
Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3226

Usage of LLM for Generation of UML Class

Diagrams from UML Use-Case Diagrams

Martina Basic1; Marko Vujasinovic1

1University of Applied Sciences Aspira

Department of Computer Engineering

Split

Publication Date: 2026/02/07

Abstract: LLMs have become increasingly popular tools for assisting software engineering tasks and specifically with

automating the creation of UML design artefacts from requirements specified in a natural language. This work reports on

the effectiveness of using LLM technologies to perform the translation of UML use-case diagrams into UML class

Diagrams. Such task is traditionally performed by a human and requires both domain understanding and modeling

expertise, however, it can be a tedious and labor-intensive manual task prone to errors during its process. Automated

creation of UML class Diagrams from UML use-case diagrams requires LLMs to identify the domain entities, the

responsibilities of each of those domain entities, and how domain entities relate to each other and therefore creating

unique classes. The evaluation part of the work uses several use-case diagrams of varying levels of complexity to complete

this task. The results showed that LLMs can effectively identify the crucial domain entities and provide class structures,

and to alleviate the modelling efforts. However, there are still issues with the interpretation of ambiguous requirements

and the maintenance of their associated semantics. Overall, LLM technologies are an effective aid to the early-stage

development of UML class Diagrams; however, the final quality of the UML models is very dependent upon the domain

experts that provide further guidance to the LLMs.

Keywords: LLM; UML Class Diagram; UML Use-Case Diagram, Requirements Specification.

How to Cite: Martina Basic; Marko Vujasinovic (2026) Usage of LLM for Generation of UML Class Diagrams from UML

Use-Case Diagrams. International Journal of Innovative Science and Research Technology, 11(1), 3226-3245.

https://doi.org/10.38124/ijisrt/26jan1576

I. INTRODUCTION

According to the Object Management Group (2017),

Unified Modeling Language – UML is a standardized visual

language used for modeling, visualizing, specifying,

constructing, modifying and documenting complex software

systems and business processes. UML is used in all phases of

software engineering from specification through design and

implementation to system maintenance. By using UML

diagrams, it is easier to understand the functioning of the

system, to define goals, to plan resources, to improve and

optimize existing systems, and to facilitate the maintenance
and evaluation of the system. Due to its standardization and

ease of understanding, it enables and improves

communication between all the participants in software

design and implementation, from the client to designers,

programmers and testers. In the early stages of software

development, the UML use case diagrams help to define the

requirements expected from the software (these requirements

should be understandable to both the client and the

developer), and then UML classes and relationships between

classes are generated either from it and from the

accompanying textual descriptions in natural language.

In software engineering, certain processes in software

development are standardized, and manual modeling

unnecessarily wastes time on models that are already idle,

and reduces the time invested in analyzing more complex

processes. Manual creation of UML diagrams has been

described in the literature as a tedious and time-consuming

process, particularly for large or complex systems (Rouabhia

& Hadjadj, 2024). The need for automation of UML diagram

creation arose, which was realized with the advent of large

language models (LLM, in short). LLMs are advanced

artificial intelligence systems designed to process,

understand, and generate human-like text. LLMs are
beginning to make it easier to create UML diagrams from

user descriptions, saving time (Cámara et al., 2023; Al-

Ahmad et al., 2025). Automated creation of UML Class

Diagrams from UML use-case diagrams requires LLMs to

identify the domain entities, the responsibilities of each of

those domain entities, and how domain entities relate to each

other and therefore creating the classes.

The goal of work described in this paper is to use LLM

tooling such as ChatGPT (https://chatgpt.com/) to do

automated creation of UML Class Diagrams from UML use-
case diagrams and then to evaluate and discuss the

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/26jan1576
https://chatgpt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3227

completeness and correctness of the generated UML class

diagrams. The specific focus is to evaluate if the generated
results match the UML class diagrams obtained by manually

creating diagrams in the modeling tool by a human expert,

then to evaluate if the generated UML class diagrams are

functional for further use and how they can be improved by

giving the additional instructions. The structure of paper is as

follows. In the second chapter the related work is presented.

Chapter 3 and 4 introduce theoretical background and

methodology for the research done. Chapter 5 presents case

studies and experimental work. Chapter 6 provides

discussion of results and finally there is a conclusion.

II. RELATED WORK

Automated generation of UML diagrams has been one

of main topics and challenges in software engineering.

Traditional work on automated UML diagram generation

focuses on natural language processing (NLP) methods that

extract classes, relationships, and design elements from

textual requirements, including also textual description of

UML use-cases. NLP and machine-learning based

frameworks have been proposed to classify sentences and

construct UML class diagrams, leveraging classic text

classification and feature extraction techniques (Zhao et al.,
2021). These approaches demonstrate feasibility but are

constrained by the quality of linguistic analysis and the need

for extensive engineering of extraction rules. In contrary to

that, Large language models (LLMs) has opened new

possibilities for UML model generations and verifications.

Several empirical studies have already demonstrated that

LLMs such as GPT agents can generate UML models from

natural language inputs with varying levels of correctness

and completeness, producing UML textual notations such as

PlantUML and also transforming the models from those

textual notations into visual diagrams (Cámara et al., 2023).
Recent research has also evaluated LLM-assisted UML

modeling in educational settings, showing that GPT models

can aid students in producing class, use-case, and sequence

diagrams, though evaluations often focus on syntactic

correctness rather than semantic alignment (Al-Ahmad et al.,

2025). Further, there are more specialized studies about how

LLM systems can specifically generate UML class diagrams

from natural language requirements, introducing

architectures that decompose modeling tasks into subtasks

such as entity extraction and relationship classification (De

Bari et al., 2024; Giannouris & Ananiadou, 2025; Babaalla et
al., 2025). LLMs can enrich UML class diagrams with

interactions diagrams such as UML sequence diagram, also

from natural language requirements (Ferrari et al., 2024).

Despite these advances and related works, according to

our best knowledge, evaluation of completeness and

correctness of transformation from UML use-case diagrams

to class diagrams using LLM tools has not be addressed.

UML use-case diagrams are first diagrams to be created

during early phase of software design and requirements

specification, then usually followed by UML class diagrams.

Our hypothesis, in contrary to other works, are that UML
use-case diagrams, with the assistance of LLM tools, can be

directly used for UML class diagram generation. Our study

empirically evaluates how LLM capabilities can be used to

generate UML class diagrams from UML use-case diagrams,
with respect to desired completeness and correctness.

III. THEORETICAL BACKGROUND

An UML use case diagram belong to the group of the

UML behavioral diagrams. UML use case diagrams are

primarily related to the presentation of the system

functionality from the perspective of end users and other

systems (so called, actors) and their interaction with the

system. This facilitates communication between technical

and non-technical participants in a software development
process, as it allows an abstract and visual presentation of

user requirements without going into technical details. UML

use case diagram has several basic elements, namely actors,

system, use cases and links. The links can be between use

cases and actors, between actors, and between use cases. An

actor is any person or system that uses or communicates with

a system. A use case is an action that an actor or system

needs to perform. The most common link between a use case

and an actor is an association link. Generalization serves to

connect two or more actors or two or more use cases and take

on characteristics from a more abstract artifact. For example,

Person is a generalization of Student, Login Use case is a
generalization of PIN Based Login. «include» and «extend»

are links between use cases used to show how use cases are

related and how behavior is reused or conditionally added.

An UML class diagram is a static and structural

diagram used to visualize the structure of object-oriented

systems. It shows classes, their attributes, operations, and

relationships between classes. There are two basic types of

relationships between classes, namely association and

generalization.

Association shows a relationship between two classes,

for example <hasEnroled> can be relationship between

Student and Course classes. Associations have multiplicities.

Multiplicity can be specified in several ways, by an exact

number, a range of numbers using two dots between pairs of

numbers, or an indefinite number using an asterisk.

Generalization represents inheritance, i.e. when class A

and class B share the same attributes or the same methods.

Further, special types of associations are aggregation and

composition. An aggregation a special form of association
that represents a whole–part relationship, in which the

observed class belongs to a relationship within some other

class, i.e. one class contains others (parts). A part has an

independent lifecycle and may exist separately from the

whole. Composition is similar to aggregation, but denotes a

stronger relationship of whole-part relationship, in which a

part cannot exist without the whole; if the whole is

destroyed, all its parts are destroyed.

Conceptually and from an UML expert perspective, a

first step in generating a UML class diagram from a use case

diagram is a detailed analysis of the use case diagram. The
use case diagram defines the actors who communicate with

the system, i.e. the nouns from the use case diagram most

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3228

often represent UML classes. The functionalities of the

system are represented by use cases, i.e. verb actions that
refer to methods of the UML classes. In addition to the use

case diagram, there may be additional text descriptions that

represent attributes of the UML classes. Based on the

scenarios from the use case diagram, relationships between

UML classes are defined. Correctly identified and defined

relationships are key to the accuracy and expressiveness of

the UML class diagram.

Large Language Models (LLMs) are advanced artificial

intelligence systems designed to process, understand, and

generate human/natural language-like text. LLMs are based
on deep learning techniques and trained on huge datasets that

typically contain billions of words from various sources such

as websites, books, and articles. The way LLM tools work is

that the user interacts with LLM with natural language

queries in the form of questions, tasks, or descriptions, and

the LLM generates responses in the form of text or code

based on the context and learned patterns. Some of the most

important and well-known LLMs are: OpenAI GPT series,

Anthropic Claude, Meta LLaMA (and Gemma), Google

PaLM/Gemini, and BLOOM.

IV. METHODOLOGY

In this work, to generate UML class diagrams from

UML use case diagrams, with assistance of an LLM, one of

the most well-known and most widely used LLMs for

generating UML diagrams was chosen - the OpenAI GPT

with ChatGPT chatbot. More specifically, a free version of

GPT-4o, an advanced multimodal version that generates text,

understands images and audio, and responds to complex

queries, was used.

As a sample use-case diagram used for experimentation
and evaluation, the process of creating the final thesis at the

Aspira University of Applied Science is used. The process in

described in the beginning of next chapter.

The use-case diagram, as a base for UML class diagram

creation, is created in three ways: (1) by ChatGPT that was

given only an instruction to generate a use-case diagram for

the process of creating the final thesis at the Aspira, without

additional details, (2) by human expert in the UML modeling

software tool and (3) by human expert in the form of text

document.

More precisely, in the first case, ChatGPT was given

the command to create a use case diagram, and then it
generated a textual description of the diagram and the

PlantUML (https://plantuml.com/) code to visualize diagram.

ChatGPT is then instructed to create a class diagram from the

previously described use case diagram, and it generates a

textual description of the class diagram and the PlantUML

code for visualizing the diagram. In addition to specifying a

text command to create a class diagram, it is possible to load

an image of a use case diagram obtained from the PlantUML

code and then issue a command to create a class diagram.

In second case, ChatGPT was given an UML use case
diagram image previously created by a human UML expert,

with a command to ChatGPT to generate an UML class

diagram for the loaded image.

In the third case, ChatGPT is provided with a text

document describing a UML diagram of a use case

previously created by a human UML expert, instructing

ChatGPT to generate a UML class diagram for the loaded

document.

The resulting UML class diagrams were compared with

the loaded use case diagrams and with the UML class
diagrams is generated manually based on the use case

diagrams. Actor from the use case diagrams are compared

with corresponding UML classes, use cases are compared

with the generated methods within classes, and links from the

use case diagrams are compared with the relationships

between classes.

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3229

Fig 1 Methodology Overview Created in ChatGPT

V. CASE STUDY AND EXPERIMENT

At Aspira University of Applied Science, the process of
creating the final thesis begins with a student selecting and

submitting a thesis topic, usually in coordination with a

proposed mentor. After the topic is approved by the

academic and administrative office, the student develops the

thesis under the mentor’s supervision. Once completed, the

thesis is submitted for evaluation, reviewed by a committee,

and, if necessary, revised. The process concludes with the

thesis defense and final approval, after which the thesis is

officially archived. It is a medium-complexity system

example and as such representative for the evaluation.

As stated previously, the use case diagram for creating a final

thesis at Aspira Polytechnic was created by ChatGPT in three

ways: (1) by giving the command to ChatGPT to create a use
case diagram for creating a final thesis at Aspira Polytechnic,

(2) by uploading an image of the diagram that was created in

the Modelio modeling tool and (3) by uploading text

document with textual description of creating a final thesis at

Aspira Polytechnic.

In first case, after ChatGPT was given the command to

create a use case diagram of the thesis production process at

Aspira Polytechnic, it generated a description of the diagram

and code that is implemented in the PlantUML diagram

generation tool. This process is shown with a UML use case

diagram, visible in Figure 2, that is created by ChatGPT.

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3230

Fig 2 UML Use-Case Diagram Created by ChatGPT

Using ChatGPT, a class diagram was created from the use case diagram (command: create UML class diagram from the use

case diagram). The class diagram is created in two ways by generating the code or directly generating the image in ChatGPT.

Figure generated directly in ChatGPT is provided below.

Fig 3 UML Class Diagram Generated from UML Use-Case Diagram

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3231

ChatGPT also generated PlantUML code, shown in Listing

below.

@startuml

class Student {

 studentId

 firstName

 lastName

 email

 studyStatus

 selectTopic()

 submitTopic()

 developThesis()

 submitThesis()

 defendThesis()

}

class Supervisor {

 supervisorId

 firstName

 lastName

 title

 approveTopic()

 monitorThesis()

 giveGuidelines()

 approveThesisForDefense()

}

class Topic {

 topicId

 title

 description

 status

 approve()

 reject()

}

class Thesis {

 thesisId

 title

 description

 applicationDate

 submissionDate

 status

 changeStatus()

}

class Committee {

 committeeId

 name

 reviewThesis()

 evaluateThesis()

 participateInDefense()

}

class Defense {

 defenseId

 date

 location

 grade

 scheduleDefense()

}

class StudentOffice {

 officerId

 firstName

 lastName

 recordTopic()

 recordSubmission()

 recordGrade()

}

Student "1" -- "1" Topic

Student "1" -- "1" Thesis

Supervisor "1" -- "*" Thesis

Topic "1" -- "1" Supervisor

Thesis "1" -- "1" Defense

Committee "1" -- "*" Defense

@enduml

UML class diagram generated from code in the PlantUML

tool that was provided by ChatGPT is given in Figure 4.

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3232

Fig 4 UML Class Diagram Generated from PlantUML of ChatGPT

From the Figure 4, it can be observed that the UML

class diagram that is generated from the code has a

StudentOffice class that is not connected to other diagram

classes, although in the process of the final paper, the student

department communicates with the student because the topic

selection takes place through it. Apart from the unrelated
StudentOffice class, it is evident that there is no connection

between the mentor and the thesis committee, and that there

is no connection between the topic and the thesis.

Further instruction was given to ChatGPT - that the

mentor is a member of the committee, that the topic and final

paper should be connected and the StudentOffice and topic
should be connected. The new UML class diagram created is

shown in Figure 5.

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3233

Fig 5 UML Class Diagram Refined~1 by ChatGPT

Then, the instruction was given to optimize the diagram and adapt it to the process of creating the final thesis at the Aspira.

New diagram is shown in Figure 6.

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3234

Fig 6 UML Class Diagram Refined~2 by ChatGPT

By continuing the conversation with ChatGPT and repeating the command to create a UML use case diagram for the process

of creating a final thesis at Aspira, the following diagram was generated (Figure 7).

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3235

Fig 7 UML Use-Case Diagram by ChatGPT, Specific to Aspira

From UML use-case shown in Figure 7, by giving an command: create UML class diagram from the use case diagram, an

UML class diagram was created by ChatGPT and it is shown in Figure 8.

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3236

Fig 8 UML class diagram generated by ChatGPT, from use case in figure 7

Another experiment was to upload an image of the use case diagram into ChatGPT which was created in modeling tool

Modelio by expert. This input is shown in Figure 9.

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3237

Fig 9 UML Use-Case Diagram Created by Expert

From the image of the use case diagram (Figure 9), a UML class diagram was generated in ChatGPT (Figure 10).

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3238

Fig 10 UML Class Diagram Created by ChatGPT from Figure 9

By providing instructions that the attribute visibility is

missing, that the mentor is a member of the Thesis

Committee and that the StudentService and ThesisCommitte

are Person, ChatGPT generated PlantUML code, shown in

Listing 2.

@startuml

skinparam classAttributeIconSize 0

class Person {

 -personId : int

 -name : String

 -email : String}

class Student {

 -studentId : int

 -studyProgram : String

 -status : String}

class Mentor {

 -academicTitle : String

 -department : String}

class StudentService {

 -serviceId : int

 -officeName : String}

class ThesisCommittee {

 -committeeId : int

 -decision : String}

class Thesis {

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3239

 -thesisId : int

 -title : String

 -status : String

 -submissionDate : Date}

class ThesisTopic {

 -topicId : int

 -title : String

 -description : String

 -approved : boolean}

class ThesisDefense {

 -defenseId : int

 -date : Date

 -location : String

 -result : String}

class Evaluation {

 -evaluationId : int

 -writtenScore : int

 -presentationScore : int

 -finalGrade : int}

class Comment {

 -commentId : int

 -content : String

 -date : Date}

class Certificate {

 -certificateId : int

 -issueDate : Date}

'================ INHERITANCE

================

Person <|-- Student

Person <|-- Mentor

Person <|-- StudentService

Person <|-- ThesisCommittee

'================ RELATIONSHIPS

================

Student "1" -- "1" Thesis : writes

Student "1" -- "1" ThesisTopic : chooses

Mentor "1" -- "0..*" Thesis : supervises

Mentor "1" -- "0..*" ThesisCommittee : member of

Thesis "1" -- "1" ThesisTopic

Thesis "1" -- "1" ThesisDefense

Thesis "1" -- "1" Evaluation

Thesis "1" -- "0..*" Comment

ThesisCommittee "1" -- "0..*" Thesis : evaluates

StudentService "1" -- "0..*" Thesis : manages

Student "1" -- "0..1" Certificate : receives

@enduml

UML class diagram generated from code in the PlantUML

tool that was provided by ChatGPT is given in Figure 11.

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3240

Fig 11 UML Class Diagram Created by ChatGPT

Fig 12 UML Class Diagram Created from UML Use Case in Figure 9 Created by Expert

The third experiment was to load a text document with a use case description into ChatGPT. This input is shown in Figure

13.

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3241

Fig 13 Text Document with a Use Case Description Created by Expert

Fig 14 Uploading Document to ChatGPT and Command to Create UML Class Diagram

From the text document (Figure 13), ChatGPT generated use case diagram (Figure 15).

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3242

Fig 15 UML Use Case Diagram Generated by ChatGPT, from Text Document Figure 13

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3243

UML class diagram generated from code in the PlantUML tool that was provided by ChatGPT is given in Figure 15.

Fig 16 UML Class Diagram Created from PlantUML Code by ChatGPT

VI. RESULTS AND DISCUSSION

As described in the previous chapter, as a starting point

for creating a use case diagram of the process of creating a

final thesis at Aspira Polytechnic in ChatGPT, three methods

were used: giving a command to ChatGPT to create a use
case diagram, loading an image of the use case diagram

created by a modeler in the modeling tool, and by loading a

text document with a description of the participants and links

in the use case diagram of the process of creating a final

thesis at Aspira Polytechnic. ChatGPT described the obtained

diagrams and generated PlantUML code for diagram

visualization. After receiving the command to create the

class diagram, ChatGPT generated a textual description and

PlantUML code to visualize the diagram as described in the

previous chapter.

ChatGPT was prompted to create a use case diagram to

show the process of creating a final thesis at Aspira

Polytechnic. The result obtained after that command is a

universal use case diagram for creating the final thesis, it is

not specific to Aspira Polytechnic.

From the use case diagram, a class diagram was

generated as an image directly in ChatGPT and as code that

needs to be implemented in the PlantUML program tool. The

image generated by ChatGPT and the diagram obtained in

PlantUML are different.

The generated image shows UML classes from the

Plagiarism process that do not exist in the UML use case

diagram. There is no connection between the Topic/Paper

and the Student that should exist because one student

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3244

chooses one topic and only one final paper can be generated

from one topic. There is a Library class that does not exist in
the use case diagram. There is also a lack of relationship

between the StudentService and the Student.

In the class diagram generated from the code, the

StudentService class was left unconnected to other classes.

ChatGPT explains this case as follows: "Student service does

not have direct business responsibility over the objects, but it

has a relationship because it performs administrative actions

(records) over them. This is a frequent didactic mistake:

Student service is an actor in the use case diagram, but in the

class diagram it is often not a domain class, but: a system /
service class or an administrative user."

After being instructed to include the student service

class in the diagram, a new diagram was generated. Also, the

diagram did not show that the mentor was a member of the

committee, and the topic and thesis classes were not

interconnected. By receiving these instructions, ChatGPT

corrected the diagram and was then instructed to optimize the

diagram and adapt it to the process of creating a thesis at

Aspira Polytechnic. His response was that he would do so,

but he generated the same diagram. The command was

repeated several times and the result was the same. After
noting that this was not a diagram specific to the processes at

Aspira Polytechnic, ChatGPT wrote: “I understand — thanks

for the clarification. You are right: the previous diagram uses

generic names, not the actual terminology of Aspira

Polytechnic. Below is a class diagram that uses the names

most commonly used in Aspire practice and documentation

(thesis, mentor, committee).” ChatGPT generated the same

diagram again.

In the continuation of the conversation, the order to

create a Use case diagram for the process of creating the final
thesis at Aspira Polytechnic was repeated, and ChatGPT

created a use case diagram that is different from the result

obtained during the first order in the same conversation.

From the generated use case diagram, a class diagram was

created, which is also different from the first class diagram

from the mentioned conversation, but in this diagram, the

class StudentOffice (called AcademicOffice in the diagram)

is connected to another class, and not left disconnected as in

the first example. When repeating orders, it is evident that he

often calls the same participants by different names, e.g.

Aspira Polytechnic or Aspira University. The generated
diagram does not accurately represent all the classes at the

Aspira Polytechnic, and human intervention is required in

order to generate a class diagram that corresponds to the

processes for creating the final thesis in Aspira. By repeating

commands within the same conversation, it is evident that it

gives different results, ChatGPT learns and implements the

acquired knowledge within the same conversation.

By loading an image of a use case diagram created by a

expert into a modeling tool, ChatGPT accurately describes

the image. The image name does not affect the description of

the image content. The created class diagram lacks the
visibility of attributes and the input and output parameters of

operations that were supplemented after the command was

given. In the class diagram that was created, the committee

and the mentor are not connected, although the mentor is a
member of the committee and are connected by a

generalization link in the use case diagram. As an

explanation, ChatGPT states: “generalization in the use case

diagram is not automatically transferred as the same link to

the class diagram.” As in the previous example, the class

diagram generated from the code is not identical to the class

diagram generated as an image directly in ChatGPT.

By comparing the class diagram done by ChatGPT and

a human for the same use case diagram, the difference in the

way the classes are defined is visible. The class diagram
generated by ChatGPT has more classes than the class

diagram created manually by a human in a modeling tool.

While the man showed all the use cases from the use case

diagram as methods in the class diagram, ChatGPT did not

generate methods in classes, but showed them in the form of

classes, for example, the method commenting on the work,

what the committee does, is shown as a class comment. In

the handmade model, the generalization connection from the

use case diagram is also visible in the class diagram, while in

the case of the class diagram generated by ChatGPT it is not

visible at all or is not visible among all entities as in the use

case diagram.

In the third example, the data for creating the use case

diagram in ChatGPT is loaded in the form of a text document

written by a human. ChatGPT correctly interprets the content

of the document, and the only problem in this example was

the extension link. The name of the text document does not

affect the interpretation of the content of the document.

ChatGPT generates the code for the use case diagram from

the description, and then after receiving the command it also

generates the class diagram. He transferred the connection of

generalization from the use case diagram to the classes, for
example, student and mentor are persons. Although there are

more classes than a manually created diagram, in this

example it converts the use cases from the use case diagram

into methods in the class diagram.

The tested examples, the results cannot meet the

specific requirements of individual processes, i.e. they cannot

show the specific process of creating a final thesis at the

Aspira Polytechnic without human intervention.

The question arises whether the acquired knowledge is
implemented within only the same conversation or applied to

other conversations, whether it can generate the same result

for the same command within the same or different

conversations.

VII. CONCLUSION

This research examined the capability of Large

Language Models to automate the transformation of UML

use-case diagrams into UML class diagrams, with a

particular focus on consistency, correctness, and domain

specificity. The results demonstrate that LLMs can almost
successfully identify core domain entities, infer basic class

structures, and significantly reduce the manual effort

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan1576

IJISRT26JAN1576 www.ijisrt.com 3245

required during early-stage system modeling. As such, LLMs

represent a valuable support tool for software engineers,
especially in exploratory and preliminary design phases.

However, the findings also reveal important limitations.

The generated class diagrams often exhibited inconsistencies,

omitted or incorrect relationships, and the introduction of

classes not present in the original use-case diagrams.

Ambiguities in requirements were frequently misinterpreted,

and semantic relationships—such as generalizations or

domain-specific constraints—were not reliably preserved

when transitioning from use-case to class diagrams.

Furthermore, repeated prompts within the same or different
conversations produced varying results, highlighting

challenges related to determinism, reproducibility, and the

persistence of learned context.

The case study centered on the thesis creation process

at Aspira Polytechnic further emphasized that LLMs tend to

generate generic, institution-agnostic models unless guided

extensively by domain experts. Even with iterative

prompting, the models struggled to fully adapt diagrams to

specific organizational processes and terminology without

human-expert correction. Differences between diagram

representations generated as images and those produced via
code (e.g., PlantUML) also underscore current limitations in

coherence across output formats.

Overall, while LLM technologies show strong potential

as an assistive mechanism for UML class diagram

generation, they cannot yet replace human expertise in

ensuring semantic accuracy, domain alignment, and

modeling completeness. Human intervention remains

essential to validate, refine, and contextualize the generated

models. Future research should focus on improving

consistency across interactions, enhancing domain
adaptation, and exploring mechanisms for persistent learning

across conversations to increase the reliability of LLM-

assisted software modeling.

REFERENCES

[1]. Object Management Group, 2017. Unified

Modeling Language (UML), version 2.5.1.

https://www.omg.org/spec/UML/2.5.1/About-UML

[2]. Rouabhia, D., & Hadjadj, I., 2024. Enhancing class

diagram dynamics: A natural language approach
with ChatGPT. arXiv.

https://arxiv.org/abs/2406.11002

[3]. Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K.J.,

Ajagbe, M.A., Chioasca, E.V. and Batista-Navarro,

R.T., 2021. Natural language processing for

requirements engineering: A systematic mapping

study. ACM Computing Surveys (CSUR), 54(3),

pp.1-41.

[4]. Cámara, J., Troya, J., Burgueño, L. and Vallecillo,

A., 2023. On the assessment of generative AI in

modeling tasks: an experience report with

ChatGPT and UML. Software and Systems
Modeling, 22(3), pp.781-793.

[5]. Al-Ahmad, B., Alsobeh, A., Meqdadi, O. and

Shaikh, N., 2025. A Student-Centric Evaluation
Survey to Explore the Impact of LLMs on UML

Modeling. Information, 16(7), p.565.

[6]. De Bari, D., Garaccione, G., Coppola, R.,

Torchiano, M. and Ardito, L., 2024, October.

Evaluating large language models in exercises of

uml class diagram modeling. In Proceedings of the

18th ACM/IEEE International Symposium on

Empirical Software Engineering and

Measurement (pp. 393-399).

[7]. Giannouris, P. and Ananiadou, S., 2025. NOMAD:

A Multi-Agent LLM System for UML Class
Diagram Generation from Natural Language

Requirements. arXiv preprint arXiv:2511.22409.

[8]. Babaalla, Z., Jakimi, A. and Oualla, M., 2025.

LLM-Driven MDA Pipeline for Generating UML

Class Diagrams and Code. IEEE Access.

[9]. Ferrari, A., Abualhaija, S. and Arora, C., 2024,

June. Model generation with LLMs: From

requirements to UML sequence diagrams. In 2024

IEEE 32nd International Requirements

Engineering Conference Workshops (REW) (pp.

291-300). IEEE.

https://doi.org/10.38124/ijisrt/26jan1576
http://www.ijisrt.com/
https://www.omg.org/spec/UML/2.5.1/About-UML
https://arxiv.org/abs/2406.11002

	I. INTRODUCTION
	II. RELATED WORK
	III. THEORETICAL BACKGROUND
	IV. METHODOLOGY
	V. CASE STUDY AND EXPERIMENT
	VI. RESULTS AND DISCUSSION
	VII. CONCLUSION
	REFERENCES

