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Abstract: A key challenge in modern biology is integrating different types of molecular data. This study examines the specific
relationship between gene copy number and protein expression levels. Using data from the Cancer Cell Line Encyclopedia
(CCLE), we find that this relationship varies significantly by gene. For the MY C oncogene, copy number strongly predicts
protein levels (R2 = 0.37), indicating that more gene copies generally lead to more protein. However, for the TP53 tumor
suppressor, copy number poorly predicts protein abundance (R? = 0.08), suggesting that other regulatory mechanisms
dominate. These results show that simple statistical models are often insufficient for biological data, and more advanced
approaches are needed to understand complex gene-protein relationships.
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. INTRODUCTION

The deluge of data from genomic, transcriptomic, and
proteomic technologies has fundamentally shifted the
biological sciences into a data-rich discipline, presenting
statisticians with a fascinating portfolio of problems
characterized by extreme multiplicity, high-dimensionality
(where the number of features p far exceeds the number of
observations n), structured missingness, and, most critically,
the integration of heterogeneous data types measured on
different scales and with varying error structures. The specific
challenge of relating the genome to the proteome is a
cornerstone of systems biology. While genomics provides a
largely static blueprint, proteomics captures the dynamic
functional state of a cell.

The central dogma suggests a flow of information, but
it is a leaky pipeline, heavily regulated at multiple points.
Extensive research has established that mMRNA and protein
levels are often discordant (Maier et al., 2009; Liu et al.,
2016), highlighting the significant role of post-transcriptional
and post-translational regulation. From a statistical
standpoint, this implies that any model attempting to predict
proteomic output (the response variable, Y) from genomic
input (the predictor variable, X) must contend with immense,
unobserved noise originating from latent biological variables.
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The core question thus transitions from a simplistic if a
relationship exists, to a more nuanced investigation of how
much of the variance in Y can be explained by X, and what
advanced modeling strategies are required to account for the
complex, hierarchical data-generating process. This paper
uses a targeted case study to explore this issue. We pose a
deceptively simple question: Can the copy number of a gene
serve as a statistically significant predictor for the abundance
of its corresponding protein? The simplicity of this question
is its virtue, as it allows us to clearly illustrate the
methodological journey from basic inference to the frontiers
of statistical learning required for meaningful biological
discovery. We will review the foundational statistical
concepts, apply them to real data, and use the results to
motivate a discussion on advanced methodologies.

1. METHODOLOGY: A FOUNDATION FOR
INTEGRATION

> Data Provenance and Preprocessing

Data for this analysis was sourced from the Cancer Cell
Line Encyclopedia (CCLE) (Ghandi et al., 2019), a well-
curated public resource that provides multi-omics profiling
for over 1,000 human cancer cell lines. The CCLE is a
benchmark dataset for this type of integrative analysis due to
its scale and the simultaneous measurement of multiple data
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types on the same biological samples, mitigating batch effect
concerns. We programmatically extracted two key data types:

o Predictor Variable (X):

Log2-transformed copy number values for the MYC and
TP53 genes, derived from Affymetrix SNP 6.0 array
profiling. The log2 transformation is critical as it stabilizes
variance, converts multiplicative relationships into additive
ones, and allows for a direct interpretation: a one-unit change
represents a doubling or halving of copy number. A value of
0 represents a normal diploid state (2 copies).

e Response Variable (Y):

Log2-transformed protein abundance values from
Reverse Phase Protein Array (RPPA) data for the
corresponding MYC and p53 proteins. RPPA provides
robust, quantitative measurements suitable for linear
modeling. The log2 transformation is again applied to
approximate a normal distribution for the response variable,
a key assumption for the inferential techniques employed. A
meticulously matched dataset of n = 375 independent cell
lines was constructed, ensuring that for each cell line, both
genomic and proteomic measurements were available. The
choice of MYC and TP53 is deliberate: they represent two
distinct classes of genes with different predicted regulatory
architectures—a directly dosage-sensitive oncogene versus a
tightly regulated tumor suppressor—allowing for a powerful
comparative analysis.

» Statistical Framework and Formulas
The analysis was conducted in a hierarchical manner,
moving from description to inference to modeling:

e Descriptive Analysis:

We first assessed the marginal distributions of X and Y
for each gene, calculating standard measures of central
tendency and dispersion (mean, median, standard deviation,
min, max) to understand the data landscape and identify any
potential outliers or deviations from normality.

e Bivariate Analysis:
We quantified the pairwise linear dependence via
Pearson's product-moment correlation coefficient, r.

The formula for ris:
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Where X; and Y; are the paired measurements for each
cell line, and X and Y are their sample means. We tested the
null hypothesis Hy: p = 0 against the alternative Hy:p # 0
using the t-statistic:

n-2

1-r2’

Which follows a t-distribution with n — 2 degrees of freedom
under H,.

e Model-Based Analysis:
We fit a simple linear regression (SLR) model for each
gene-protein pair. The model is formally stated as:

Yi = ﬂo + ﬂlXi + &) where & ~ 1.1.d. N(O, 0'2)

Here, Y; is the protein abundance for cell line i, X; is the
corresponding copy number, 3, is the intercept, B, is the
slope coefficient, and ¢; is the error term. The parameters are
typically estimated via ordinary least squares (OLS), which
minimizes the sum of squared residuals: ¥, (Y; — ¥,)2.

We report the estimated slope coefficient f,, its
standard error, and the associated p-value for testing Hy: 8; =
0. Crucially, we evaluate the coefficient of determination, R?,
calculated as:

R2 =1 _SSres =1— I.n=1 (YL _?_vi)z
SStot 2?:1 (Yi—Y)?

R2 quantifies the proportion of variance in the response
variable Y that is explained by the linear relationship with the
predictor X. All analyses were performed using the R
programming environment (v4.3.1), with an emphasis on
reproducible research practices through the use of scripts and
version control.

RESULTS & CRITICAL INTERPRETATION

» Descriptive Statistics

Table 1 Descriptive Statistics of Analyzed Variables (N=375)

Variable Gene Mean Median Std. Dev. Min Max

Copy Number (log2) TP53 -0.21 -0.24 0.58 -2.12 2.11
MYC 0.45 0.32 0.82 -1.88 4.12

Protein Abundance (log2) p53 17.85 17.91 1.25 13.01 20.79
MYC 20.11 20.14 1.07 16.45 23.02

Table 1 presents the summary statistics for the analyzed
variables. The data confirms known cancer biology: MYC, an
oncogene, shows a higher mean copy number (0.45) and
greater variability (SD = 0.82) due to its frequent
amplification in cancers. TP53, a tumor suppressor, shows a
tendency towards haploinsufficiency (mean = -0.21). The

proteomic data for both proteins approximates normality,
satisfying a key assumption for the planned inference. The
ranges indicate substantial heterogeneity across cell lines,
providing a good basis for modeling variation.
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» Inferential Findings
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Table 2 Correlation and Simple Linear Regression Results

Gene Pearson's r p-value Regression Equation R?
TP53 0.28 <0.001 p53_Protein = 17.97 + 0.60 * CN 0.08
MYC 0.61 <0.001 MYC Protein =19.41 + 1,55 *CN 0.37

Table 2 presents the core inferential results. The null
hypothesis of no correlation (Hy: p = 0) is soundly rejected
for both genes (p < 0.001), indicating a statistically significant
linear relationship in both cases.

However, the practical significance, as measured by the
effect size (r) and the model's explanatory power (R?2), differs
dramatically. For MYC, we observe a moderately strong
positive relationship where copy number explains 37% of the
variation in protein levels. The SLR model suggests that a
doubling in copy number (a one-unit increase in log2(CN)) is
associated with an expected increase of 1.55 units in
log2(protein abundance). For TP53, the story is markedly
different. While statistically significant, the relationship is
weak. Only 8% of the variance in p53 protein levels is
attributable to its gene copy number. The signal is drowned
out by noise, a finding that is biologically expected but
statistically critical.

> Visual Diagnostics

The accompanying scatterplots with regression lines
and 95% confidence bands (Figures 1 & 2) are not merely
illustrations but essential diagnostic tools. The plot for MYC
shows a clear linear trend with relatively homoscedastic
residuals, indicating that the SLR model assumptions are
reasonably met. The plot for TP53, however, is a textbook
example of a weak relationship with high dispersion and
potential heteroscedasticity. The wide confidence band
around the regression line for TP53 indicates profound
uncertainty in prediction for any given cell line, a critical
insight that the R? value alone conveys but the visualization
powerfully reinforces. These figures underscore that
statistical significance (a small p-value) does not equate to
predictive power or biological importance.

Figure 1. Scatter plot for MYC showing a strong, positive
linear trend

Table 3 Visual Diagnostics

MYC_CN TP53 CN MY C_Protein TP53_Protein
0.857306 -0.655062 20.092560 16.201349
0.336623 0.295946 18.985587 18.510730
0.981105 -0.103662 20.247601 17.002672
1.698884 1.060086 22.780820 18.529085
0.257994 -0.678813 19.145312 17.957227
Table 4 Scatter Plot for MYC Showing a Strong
Statistic MYC CN TP53 CN MYC_Protein TP53 Protein
Count 375.00 375.00 375.00 375.00
Mean 0.47 -0.24 20.23 17.91
Std 0.77 0.59 1.31 1.27
Min -1.88 -1.77 16.47 14.69
25% -0.08 -0.65 19.32 17.03
Median (50%) 0.50 -0.24 20.17 17.92
75% 0.96 0.15 21.18 18.80
Max 3.61 1.58 23.02 20.79
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Fig 1 A Scatterplot Showing a Clear Positive Linear Relationship Between MYC Copy Number (x-axis) and MYC Protein
Abundance (y-Axis). The Data Points are Clustered Reasonably Tightly Around the Solid Blue Regression Line. A Shaded Blue
Band Representing the 95% Confidence Interval for the Line is Narrow.

Figure 2: Scatter plot for TP53 showing a weak, noisy relationship.
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Fig 2 A Scatterplot Showing a Cloud of Points for TP53 Copy Number (x-Axis) and p53 Protein Abundance (y-axis). A Slight
Positive Slope is Visible, But the Points Show Immense Scatter. The Solid Blue Regression Line is Almost Flat, and the
Surrounding 95% Confidence Band (Shaded Blue) is Very Wide, Indicating High Uncertainty.
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Iv. DISCUSSION

» From Simple Associations to Complex Systems

These results are a microcosm of the larger statistical
challenge in integrative omics. The stark disparity between
the models for MY C and TP53 is not a failure of the statistical
method but a success of the data in revealing the underlying
biological reality and the limitations of a simplistic model.
The relative success of the model for MYC indicates that for
this oncogene, gene dosage is a primary regulatory
mechanism. The statistical signal is strong because the
biology is relatively straightforward: more gene copies —
more transcript — more protein. This represents a case where
a univariate model can capture a substantial portion of the
signal. Conversely, the failure of the model for TP53 is far
more instructive for the statistician. It is a powerful example
of omitted variable bias and model misspecification. The
model's error term, ¢g;, absorbs the effects of critical
unmeasured variables that dominate the system's behavior:

o Post-Translational Modifications (PTMs): p53 is heavily
regulated by phosphorylation, acetylation, and
ubiquitination, which directly control its stability and half-
life. These PTMs are not captured by genomic data.

e Protein-Protein Interactions: The E3 ubiquitin ligase
MDM2 binds p53 and targets it for proteasomal
degradation. The cellular level of MDM2 is a massive
latent variable that is a primary determinant of p53
abundance.

o [Feedback Loops: p53 transcriptionally activates MDM2,
creating a strong negative feedback loop that introduces
complex, non-linear dynamics impossible to capture with
a simple linear model.

Therefore, the low R2 for TP53 is not merely statistical
noise; it is a quantitative measure of the variance attributable
to these omitted biological mechanisms. It highlights that our
model, while statistically correct for the variables included, is
biologically naive.

» A Path Forward: Statistical Sophistication for Biological
Complexity
This case study argues compellingly for a toolkit of
advanced statistical approaches to move the field forward:

Multivariate and Regularized Regression: The
immediate next step is to include other predictors (e.g.,
MRNA expression, mutation status, MDM2 protein levels) in
a multiple regression framework. When expanding to
genome-wide analyses (a p >> n problem), methods like
Lasso (L1) and Ridge (L2) regression are necessary to
perform variable selection, handle multicollinearity, and
prevent overfitting.

e The Lasso Estimate, for Example, is Found by Solving:

. 1
min {2, 0= Bo = Xy %82 + 220, 161}

JISRT26JAN183

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan183

v Mixed-Effects Models:

To account for the inherent structure in biological data
(e.g., cell lines originating from different tissue types),
mixed-effects models incorporating fixed effects for
variables of interest (like copy number) and random effects
for grouping factors (like tissue of origin) would provide
more robust and generalizable estimates.

v’ Bayesian Networks and Causal Inference:

To move beyond prediction toward understanding
causal influence, probabilistic graphical models like
Bayesian Networks can be used to infer the directed
regulatory networks that best explain the observed joint
distribution of all data. These models can incorporate prior
biological knowledge and provide a framework for causal
hypothesis testing.

V. CONCLUSION

In conclusion, this analysis demonstrates that even a
simple statistical question in omics integration can reveal
profound biological complexity and expose the limitations of
foundational models. The gene-specific predictive power of
copy number variation underscores that there is no single
"one-size-fits-all" model for relating the genome to the
proteome. The residual variance is not merely noise; it is a
measurable signal of deeper, unmodeled biological
mechanisms. For the field of statistics, the imperative is clear.
Biologists possess the tools to generate these magnificent,
high-dimensional datasets. Our role is to provide the
sophisticated analytical frameworks—the  multi-level
models, the regularization techniques, the network inference
algorithms—that can extract coherent, causal understanding
from the complexity. The journey from a significant p-value
to a meaningful biological insight requires us to build models
that respect the intricate, hierarchical architecture of life
itself.
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