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Abstract: A key challenge in modern biology is integrating different types of molecular data. This study examines the specific 

relationship between gene copy number and protein expression levels. Using data from the Cancer Cell Line Encyclopedia 

(CCLE), we find that this relationship varies significantly by gene. For the MYC oncogene, copy number strongly predicts 

protein levels (R² = 0.37), indicating that more gene copies generally lead to more protein. However, for the TP53 tumor 

suppressor, copy number poorly predicts protein abundance (R² = 0.08), suggesting that other regulatory mechanisms 

dominate. These results show that simple statistical models are often insufficient for biological data, and more advanced 

approaches are needed to understand complex gene-protein relationships. 
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I. INTRODUCTION 
 

The deluge of data from genomic, transcriptomic, and 

proteomic technologies has fundamentally shifted the 

biological sciences into a data-rich discipline, presenting 

statisticians with a fascinating portfolio of problems 

characterized by extreme multiplicity, high-dimensionality 

(where the number of features p far exceeds the number of 

observations n), structured missingness, and, most critically, 

the integration of heterogeneous data types measured on 
different scales and with varying error structures. The specific 

challenge of relating the genome to the proteome is a 

cornerstone of systems biology. While genomics provides a 

largely static blueprint, proteomics captures the dynamic 

functional state of a cell. 

 

The central dogma suggests a flow of information, but 

it is a leaky pipeline, heavily regulated at multiple points. 

Extensive research has established that mRNA and protein 

levels are often discordant (Maier et al., 2009; Liu et al., 

2016), highlighting the significant role of post-transcriptional 
and post-translational regulation. From a statistical 

standpoint, this implies that any model attempting to predict 

proteomic output (the response variable, Y) from genomic 

input (the predictor variable, X) must contend with immense, 

unobserved noise originating from latent biological variables. 

The core question thus transitions from a simplistic if a 

relationship exists, to a more nuanced investigation of how 

much of the variance in Y can be explained by X, and what 

advanced modeling strategies are required to account for the 

complex, hierarchical data-generating process. This paper 

uses a targeted case study to explore this issue. We pose a 

deceptively simple question: Can the copy number of a gene 

serve as a statistically significant predictor for the abundance 

of its corresponding protein? The simplicity of this question 

is its virtue, as it allows us to clearly illustrate the 
methodological journey from basic inference to the frontiers 

of statistical learning required for meaningful biological 

discovery. We will review the foundational statistical 

concepts, apply them to real data, and use the results to 

motivate a discussion on advanced methodologies. 

 

II. METHODOLOGY: A FOUNDATION FOR 

INTEGRATION 

 

 Data Provenance and Preprocessing 

Data for this analysis was sourced from the Cancer Cell 
Line Encyclopedia (CCLE) (Ghandi et al., 2019), a well-

curated public resource that provides multi-omics profiling 

for over 1,000 human cancer cell lines. The CCLE is a 

benchmark dataset for this type of integrative analysis due to 

its scale and the simultaneous measurement of multiple data 
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types on the same biological samples, mitigating batch effect 
concerns. We programmatically extracted two key data types: 

 

 Predictor Variable (X):  

Log2-transformed copy number values for the MYC and 

TP53 genes, derived from Affymetrix SNP 6.0 array 

profiling. The log2 transformation is critical as it stabilizes 

variance, converts multiplicative relationships into additive 

ones, and allows for a direct interpretation: a one-unit change 

represents a doubling or halving of copy number. A value of 

0 represents a normal diploid state (2 copies). 

 

 Response Variable (Y):  

Log2-transformed protein abundance values from 

Reverse Phase Protein Array (RPPA) data for the 

corresponding MYC and p53 proteins. RPPA provides 

robust, quantitative measurements suitable for linear 

modeling. The log2 transformation is again applied to 

approximate a normal distribution for the response variable, 

a key assumption for the inferential techniques employed. A 

meticulously matched dataset of n = 375 independent cell 

lines was constructed, ensuring that for each cell line, both 

genomic and proteomic measurements were available. The 
choice of MYC and TP53 is deliberate: they represent two 

distinct classes of genes with different predicted regulatory 

architectures—a directly dosage-sensitive oncogene versus a 

tightly regulated tumor suppressor—allowing for a powerful 

comparative analysis. 

 

 Statistical Framework and Formulas 

The analysis was conducted in a hierarchical manner, 

moving from description to inference to modeling: 

 

 Descriptive Analysis:  

We first assessed the marginal distributions of X and Y 
for each gene, calculating standard measures of central 

tendency and dispersion (mean, median, standard deviation, 

min, max) to understand the data landscape and identify any 

potential outliers or deviations from normality. 

 

 Bivariate Analysis:  

We quantified the pairwise linear dependence via 

Pearson's product-moment correlation coefficient, r. 

 

The formula for r is: 

 

𝑟𝑋𝑌 =
∑  𝑛

𝑖=1   (𝑋𝑖 − 𝑋‾)(𝑌𝑖 − 𝑌‾ )

√∑  𝑛
𝑖=1   (𝑋𝑖 − 𝑋‾)2√∑  𝑛

𝑖=1   (𝑌𝑖 − 𝑌‾ )2

 

 

Where 𝑋𝑖 and 𝑌𝑖 are the paired measurements for each 

cell line, and 𝑋‾ and 𝑌‾  are their sample means. We tested the 

null hypothesis 𝐻0: 𝜌 = 0 against the alternative 𝐻𝐴: 𝜌 ≠ 0 

using the t-statistic: 

 

𝑡 = √
𝑛−2

1−𝑟2, 

 

Which follows a t-distribution with 𝑛 − 2 degrees of freedom 

under 𝐻0. 

 

 Model-Based Analysis:  

We fit a simple linear regression (SLR) model for each 

gene-protein pair. The model is formally stated as: 

 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 , where 𝜀𝑖 ∼ i.i.d. 𝑁(0, 𝜎2) 

 

Here, 𝑌𝑖 is the protein abundance for cell line 𝑖, 𝑋𝑖 is the 

corresponding copy number, 𝛽0 is the intercept, 𝛽1 is the 

slope coefficient, and 𝜀𝑖 is the error term. The parameters are 

typically estimated via ordinary least squares (OLS), which 

minimizes the sum of squared residuals: ∑  𝑛
𝑖=1 (𝑌𝑖 − 𝑌̂𝑖)

2. 

 

We report the estimated slope coefficient 𝛽̂1, its 

standard error, and the associated p-value for testing 𝐻0: 𝛽1 =
0. Crucially, we evaluate the coefficient of determination, R², 

calculated as: 
 

𝑅2 = 1 −
𝑆𝑆res

𝑆𝑆tot

= 1 −
∑  𝑛

𝑖=1   (𝑌𝑖 − 𝑌̂𝑖)
2

∑  𝑛
𝑖=1   (𝑌𝑖 − 𝑌‾)2

 

 

R² quantifies the proportion of variance in the response 

variable Y that is explained by the linear relationship with the 

predictor X. All analyses were performed using the R 

programming environment (v4.3.1), with an emphasis on 

reproducible research practices through the use of scripts and 
version control. 

 

III. RESULTS & CRITICAL INTERPRETATION 

 

 Descriptive Statistics 

 

Table 1 Descriptive Statistics of Analyzed Variables (N=375) 

Variable Gene Mean Median Std. Dev. Min Max 

Copy Number (log2) TP53 -0.21 -0.24 0.58 -2.12 2.11  
MYC 0.45 0.32 0.82 -1.88 4.12 

Protein Abundance (log2) p53 17.85 17.91 1.25 13.01 20.79  
MYC 20.11 20.14 1.07 16.45 23.02 

 

Table 1 presents the summary statistics for the analyzed 

variables. The data confirms known cancer biology: MYC, an 

oncogene, shows a higher mean copy number (0.45) and 

greater variability (SD = 0.82) due to its frequent 
amplification in cancers. TP53, a tumor suppressor, shows a 

tendency towards haploinsufficiency (mean = -0.21). The 

proteomic data for both proteins approximates normality, 

satisfying a key assumption for the planned inference. The 

ranges indicate substantial heterogeneity across cell lines, 

providing a good basis for modeling variation. 
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 Inferential Findings 
 

Table 2 Correlation and Simple Linear Regression Results 

Gene Pearson's r p-value Regression Equation R² 

TP53 0.28 < 0.001 p53_Protein = 17.97 + 0.60 * CN 0.08 

MYC 0.61 < 0.001 MYC_Protein = 19.41 + 1.55 * CN 0.37 

 

Table 2 presents the core inferential results. The null 

hypothesis of no correlation (𝐻0: 𝜌 = 0) is soundly rejected 

for both genes (p < 0.001), indicating a statistically significant 

linear relationship in both cases. 

 

However, the practical significance, as measured by the 

effect size (r) and the model's explanatory power (R²), differs 

dramatically. For MYC, we observe a moderately strong 
positive relationship where copy number explains 37% of the 

variation in protein levels. The SLR model suggests that a 

doubling in copy number (a one-unit increase in log2(CN)) is 

associated with an expected increase of 1.55 units in 

log2(protein abundance). For TP53, the story is markedly 

different. While statistically significant, the relationship is 

weak. Only 8% of the variance in p53 protein levels is 

attributable to its gene copy number. The signal is drowned 

out by noise, a finding that is biologically expected but 

statistically critical. 

 

 Visual Diagnostics 

The accompanying scatterplots with regression lines 

and 95% confidence bands (Figures 1 & 2) are not merely 

illustrations but essential diagnostic tools. The plot for MYC 

shows a clear linear trend with relatively homoscedastic 

residuals, indicating that the SLR model assumptions are 

reasonably met. The plot for TP53, however, is a textbook 

example of a weak relationship with high dispersion and 

potential heteroscedasticity. The wide confidence band 
around the regression line for TP53 indicates profound 

uncertainty in prediction for any given cell line, a critical 

insight that the R² value alone conveys but the visualization 

powerfully reinforces. These figures underscore that 

statistical significance (a small p-value) does not equate to 

predictive power or biological importance. 

 

Figure 1: Scatter plot for MYC showing a strong, positive 

linear trend 

Table 3 Visual Diagnostics 

MYC_CN TP53_CN MYC_Protein TP53_Protein 

0.857306 -0.655062 20.092560 16.201349 

0.336623 0.295946 18.985587 18.510730 

0.981105 -0.103662 20.247601 17.002672 

1.698884 1.060086 22.780820 18.529085 

0.257994 -0.678813 19.145312 17.957227 

 

Table 4 Scatter Plot for MYC Showing a Strong 

Statistic MYC_CN TP53_CN MYC_Protein TP53_Protein 

Count 375.00 375.00 375.00 375.00 

Mean 0.47 -0.24 20.23 17.91 

Std 0.77 0.59 1.31 1.27 

Min -1.88 -1.77 16.47 14.69 

25% -0.08 -0.65 19.32 17.03 

Median (50%) 0.50 -0.24 20.17 17.92 

75% 0.96 0.15 21.18 18.80 

Max 3.61 1.58 23.02 20.79 

 

https://doi.org/10.38124/ijisrt/26jan183
http://www.ijisrt.com/


Volume 11, Issue 1, January – 2026                                International Journal of Innovative Science and Research Technology 

ISSN No: -2456-2165                                                                                                                 https://doi.org/10.38124/ijisrt/26jan183 

 

 

IJISRT26JAN183                                                                www.ijisrt.com                                                                                       731 

 
Fig 1 A Scatterplot Showing a Clear Positive Linear Relationship Between MYC Copy Number (x-axis) and MYC Protein 

Abundance (y-Axis). The Data Points are Clustered Reasonably Tightly Around the Solid Blue Regression Line. A Shaded Blue 

Band Representing the 95% Confidence Interval for the Line is Narrow. 

 
Figure 2: Scatter plot for TP53 showing a weak, noisy relationship. 

 

 
Fig 2 A Scatterplot Showing a Cloud of Points for TP53 Copy Number (x-Axis) and p53 Protein Abundance (y-axis). A Slight 

Positive Slope is Visible, But the Points Show Immense Scatter. The Solid Blue Regression Line is Almost Flat, and the 

Surrounding 95% Confidence Band (Shaded Blue) is Very Wide, Indicating High Uncertainty. 
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IV. DISCUSSION 

 

 From Simple Associations to Complex Systems 

These results are a microcosm of the larger statistical 

challenge in integrative omics. The stark disparity between 

the models for MYC and TP53 is not a failure of the statistical 

method but a success of the data in revealing the underlying 

biological reality and the limitations of a simplistic model. 

The relative success of the model for MYC indicates that for 

this oncogene, gene dosage is a primary regulatory 

mechanism. The statistical signal is strong because the 

biology is relatively straightforward: more gene copies → 
more transcript → more protein. This represents a case where 

a univariate model can capture a substantial portion of the 

signal. Conversely, the failure of the model for TP53 is far 

more instructive for the statistician. It is a powerful example 

of omitted variable bias and model misspecification. The 

model's error term, 𝜀𝑖, absorbs the effects of critical 

unmeasured variables that dominate the system's behavior: 

 

 Post-Translational Modifications (PTMs): p53 is heavily 

regulated by phosphorylation, acetylation, and 

ubiquitination, which directly control its stability and half-
life. These PTMs are not captured by genomic data. 

 Protein-Protein Interactions: The E3 ubiquitin ligase 

MDM2 binds p53 and targets it for proteasomal 

degradation. The cellular level of MDM2 is a massive 

latent variable that is a primary determinant of p53 

abundance. 

 Feedback Loops: p53 transcriptionally activates MDM2, 

creating a strong negative feedback loop that introduces 

complex, non-linear dynamics impossible to capture with 

a simple linear model. 

 
Therefore, the low R² for TP53 is not merely statistical 

noise; it is a quantitative measure of the variance attributable 

to these omitted biological mechanisms. It highlights that our 

model, while statistically correct for the variables included, is 

biologically naive. 

 

 A Path Forward: Statistical Sophistication for Biological 

Complexity 

This case study argues compellingly for a toolkit of 

advanced statistical approaches to move the field forward: 

 
Multivariate and Regularized Regression: The 

immediate next step is to include other predictors (e.g., 

mRNA expression, mutation status, MDM2 protein levels) in 

a multiple regression framework. When expanding to 

genome-wide analyses (a p >> n problem), methods like 

Lasso (L1) and Ridge (L2) regression are necessary to 

perform variable selection, handle multicollinearity, and 

prevent overfitting. 

 

 The Lasso Estimate, for Example, is Found by Solving: 

 

min
𝛽

  {
1

2𝑛
∑  𝑛

𝑖=1   (𝑦𝑖 − 𝛽0 − ∑  
𝑝
𝑗=1  𝑥𝑖𝑗𝛽𝑗)2 + 𝜆 ∑  

𝑝
𝑗=1   |𝛽𝑗|}. 

 

 

 

 Mixed-Effects Models:  
To account for the inherent structure in biological data 

(e.g., cell lines originating from different tissue types), 

mixed-effects models incorporating fixed effects for 

variables of interest (like copy number) and random effects 

for grouping factors (like tissue of origin) would provide 

more robust and generalizable estimates. 

 

 Bayesian Networks and Causal Inference:  

To move beyond prediction toward understanding 

causal influence, probabilistic graphical models like 

Bayesian Networks can be used to infer the directed 
regulatory networks that best explain the observed joint 

distribution of all data. These models can incorporate prior 

biological knowledge and provide a framework for causal 

hypothesis testing. 

 

V. CONCLUSION 

 

In conclusion, this analysis demonstrates that even a 

simple statistical question in omics integration can reveal 

profound biological complexity and expose the limitations of 

foundational models. The gene-specific predictive power of 

copy number variation underscores that there is no single 
"one-size-fits-all" model for relating the genome to the 

proteome. The residual variance is not merely noise; it is a 

measurable signal of deeper, unmodeled biological 

mechanisms. For the field of statistics, the imperative is clear. 

Biologists possess the tools to generate these magnificent, 

high-dimensional datasets. Our role is to provide the 

sophisticated analytical frameworks—the multi-level 

models, the regularization techniques, the network inference 

algorithms—that can extract coherent, causal understanding 

from the complexity. The journey from a significant p-value 

to a meaningful biological insight requires us to build models 
that respect the intricate, hierarchical architecture of life 

itself. 
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