

Deep Lung Revolutionizing Pneumonia Detection Using Convolutional Neural Network

Deepa B.¹; Rithvik M.²; Ruben Raj L.³

^{1,2,3}Department of Computer Science and Engineering, Rajalakshmi Engineering College, Thandalam, 602105. Chennai, Tamilnadu, India.

Publication Date: 2026/02/10

Abstract - Deep Lung delivers a next-generation approach for diagnosing pneumonia through CNNs developed with TensorFlow. Pneumonia, being a persistent and potentially hazardous lung infection, requires swift and correct analysis for proper care. Conventional diagnosis uses radiological imaging, which takes time and may lead to inconsistent results due to human interpretation. To address this, Deep Lung utilizes CNNs trained on extensive collections of chest X-rays to autonomously identify pneumonia. Leveraging TensorFlow's dependable platform, the system reaches high levels of sensitivity and specificity, offering rapid clinical support to healthcare workers. This progressive application of deep learning in radiology signals a milestone in diagnostic accuracy, potentially minimizing medical expenses and elevating patient treatment outcomes.

Keywords- Deep Lung, Pneumonia Diagnosis, Convolutional Neural Networks, Cnns, Tensorflow, Chest X-Ray Analysis, Automated Detection, Radiological Imaging, High Sensitivity, High Specificity, Diagnostic Accuracy, Clinical Decision Support, Deep Learning In Healthcare, Medical Image Analysis, Reduced Medical Costs, Improved Patient Outcomes.

How to Cite: Deepa B.; Rithvik M.; Ruben Raj L. (2026) Deep Lung Revolutionizing Pneumonia Detection Using Convolutional Neural Network. *International Journal of Innovative Science and Research Technology*, 11(1), 3409-3418. <https://doi.org/10.38124/ijisrt/26jan1599>

I. INTRODUCTION

Early and accurate identification of pneumonia is fundamental to improving therapeutic responses and reducing disease severity among patients. Although conventional diagnostic practices such as manual radiological assessment continue to support clinical decision-making, they are frequently hindered by human interpretation bias, processing delays, and variability in precision. To counter these limitations, Deep Lung incorporates Convolutional Neural Networks (CNNs) designed to analyze chest X-rays autonomously, delivering consistent and reliable diagnostic outcomes. By processing images through multilayered neural architectures, the system enhances pattern recognition, detects subtle anomalies, and boosts accuracy, thus contributing to faster clinical interventions and improved patient prognosis.

The integration of data science into the healthcare domain significantly accelerates diagnostic innovation. Rooted in statistical modeling, algorithmic processing, and domain-driven analytical design, data science transforms raw radiological datasets into actionable clinical insights. Within this ecosystem, artificial intelligence and deep learning play a transformative role by emulating cognitive reasoning and continuously refining model performance through iterative training cycles. Machine learning algorithms embedded in

Deep Lung enable computers to learn pneumonia indicators directly from data without manual feature programming, supporting high-efficiency workflows. This interdisciplinary merger forms the backbone of the platform, allowing pneumonia detection to transition from manual observation to intelligent automation. Deep Lung serves as a forward-looking solution that aims to redefine pneumonia diagnostics on a global scale by merging cutting-edge computation with medical imaging. The platform's capability to identify pneumonia at its earliest radiological manifestation provides clinicians with crucial lead time for therapeutic planning, ultimately reducing mortality rates and promoting better recovery outcomes. By lowering the dependency on specialist-driven interpretations and offering consistent results across diverse healthcare environments, the system enhances accessibility, particularly in regions with limited medical infrastructure. This advancement not only strengthens physician decision support but also offers renewed hope to patients by making early, accurate detection more achievable and widespread.

II. LITERATURE REVIEW

- In [1] Gaurav Labhane proposes that pneumonia can be detected from pediatric lung X-ray images using CNN models trained on datasets containing both pneumonia and healthy samples to accurately classify the disease.

- In [2] Muhammed Talo proposes a transfer learning-based approach using a customized ResNet-152 model that identifies pneumonia from radiography images with around 97.4% accuracy without manual preprocessing or feature extraction.
- In [3] Nazmus Shakib Shadin proposes an AI-supported chest X-ray assessment technique capable of distinguishing COVID-19 pneumonia, non-COVID pneumonia, and other infections by leveraging machine learning with CT and X-ray datasets.
- In [4] Anand Nayyar proposes a Mask-RCNN framework for automatically detecting infected lung regions and identifying pneumonia more effectively than YOLOv3, UNet, and ResNet, evidenced by higher IoU performance.
- In [5] Sethi et al. propose that although RT-PCR kits were the primary COVID-19 diagnostic method, CNN-based X-ray analysis can act as an alternative classification solution to ease clinical workload while comparing seven pretrained architectures for accuracy results.
- In [6] T. Xia et al. propose an efficient hematologic detection system using YOLOv3 and Darknet-53 to analyze platelet images for COVID-19 symptoms and related blood disorders, offering a faster and more economical option than conventional laboratory tests.
- In [7] Areej A. Wahab Ahmed Musleh proposes applying CNN models inspired by CheXNet to classify COVID-19 infection from Kaggle-sourced chest X-rays, reaching accuracy outcomes close to existing CheXNet benchmarks.
- In [8] Pramit Dutta proposes a multilayer CNN model built on InceptionV3 transfer learning, utilizing ImageNet pretrained weights for extracting robust features and improving detection accuracy for pneumonia and COVID-19.
- In [9] Marwa Fradi proposes a GPU-accelerated CNN segmentation system for identifying COVID-19 infected lung tissue from CT scans using Adam and Adadelta optimizers, demonstrating near-zero mean square error and clinical real-time applicability.
- In [10] Zanear Sh. Ahmed proposes adjusting pretrained CNN architectures through transfer learning to enhance COVID-19 X-ray detection, with the third modified model producing the lowest misclassification rates.
- In [11] Shrinjal Singh proposes a CNN-based detection method using radiography images for quickly recognizing COVID-19 symptoms, achieving approximately 87% accuracy in classification tasks.
- In [12] Ram Murti Rawat et al. propose evaluating various CNN architectures with ImageNet-based transfer learning to determine which structures provide the strongest performance for COVID-19 X-ray classification.
- In [13] Bhukya Jabber proposes a deep neural CNN recommendation system as an alternative to PCR, aiming to reduce misdiagnosis and support doctors with automated lung X-ray assessments.
- In [14] Anuraag Shankar proposes a transfer learning model for chest X-ray classification with two approaches: binary classification (COVID vs non-COVID) and multi-class (COVID, healthy, pneumonia), both achieving promising detection efficiency.

- In [15] Mohit Mishra proposes a two-phase AI diagnostic pipeline where the first stage detects pneumonia from X-rays and the second identifies whether the pneumonia case is COVID-19 positive or negative, thereby improving diagnostic precision.

III. EXISTING SYSTEM

Childhood mortality is heavily impacted by pneumonia. Immediate and correct diagnosis can reduce fatalities, primarily in low-resource settings where pneumonia deaths are most prevalent. Symptom-based evaluation alone often leads to an excessive number of false positives, indicating the importance of quick supporting diagnostic tools. Cough, a common feature of respiratory conditions, carries acoustic information that reflects the physiological disruptions caused by infections. This research introduces an automated pipeline for analyzing cough audio and differentiating pneumonia from other respiratory illnesses. The process performs denoising, segmentation, and classification using techniques like multi-conditional spectral mapping and MLP architecture. Denoised audio undergoes segmentation, followed by feature extraction through handcrafted metrics and pretrained deep embeddings, then classification using a multilayer perceptron. Tested on 173 samples, the average SNR rises by 44%, segmentation yields 91% sensitivity and 86% specificity, and pneumonia detection attains 82% sensitivity and 71% specificity, showing promise for smartphone-based rapid diagnosis. Performance may differ by region, patient age, and general cough sound variability. Reliable detection requires clean recordings, which may not always be achievable in crowded or low-tech conditions. Equipment, training, and maintenance costs may slow deployment in less developed regions.

IV. PROPOSED SYSTEM

The “Deep Lung” system is designed to advance pneumonia recognition using TensorFlow-powered CNNs integrated into Django. As pneumonia is widespread and demands immediate, dependable analysis, the system utilizes CNNs to capture subtle imaging differences in chest X-rays and assign classifications accordingly. The images undergo preprocessing to strengthen meaningful visual markers before being fed into the CNN. Django ensures a secure portal where clinicians can upload scans, observe conclusions, and retrieve previous patient records. This strategy ensures quick processing, scalability for hospital operations, and dependable diagnostic workflow, supporting better care strategies. CNN interpretation of imaging pattern minimizes diagnostic mistakes. Automated assessment accelerates decision-making timeframes for physicians. Django enables straightforward usage, decreasing training and adjustment efforts. The platform efficiently manages higher traffic and data quantities without system failure. Timely and precise screening encourages early treatment, reducing complications and enhancing patient prognosis.

V. METHODOLOGY

The Deep Lung initiative establishes a CNN-driven diagnostic infrastructure intended to optimize pneumonia identification through high-resolution radiological image analysis. Unlike traditional diagnostic pathways that rely heavily on manual radiographic interpretation, Deep Lung automates complex feature extraction processes to detect subtle patterns—such as ground-glass opacities, infiltrates, and consolidation—that indicate early pneumonia onset. This integration of CNNs into clinical imaging promotes diagnostic consistency, significantly reducing the risk of human error due to fatigue or interpretation bias. Medical

imaging modalities including chest X-rays and CT scans are processed through a standardized preprocessing pipeline that conducts noise removal, normalization, and contrast enhancement. These steps enhance feature clarity before the CNN model engages in layered pattern recognition and classification. The primary objective is not only to accelerate the diagnostic process but also to strengthen decision-making reliability, thereby increasing the probability of timely treatment intervention and improved patient survival outcomes. Overall, the system supports physicians by functioning as an intelligent assistant capable of generating evidence-supported outcomes in real time.

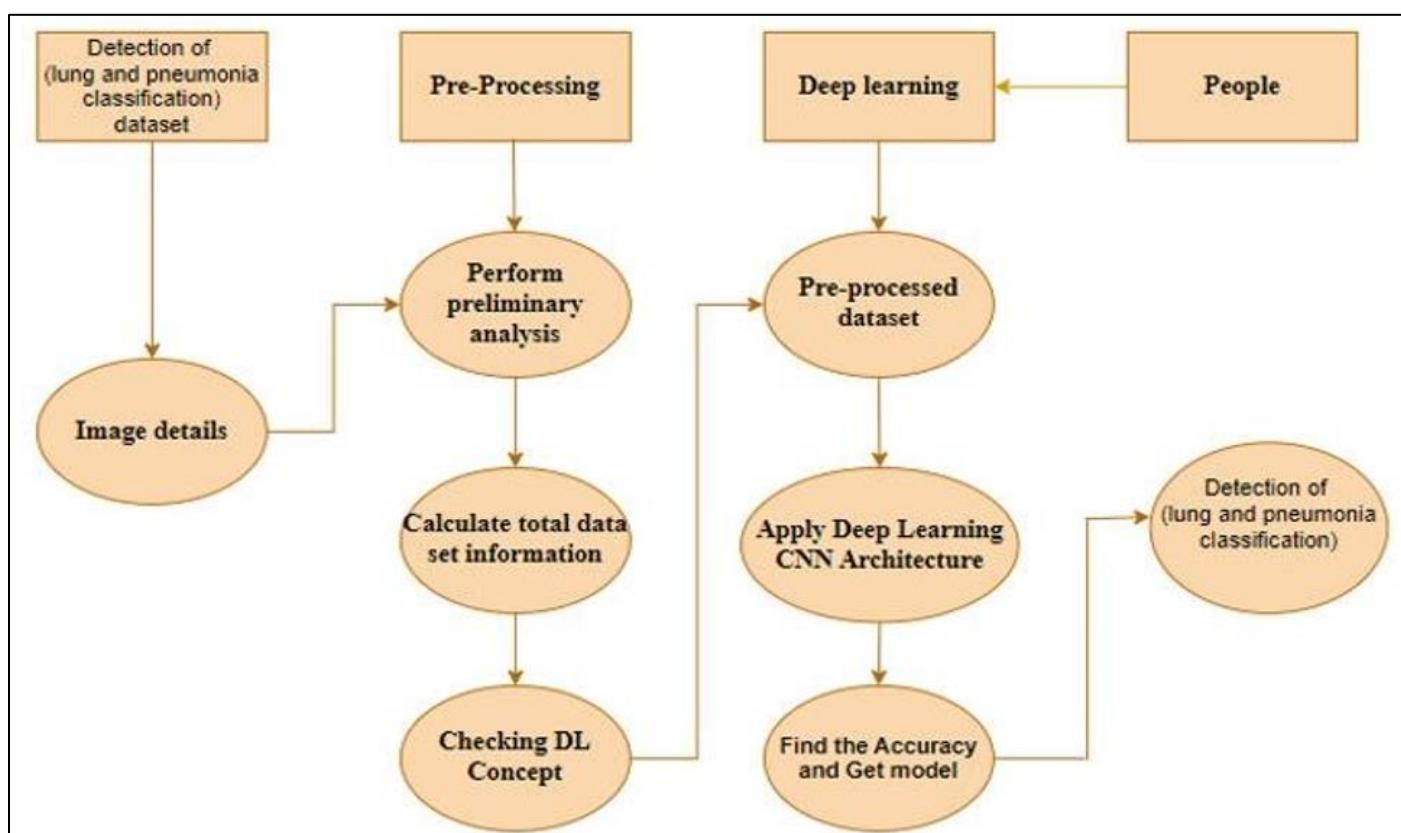


Fig 1 System Architecture

The research development titled “Deep Lung: Advancing Pneumonia Recognition with CNN-Based Imaging” introduces a methodology designed to surpass the constraints of existing approaches by leveraging deep-learning architectures. The core CNN framework operates through convolutional layers that extract low- to high-level features, pooling layers that down-sample spatial dimensions, and fully connected layers responsible for class interpretation. To improve generalization, strategies such as dropout regularization, data augmentation, and hyperparameter optimization are integrated systematically during training. The dataset is segmented into training, validation, and testing partitions to prevent overfitting and ensure accurate model performance evaluations. Key performance indicators—including sensitivity, specificity, precision, F1-score, and AUC-ROC—are applied to interpret diagnostic robustness from multiple perspectives. Sensitivity ensures the model accurately detects pneumonia cases, while specificity

confirms that non-pneumonia samples are not incorrectly classified. In addition, ROC curve analysis measures the probability of accurate classification across varying decision thresholds, confirming model stability in fluctuating clinical conditions. Through this structured training approach, the Deep Lung system repeatedly demonstrates improved predictive performance, faster inference rates, and superior adaptability to diverse imaging data. The system architecture of Deep Lung incorporates a Data Flow Diagram (DFD) that conceptualizes the operational workflow from image acquisition to diagnostic result delivery. In the DFD, clinical imaging devices serve as primary data sources feeding into preprocessing modules before forwarding enhanced imagery to the CNN engine for analysis. Model outputs undergo post-processing to determine classification confidence levels and severity gradation, which are presented to clinicians through an interactive dashboard. This interface is specifically engineered to support usability for radiologists and physicians

by displaying heatmaps, feature activation regions, and annotated diagnostic cues for transparency. Such interpretability features ensure that users understand not only the system's results but also the rationale behind them, which is essential for ethical medical AI deployment. Designed for integration within hospital systems, the platform is scalable for high-demand departments and accepts modular upgrades,

allowing adaptation for future respiratory illnesses or multi-diagnostic models. By uniting technical sophistication with clinical practicality, Deep Lung positions itself as an impactful advancement for modern respiratory healthcare and a technological milestone in the evolution of AI-assisted medical diagnostics.

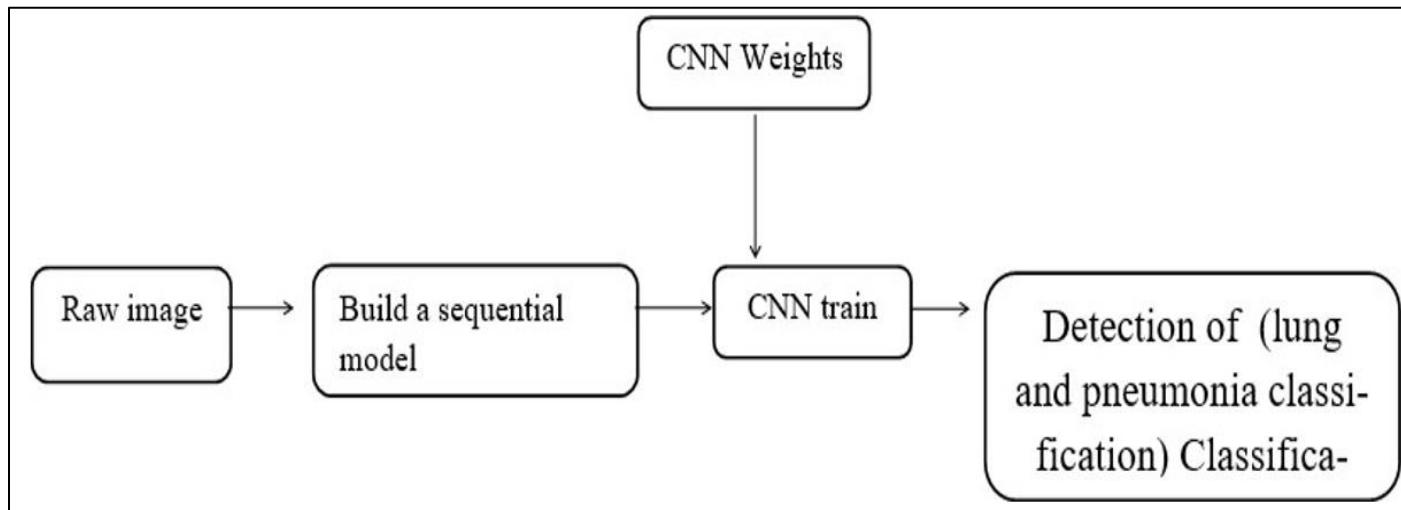


Fig 2 Methodology Architecture

VI. ALGORITHM

Our dataset is brought into the model using Keras' *ImageDataGenerator*, where we configure options such as size normalization, rescaling, rotation range, zoom range, and horizontal flipping. The image dataset is then fetched from the folder through this generator. At this point, we assign the train, test, and validation datasets and define the target size, batch size, and class mode. With this prepared data, we proceed to train the CNN network we created by adding appropriate convolutional layers.

➤ Data Analysis

Data analysis involves purifying, modifying, and examining raw datasets to extract valuable and actionable information that assists in making informed decisions. This procedure reduces decision-making risks by offering clear insights. The stages of data analysis include gathering information, processing it, exploring the data, and identifying patterns or useful observations. During this analysis, we check the arrangement of the image dataset, evaluate how many images it contains, and ensure that normal data is available corresponding to the mask dataset.

➤ Alexnet Architecture

In the context of Deep Lung, AlexNet functions as a proven convolutional architecture for pneumonia classification, capitalizing on its layered design and computational efficiency. The model accepts RGB lung scans resized to 224×224 and directs them through five convolutional layers, each tuned to identify clinically meaningful structures ranging from broad lung boundaries to fine-grained infection cues. Supplementary processes—max-pooling, local normalization, and ReLU activation—reinforce learning stability and speed. The architecture then transitions into three dense fully connected layers, including two computational cores of 4096 neurons, before emitting softmax-driven diagnostic confidence scores. Dropout minimizes overfitting, and model training benefits from GPU execution and augmented medical imaging datasets. Through these mechanisms, AlexNet helps Deep Lung perform high-precision pneumonia detection, improving diagnostic speed and reducing subjectivity in radiographic interpretation.

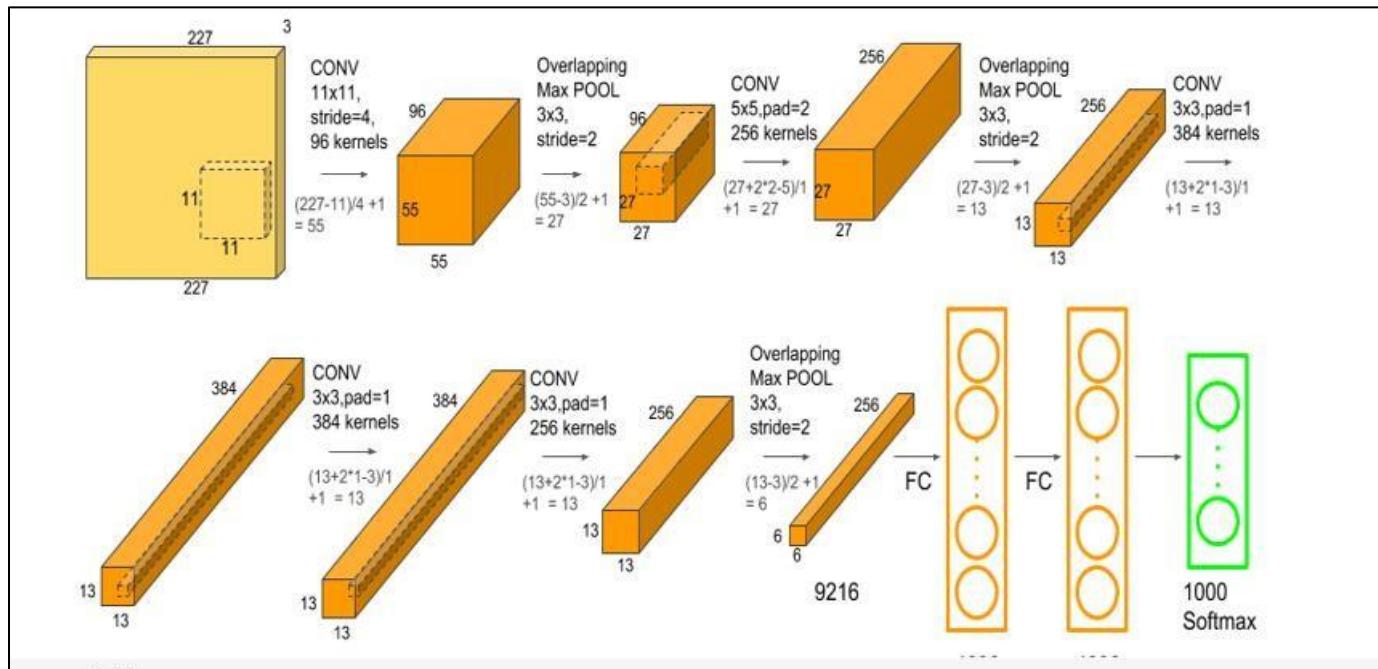


Fig 3 Alexnet Architecture

➤ Mobilenet Architecture

For the Deep Lung system, MobileNet serves as a streamlined CNN architecture capable of performing pneumonia classification with reduced memory demands and rapid inference times. Created by Howard et al. (2017), it was specifically designed to achieve competitive accuracy on devices with restricted processing bandwidth, such as handheld radiology analyzers and IoT-based screening units. Its architecture replaces conventional convolution with depthwise spatial filtering and pointwise 1×1 fusion, which

collectively minimize redundant computation. The α width multiplier modulates network size, offering tunable performance profiles suitable for healthcare environments of varying capacity. The latest editions, MobileNetV2 and V3, add improvements like optimized bottleneck layers and adaptive activations, boosting diagnostic clarity and resilience. In the Deep Lung context, this allows pneumonia detection models to be deployed across wearable devices, mobile diagnostics, and embedded clinical sensors, making advanced respiratory evaluation more accessible and scalable.

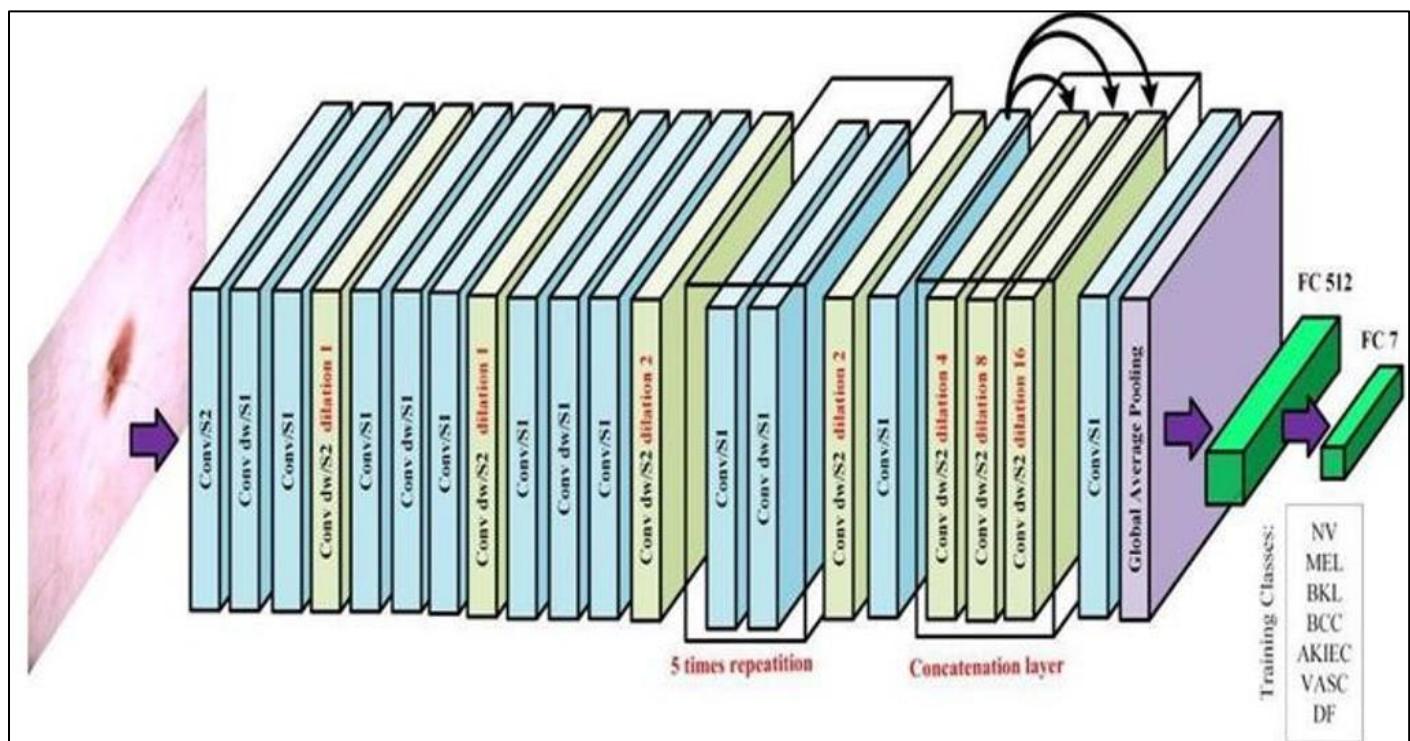


Fig 4 Mobilenet Architecture

➤ Convolution Layer

The convolution layer, sometimes referred to as the feature extraction layer, captures essential features from the input image. A selected patch of the image is connected to this layer, where convolution is applied by calculating the dot product between the receptive field (a local area with the same dimensions as the filter) and the filter. The operation produces a single numerical output. The filter moves across the image using a stride, repeating this action until the complete image has been processed. The resulting feature maps are then fed into the next layer.

The pooling layer decreases the spatial size of the image following convolution and is positioned between convolutional layers. If a fully connected layer is used directly after convolution without pooling, the computational cost becomes extremely high. Max pooling is employed to overcome this by reducing dimensionality. For example, applying max pooling with a stride of 2 converts a 4×4 input into 2×2 output.

The fully connected layer contains neurons, weights, and biases, linking one layer's neurons to those in the next. This layer performs the classification of images during the training process. The softmax or logistic layer forms the final stage of the CNN. Located after the fully connected layer, logistic activation is used for binary classification, while softmax is applied for multi-class classification tasks.

VII. RESNET ARCHITECTURE

ResNet (Residual Network) is a deep learning architecture introduced by Kaiming He and his co-authors in their 2015 study “*Deep Residual Learning for Image Recognition.*” This architecture significantly advanced computer vision by enabling stable training of extremely deep neural networks using residual connections. Its essential ideas include: Residual Block: Rather than learning the full transformation, ResNet learns the residual $F(x)$ and then adds the input x back through a skip connection. This reduces the learning difficulty and avoids problems like vanishing gradients. Skip Connections: These identity connections let the input bypass certain layers, allowing very deep neural networks to train more effectively and retain high accuracy. Deep Network Variants: ResNet is known for its depth, with versions such as ResNet-50, ResNet-101, and ResNet-152 widely used in practice. Bottleneck Architecture: To reduce computational demands, ResNet employs bottleneck layers made of 1×1 , 3×3 , and 1×1 convolutions. Global Average Pooling: Instead of using dense layers at the end, ResNet performs global average pooling, which reduces overfitting by decreasing parameter count. ResNet has become a foundational architecture in deep learning and is widely used in tasks like classification, segmentation, and object detection due to its ability to train deep networks effectively.

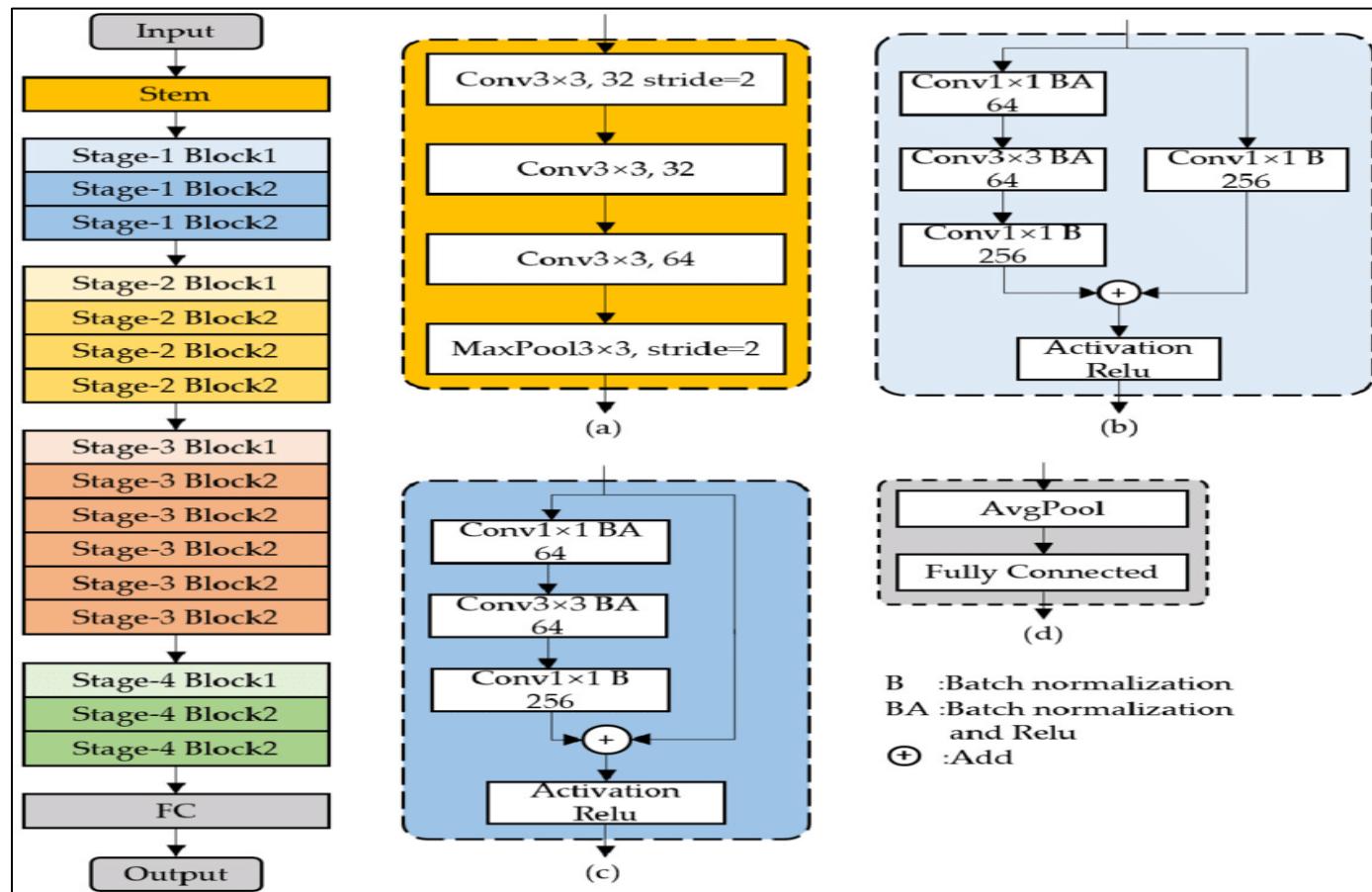


Fig 5 Architecture of Resenet

➤ *Bidirectional Long Short-Term Memory (BiLSTM)*

A Bidirectional Long Short-Term Memory (BiLSTM) network is a deep learning architecture designed for sequence modeling, capable of understanding long-term relationships in data. Although LSTMs are typically used for sequential datasets, BiLSTMs can also be applied to image-related problems by transforming feature maps into sequences. In this research, feature representations extracted by the CNN from pneumonia X-ray images are passed into a BiLSTM, allowing the model to analyze information in both directions. This dual directional learning helps capture slight variations, subtle irregularities, and structural dependencies that may be

overlooked when using CNN alone. The fusion of CNN and BiLSTM enhances the overall pneumonia detection process, offering higher sensitivity and improved robustness by leveraging deeper contextual cues from the X-ray images.

VIII. RESULT

The proposed system for Pneumonia Detection underwent evaluation using CNN, ResNet, and BiLSTM approaches on chest X-ray data. Performance comparison was conducted using accuracy, precision, recall, F1-score, and AUC metrics.

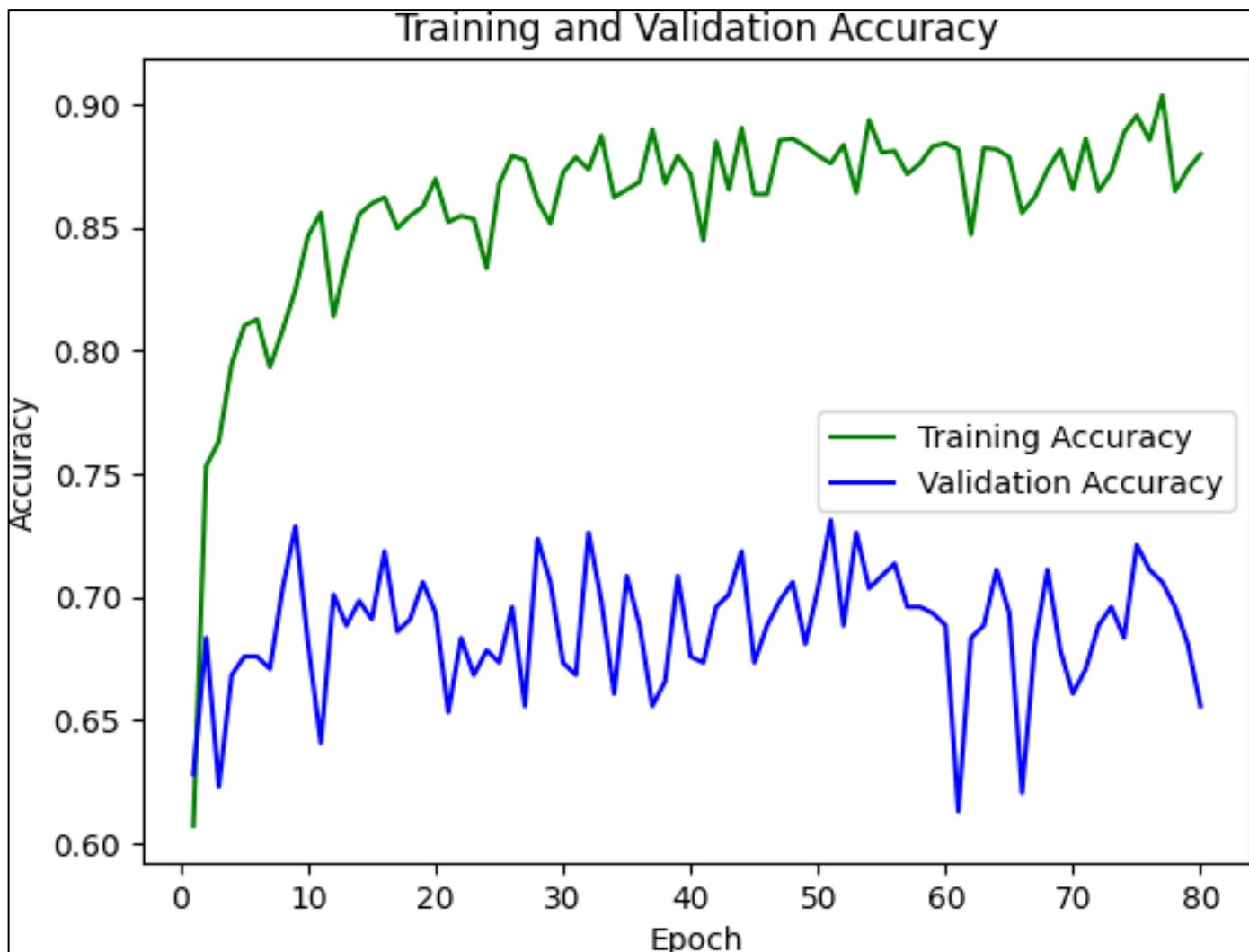


Fig 6 Training and Validating Accuracy

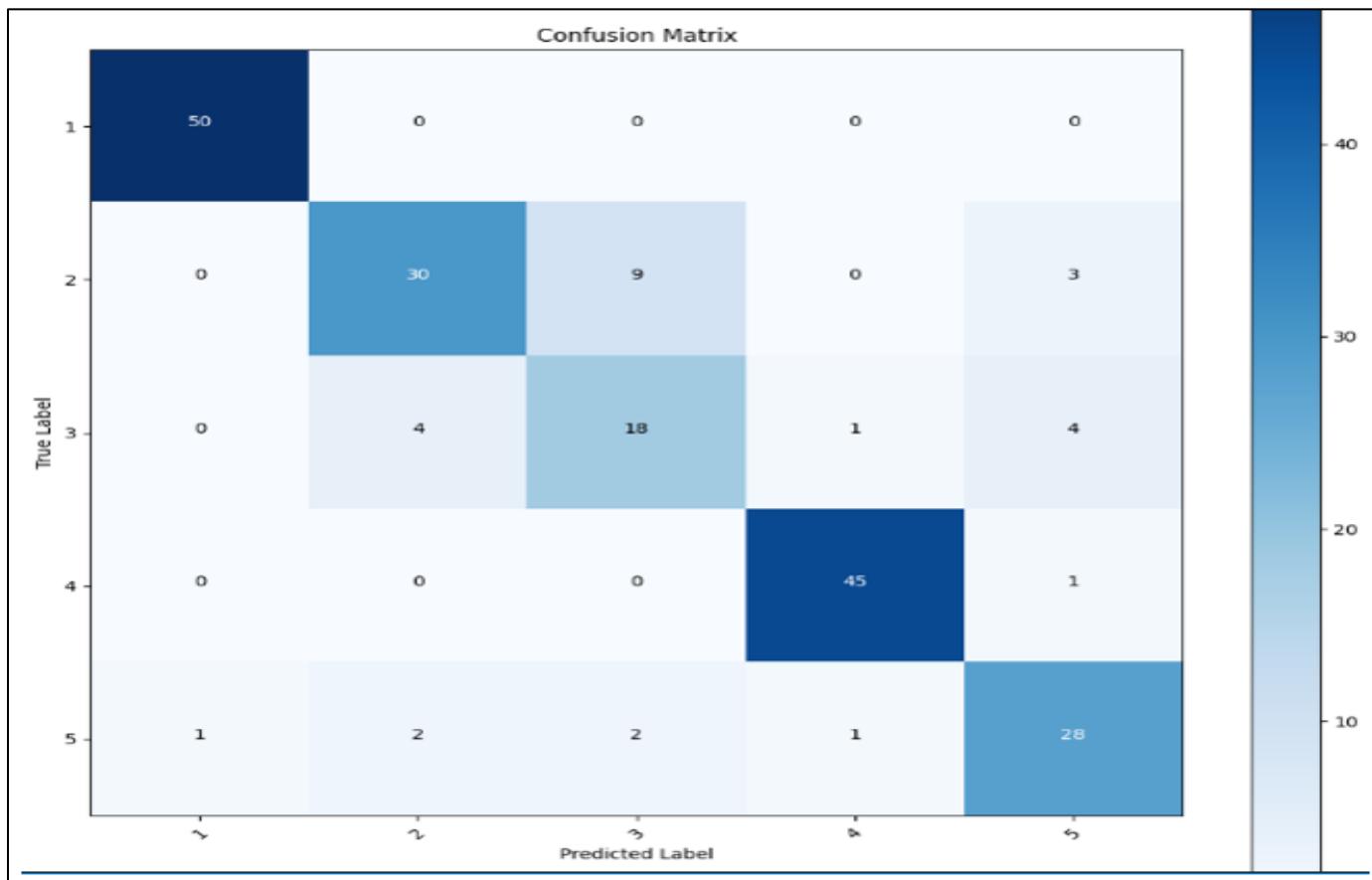


Fig 7 Confusion Matrix

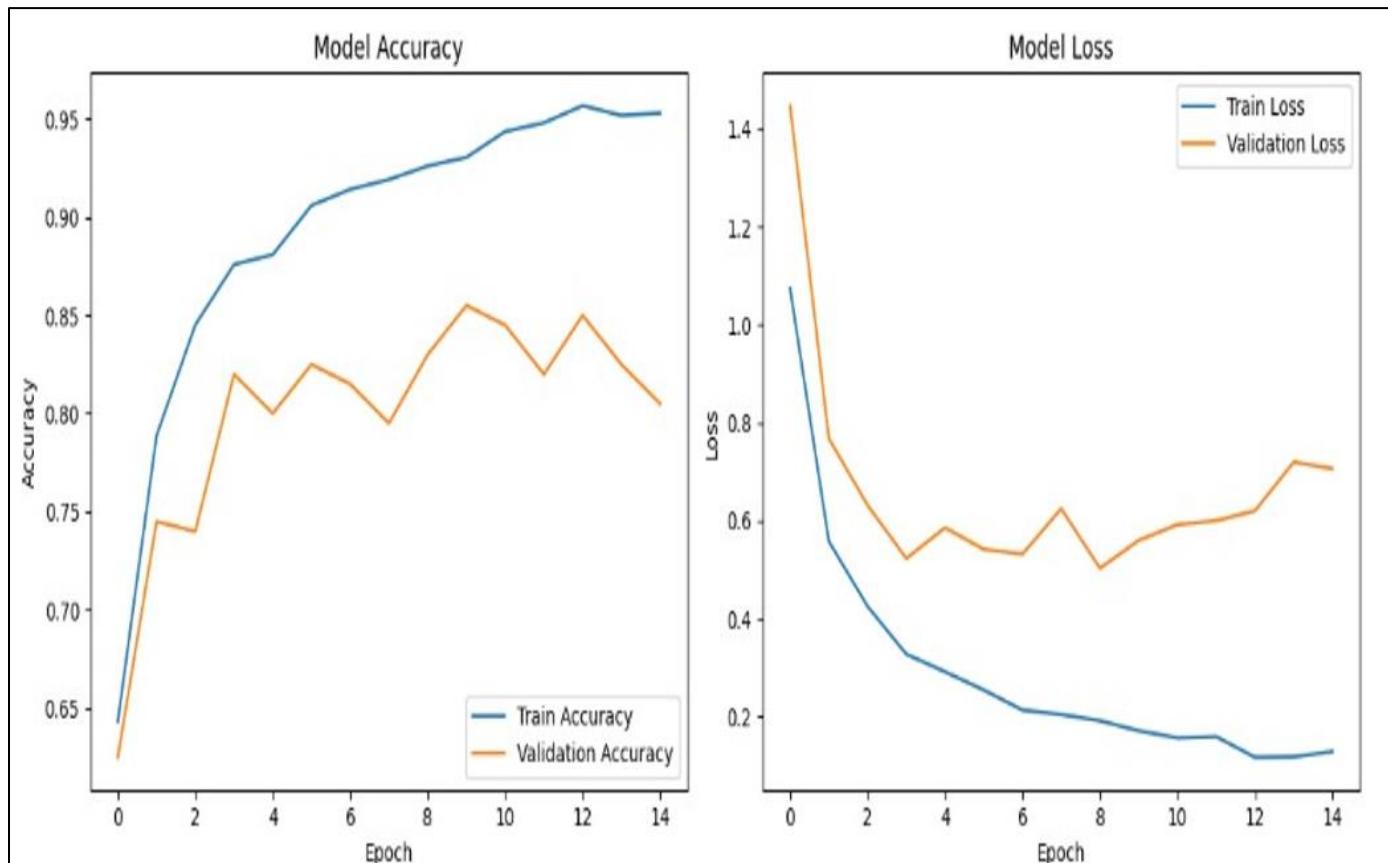


Fig 8 Resenet Validation Accuracy

```
94765736/94765736 [=====] - 10s 0us/step
Epoch 1/15
40/40 [=====] - ETA: 0s - loss: 1.0735 - accuracy: 0.6433
Epoch 1: accuracy improved from -inf to 0.64326, saving model to best_model_resnet.h5
40/40 [=====] - 159s 4s/step - loss: 1.0735 - accuracy: 0.6433 - val_loss: 1.4473 - val_accuracy: 0.6258
Epoch 2/15
40/40 [=====] - ETA: 0s - loss: 0.5576 - accuracy: 0.7887
Epoch 2: accuracy improved from 0.64326 to 0.78871, saving model to best_model_resnet.h5
40/40 [=====] - 151s 4s/step - loss: 0.5576 - accuracy: 0.7887 - val_loss: 0.7675 - val_accuracy: 0.7458
Epoch 3/15
40/40 [=====] - ETA: 0s - loss: 0.4246 - accuracy: 0.8451
Epoch 3: accuracy improved from 0.78871 to 0.84514, saving model to best_model_resnet.h5
40/40 [=====] - 146s 4s/step - loss: 0.4246 - accuracy: 0.8451 - val_loss: 0.6312 - val_accuracy: 0.7408
Epoch 4/15
40/40 [=====] - ETA: 0s - loss: 0.3278 - accuracy: 0.8759
Epoch 4: accuracy improved from 0.84514 to 0.87586, saving model to best_model_resnet.h5
40/40 [=====] - 147s 4s/step - loss: 0.3278 - accuracy: 0.8759 - val_loss: 0.5224 - val_accuracy: 0.8208
Epoch 5/15
40/40 [=====] - ETA: 0s - loss: 0.2911 - accuracy: 0.8809
Epoch 5: accuracy improved from 0.87586 to 0.88088, saving model to best_model_resnet.h5
40/40 [=====] - 152s 4s/step - loss: 0.2911 - accuracy: 0.8809 - val_loss: 0.5852 - val_accuracy: 0.8000
Epoch 6/15
40/40 [=====] - ETA: 0s - loss: 0.2538 - accuracy: 0.9060
Epoch 6: accuracy improved from 0.88088 to 0.90596, saving model to best_model_resnet.h5
...
Epoch 15/15
40/40 [=====] - ETA: 0s - loss: 0.1280 - accuracy: 0.9538
Epoch 15: accuracy did not improve from 0.95674
40/40 [=====] - 155s 4s/step - loss: 0.1280 - accuracy: 0.9538 - val_loss: 0.7061 - val_accuracy: 0.8058
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings.
```



```
94765736/94765736 [=====] - 10s 0us/step
Epoch 1/15
40/40 [=====] - ETA: 0s - loss: 1.0735 - accuracy: 0.6433
Epoch 1: accuracy improved from -inf to 0.64326, saving model to best_model_resnet.h5
40/40 [=====] - 159s 4s/step - loss: 1.0735 - accuracy: 0.6433 - val_loss: 1.4473 - val_accuracy: 0.6258
Epoch 2/15
40/40 [=====] - ETA: 0s - loss: 0.5576 - accuracy: 0.7887
Epoch 2: accuracy improved from 0.64326 to 0.78871, saving model to best_model_resnet.h5
40/40 [=====] - 151s 4s/step - loss: 0.5576 - accuracy: 0.7887 - val_loss: 0.7675 - val_accuracy: 0.7458
Epoch 3/15
40/40 [=====] - ETA: 0s - loss: 0.4246 - accuracy: 0.8451
Epoch 3: accuracy improved from 0.78871 to 0.84514, saving model to best_model_resnet.h5
40/40 [=====] - 146s 4s/step - loss: 0.4246 - accuracy: 0.8451 - val_loss: 0.6312 - val_accuracy: 0.7408
Epoch 4/15
40/40 [=====] - ETA: 0s - loss: 0.3278 - accuracy: 0.8759
Epoch 4: accuracy improved from 0.84514 to 0.87586, saving model to best_model_resnet.h5
40/40 [=====] - 147s 4s/step - loss: 0.3278 - accuracy: 0.8759 - val_loss: 0.5224 - val_accuracy: 0.8208
Epoch 5/15
40/40 [=====] - ETA: 0s - loss: 0.2911 - accuracy: 0.8809
Epoch 5: accuracy improved from 0.87586 to 0.88088, saving model to best_model_resnet.h5
40/40 [=====] - 152s 4s/step - loss: 0.2911 - accuracy: 0.8809 - val_loss: 0.5852 - val_accuracy: 0.8000
Epoch 6/15
40/40 [=====] - ETA: 0s - loss: 0.2538 - accuracy: 0.9060
Epoch 6: accuracy improved from 0.88088 to 0.90596, saving model to best_model_resnet.h5
...
Epoch 15/15
40/40 [=====] - ETA: 0s - loss: 0.1280 - accuracy: 0.9538
Epoch 15: accuracy did not improve from 0.95674
40/40 [=====] - 155s 4s/step - loss: 0.1280 - accuracy: 0.9538 - val_loss: 0.7061 - val_accuracy: 0.8058
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings.
```

Fig 9 Accuracy

IX. CONCLUSION

CNN-driven pneumonia recognition carries significant potential to revolutionize medical imaging methodologies. Deep Lung demonstrates that deep learning drastically lessens diagnostic inaccuracies and shortens diagnostic timelines, offering a scalable solution that supports healthcare ecosystems and patient care. With consistent upgrades and real-time clinical data integration, the system could ultimately be adopted as an international standard for pneumonia screening.

FUTURE SCOPE

Looking ahead, Deep Lung will expand its scope to detect multiple lung-related diseases, including tuberculosis and lung cancer, to increase its clinical utility. Strengthening the model's explainability is another key area, helping general medical practitioners grasp the output without advanced expertise. Future studies will explore implementation on compact devices to improve reach in low-access zones. To guarantee durable performance, additional evaluation across varied data sources and cooperation with medical facilities will be required..

REFERENCES

- [1]. Gaurav Labhane et al, "Detection of Pediatric Pneumonia from Chest X-Ray Images using CNN and Transfer Learning", 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE-2020), 07-08 February 2020.
- [2]. Muhammed TALO, "Pneumonia Detection from Radiography Images using Convolutional Neural Networks", 2019 27th Signal Processing and Communications Applications Conference (SIU), 24-26 April 2019, 10.1109/SIU.2019.8806614
- [3]. Nazmus Shakib Shadin et al, Automated Detection of COVID-19 Pneumonia and Non COVID-19 Pneumonia from Chest X-ray Images Using Convolutional Neural Network (CNN), 2021 2nd International Conference on Innovative and Creative Information Technology (ICITech), 23-25 Sept. 2021, 10.1109/ICITech50181.2021.9590174
- [4]. Anand Nayyar, "Object detection based approach for Automatic detection of Pneumonia", 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), 6-7 Aug. 2020, 10.1109/icABCD49160.2020.9183876
- [5]. Rachna Sethi, "Deep learning based Diagnosis Recommendation for COVID-19 using Chest X-Rays Images", 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), 15-17 July 2020, 10.1109/ICIRCA48905.2020.9183278
- [6]. Xiaofang Xia, "An Expectation Maximization based Adaptive Group Testing Method for Improving Efficiency and Sensitivity of Large-Scale Screening of COVID-19", IEEE Journal of Biomedical and Health Informatics, 10.1109/JBHI.2021.3135017
- [7]. Areej A.wahab Ahmed Musleh, "COVID-19 Detection in X-ray Images using CNN Algorithm", 2020 International Conference on Promising Electronic Technologies (ICPET), 16-17 Dec. 2020, 10.1109/ICPET51420.2020.00010
- [8]. Pramit Dutta et al, "COVID-19 Detection using Transfer Learning with Convolutional Neural Network", 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), 5-7 Jan. 2021, 10.1109/ICREST51555.2021.9331029
- [9]. Marwa Fradi, "CT-Scans Images Segmentation for COVID-19 Detection Based CNN Models", 2021 International Conference on Control, Automation and Diagnosis (ICCAD), 3-5 Nov. 2021, 10.1109/ICCAD52417.2021.9638745
- [10]. Zanear Sh. Ahmed, "CNN-based Transfer Learning for Covid-19 Diagnosis", 2021 International Conference on Information Technology (ICIT), 14-15 July 2021, 10.1109/ICIT52682.2021.9491126
- [11]. Shrinjal Singh et al, "CNN based Covid-aid: Covid 19 Detection using Chest X-ray", 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), 8-10 April 2021, 10.1109/ICCMC51019.2021.9418407
- [12]. Ram Murti Rawat et al, "COVID-19 Detection using Convolutional Neural Network Architectures based upon Chest X-rays Images", 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), 6-8 May 2021, 10.1109/ICICCS51141.2021.9432134
- [13]. Bhukya Jabber et al, "Detection of Covid-19 Patients using Chest X-ray images with Convolution Neural Network and Mobile Net", 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), 3-5 Dec. 2020, 10.1109/ICISS49785.2020.9316100
- [14]. Anuraag Shankar et al, "Detection of COVID-19 using Chest X-Ray Scans", 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC), 8-10 Oct. 2020, 10.1109/B-HTC50970.2020.9297910
- [15]. Mohit Mishra et al, "Development and evaluation of an AI System for early detection of Covid-19 pneumonia using X-ray (Student Consortium)", 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM), 24-26 Sept. 2020, 10.1109/BigMM50055.2020.00051