: "Student service does
not have direct business responsibility over the objects, but it
has a relationship because it performs administrative actions
(records) over them. This is a frequent didactic mistake:
Student service is an actor in the use case diagram, but in the
class diagram it is often not a domain class, but: a system /
service class or an administrative user."

After being instructed to include the student service
class in the diagram, a new diagram was generated. Also, the
diagram did not show that the mentor was a member of the
committee, and the topic and thesis classes were not
interconnected. By receiving these instructions, ChatGPT
corrected the diagram and was then instructed to optimize the
diagram and adapt it to the process of creating a thesis at
Aspira Polytechnic. His response was that he would do so,
but he generated the same diagram. The command was
repeated several times and the result was the same. After
noting that this was not a diagram specific to the processes at
Aspira Polytechnic, ChatGPT wrote: “I understand — thanks
for the clarification. You are right: the previous diagram uses
generic names, not the actual terminology of Aspira
Polytechnic. Below is a class diagram that uses the names
most commonly used in Aspire practice and documentation
(thesis, mentor, committee).” ChatGPT generated the same
diagram again.

In the continuation of the conversation, the order to
create a Use case diagram for the process of creating the final
thesis at Aspira Polytechnic was repeated, and ChatGPT
created a use case diagram that is different from the result
obtained during the first order in the same conversation.
From the generated use case diagram, a class diagram was
created, which is also different from the first class diagram
from the mentioned conversation, but in this diagram, the
class StudentOffice (called AcademicOffice in the diagram)
is connected to another class, and not left disconnected as in
the first example. When repeating orders, it is evident that he
often calls the same participants by different names, e.g.
Aspira Polytechnic or Aspira University. The generated
diagram does not accurately represent all the classes at the
Aspira Polytechnic, and human intervention is required in
order to generate a class diagram that corresponds to the
processes for creating the final thesis in Aspira. By repeating
commands within the same conversation, it is evident that it
gives different results, ChatGPT learns and implements the
acquired knowledge within the same conversation.

By loading an image of a use case diagram created by a
expert into a modeling tool, ChatGPT accurately describes
the image. The image name does not affect the description of
the image content. The created class diagram lacks the
visibility of attributes and the input and output parameters of
operations that were supplemented after the command was

NISRT26JAN1576

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1576

given. In the class diagram that was created, the committee
and the mentor are not connected, although the mentor is a
member of the committee and are connected by a
generalization link in the use case diagram. As an
explanation, ChatGPT states: “generalization in the use case
diagram is not automatically transferred as the same link to
the class diagram.” As in the previous example, the class
diagram generated from the code is not identical to the class
diagram generated as an image directly in ChatGPT.

By comparing the class diagram done by ChatGPT and
a human for the same use case diagram, the difference in the
way the classes are defined is visible. The class diagram
generated by ChatGPT has more classes than the class
diagram created manually by a human in a modeling tool.
While the man showed all the use cases from the use case
diagram as methods in the class diagram, ChatGPT did not
generate methods in classes, but showed them in the form of
classes, for example, the method commenting on the work,
what the committee does, is shown as a class comment. In
the handmade model, the generalization connection from the
use case diagram is also visible in the class diagram, while in
the case of the class diagram generated by ChatGPT it is not
visible at all or is not visible among all entities as in the use
case diagram.

In the third example, the data for creating the use case
diagram in ChatGPT is loaded in the form of a text document
written by a human. ChatGPT correctly interprets the content
of the document, and the only problem in this example was
the extension link. The name of the text document does not
affect the interpretation of the content of the document.
ChatGPT generates the code for the use case diagram from
the description, and then after receiving the command it also
generates the class diagram. He transferred the connection of
generalization from the use case diagram to the classes, for
example, student and mentor are persons. Although there are
more classes than a manually created diagram, in this
example it converts the use cases from the use case diagram
into methods in the class diagram.

The tested examples, the results cannot meet the
specific requirements of individual processes, i.e. they cannot
show the specific process of creating a final thesis at the
Aspira Polytechnic without human intervention.

The question arises whether the acquired knowledge is
implemented within only the same conversation or applied to
other conversations, whether it can generate the same result
for the same command within the same or different
conversations.

VII. CONCLUSION

This research examined the capability of Large
Language Models to automate the transformation of UML
use-case diagrams into UML class diagrams, with a
particular focus on consistency, correctness, and domain
specificity. The results demonstrate that LLMs can almost
successfully identify core domain entities, infer basic class
structures, and significantly reduce the manual effort

WWW.ijisrt.com 3244

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

required during early-stage system modeling. As such, LLMs
represent a valuable support tool for software engineers,
especially in exploratory and preliminary design phases.

However, the findings also reveal important limitations.
The generated class diagrams often exhibited inconsistencies,
omitted or incorrect relationships, and the introduction of
classes not present in the original use-case diagrams.
Ambiguities in requirements were frequently misinterpreted,
and semantic relationships—such as generalizations or
domain-specific constraints—were not reliably preserved
when transitioning from use-case to class diagrams.
Furthermore, repeated prompts within the same or different
conversations produced varying results, highlighting
challenges related to determinism, reproducibility, and the
persistence of learned context.

The case study centered on the thesis creation process
at Aspira Polytechnic further emphasized that LLMs tend to
generate generic, institution-agnostic models unless guided
extensively by domain experts. Even with iterative
prompting, the models struggled to fully adapt diagrams to
specific organizational processes and terminology without
human-expert correction. Differences between diagram
representations generated as images and those produced via
code (e.g., PlantUML) also underscore current limitations in
coherence across output formats.

Overall, while LLM technologies show strong potential
as an assistive mechanism for UML class diagram
generation, they cannot yet replace human expertise in
ensuring semantic accuracy, domain alignment, and
modeling completeness. Human intervention remains
essential to validate, refine, and contextualize the generated
models. Future research should focus on improving
consistency across interactions, enhancing domain
adaptation, and exploring mechanisms for persistent learning
across conversations to increase the reliability of LLM-
assisted software modeling.

REFERENCES

[1]. Object Management Group, 2017. Unified
Modeling Language (UML), version 2.5.1.
https://www.omg.org/spec/UML/2.5.1/About-UML

[2]. Rouabhia, D., & Hadjadj, 1., 2024. Enhancing class
diagram dynamics: A natural language approach
with ChatGPT. arxiv.
https://arxiv.org/abs/2406.11002

[3]. Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K.J.,
Ajagbe, M.A., Chioasca, E.V. and Batista-Navarro,
R.T., 2021. Natural language processing for
requirements engineering: A systematic mapping
study. ACM Computing Surveys (CSUR), 54(3),
pp.1-41.

[4]. Cémara, J., Troya, J., Burguefio, L. and Vallecillo,
A., 2023. On the assessment of generative Al in
modeling tasks: an experience report with
ChatGPT and UML. Software and Systems
Modeling, 22(3), pp.781-793.

NISRT26JAN1576

[5].

[6].

[71.

(8].

[9].

WWW.ijisrt.com

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan1576

Al-Ahmad, B., Alsobeh, A., Meqgdadi, O. and
Shaikh, N., 2025. A Student-Centric Evaluation
Survey to Explore the Impact of LLMs on UML
Modeling. Information, 16(7), p.565.

De Bari, D., Garaccione, G., Coppola, R.,
Torchiano, M. and Ardito, L., 2024, October.
Evaluating large language models in exercises of
uml class diagram modeling. In Proceedings of the
18th ACM/IEEE International Symposium on
Empirical Software Engineering and
Measurement (pp. 393-399).

Giannouris, P. and Ananiadou, S., 2025. NOMAD:
A Multi-Agent LLM System for UML Class
Diagram Generation from Natural Language
Requirements. arXiv preprint arXiv:2511.22409.
Babaalla, Z., Jakimi, A. and Oualla, M., 2025.
LLM-Driven MDA Pipeline for Generating UML
Class Diagrams and Code. IEEE Access.

Ferrari, A., Abualhaija, S. and Arora, C., 2024,
June. Model generation with LLMs: From
requirements to UML sequence diagrams. In 2024
IEEE 32nd International Requirements
Engineering Conference Workshops (REW) (pp.
291-300). IEEE.

3245

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/
https://www.omg.org/spec/UML/2.5.1/About-UML
https://arxiv.org/abs/2406.11002

	I. INTRODUCTION
	II. RELATED WORK
	III. THEORETICAL BACKGROUND
	IV. METHODOLOGY
	V. CASE STUDY AND EXPERIMENT
	VI. RESULTS AND DISCUSSION
	VII. CONCLUSION
	REFERENCES

