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Abstract: Hand gesture recognition enables natural interaction between humans and machines and is widely used in
vision- based embedded applications. Although convolutional neural networks provide strong recognition capability, their
deployment on resource-constrained platforms presents challenges related to computation, latency, and system integration.
This paper presents the design and implementation of a real-time hand gesture recognition system using a lightweight CNN
accelerator deployed on a PYNQ-Z2 FPGA platform. The proposed system adopts a hardware—software co-design
approach, where image acquisition and control are handled by the processing system, while CNN inference is offloaded to
programmable logic for acceleration. A compact CNN architecture based on depthwise separable convolutions is
employed to reduce computational complexity and resource usage. The system supports live camera input, real-time
inference, and web-based visualization. Experimental observations demonstrate the feasibility of deploying CNN-based
hand gesture recognition on low-cost FPGA platforms, highlighting practical design trade-offs and implementation
considerations.
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. INTRODUCTION

Hand gesture recognition (HGR) enables natural and
touch- less interaction between humans and machines and
has gained attention in domains such as sign language
interpretation, virtual interfaces, and robotics. Vision-based
approaches using deep learning have demonstrated strong
capability in learning discriminative gesture representations
from images. However, deploying CNN-based models on
embedded systems remains challenging due to limited
computational resources, power constraints, and latency
requirements.

Field-programmable gate arrays (FPGASs) provide a
promis- ing solution by enabling parallel computation and
hardware customization while maintaining low power
consumption. Recent advances in FPGA-based system-on-
chip platforms, such as Xilinx Zynqg devices, allow tight
integration of pro- grammable logic (PL) with embedded
processors, facilitating hardware—software co-design.
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This work presents an FPGA-based real-time hand
gesture recognition system implemented on the PYNQ-Z2
platform. A lightweight CNN model is designed and
trained offline, then synthesized into a custom accelerator
using high-level synthesis (HLS). The accelerator is
integrated into a complete system supporting live video
capture, inference, and visualiza- tion. Recent advances in
deep learning and embedded systems have enabled real-time
vision-based gesture recognition across a wide range of
platforms, from desktop GPUs to low-power embedded
devices [6], [19].

Rather than focusing on achieving state-of-the-art
accu- racy, this paper emphasizes practical system design,
deploy- ment methodology, and real-time operation on a
resource- constrained FPGA platform. Accordingly, this
work prioritizes system-level feasibility, deterministic
runtime behavior, and hardware-aware architectural design
over purely accuracy- driven optimization. Accordingly, this
work prioritizes system- level feasibility, deterministic
runtime behavior, and hardware- aware architectural design
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over purely accuracy-driven opti- mization.
» The Main Contributions of this Work are:

o Design of a compact CNN architecture suitable for FPGA
deployment.

o Implementation of a CNN accelerator using HLS and
AXI-based data movement.

e End-to-end real-time hand gesture recognition system on
PYNQ-Z2 with live visualization.

1. RELATED WORK

» Vision-Based Hand Gesture Recognition

Early vision-based hand gesture recognition systems
relied on hand-crafted features, color segmentation, and
contour- based methods. While effective under controlled
conditions, such approaches are sensitive to illumination
changes, back- ground clutter, and hand shape variations.
Earlier vision- based hand gesture recognition systems
relied on handcrafted features such as contour descriptors,
skin color segmentation, and motion cues [1], [2]. These
methods were sensitive to lighting conditions, background
clutter, and camera viewpoint variations [3].

Several works explored hand segmentation techniques
to isolate the hand region prior to recognition, but these
pipelines often require extensive preprocessing and
parameter tuning. Although these methods demonstrate
promising results in con- trolled environments, their
dependence on handcrafted features and segmentation
heuristics limits robustness under varying illumination and
background conditions. These limitations motivate the
adoption of learning-based approaches that can generalize
across diverse scenarios.

» CNN-Based Gesture Recognition

Convolutional neural networks have become the
dominant approach for hand gesture recognition due to their
ability to learn hierarchical features directly from image
data. CNN- based models have been applied to both static
and dynamic gesture recognition tasks, achieving robust
performance across varying conditions. However, deep
CNN architectures typi- cally require significant
computational resources, making di- rect deployment on
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embedded platforms challenging without optimization.
Convolutional neural networks have demon- strated superior
robustness and accuracy for hand gesture recognition tasks
by learning hierarchical feature representa- tions directly
from raw images [4], [5]. Depthwise separable convolutions
further reduce model complexity while preserv- ing
classification performance [6], [7]. Recent CNN-based
approaches have explored both static and dynamic gesture
recognition, including the use of temporal modeling and
attention mechanisms.While such models improve recogni-
tion accuracy, their increased computational complexity
poses challenges for deployment on resource-constrained
embedded systems, necessitating architectural simplification
and hard- ware acceleration. Although CNN-based gesture
recognition approaches achieve strong classification
performance, many reported models are designed primarily
for execution on GPUs or high-performance processors.
When deployed on resource- constrained embedded
platforms, such architectures often fail to meet real-time
latency or power requirements. This limita- tion motivates
the exploration of compact CNN designs that explicitly
account for hardware constraints, as adopted in this work.

» Dynamic and Temporal Gesture Recognition

Beyond static hand gesture recognition, several studies
have explored dynamic gesture recognition using temporal
modeling techniques. Approaches based on recurrent neural
networks, temporal convolution, and attention mechanisms
have been proposed to capture motion information across
frames [8], [9]. While these methods improve recognition of
continuous gestures, they significantly increase model com-
plexity and memory requirements [10].. As a result, such
architectures are often unsuitable for deployment on
resource- constrained embedded platforms  without
aggressive optimiza- tion or hardware acceleration.

» FPGA-Based CNN Acceleration

To address computational limitations, several studies
have explored FPGA-based acceleration of CNN inference
[11], [12].. Techniques such as model quantization, loop
pipelining, and depthwise separable convolutions have been
proposed to reduce hardware complexity. FPGA-based
gesture recognition systems have demonstrated improved
performance and en- ergy efficiency compared to
software-only implementations.

Table 1 Qualitative Comparison of Hand Gesture Recognition Approaches

Work Platform Model Type
Vision-based methods CPU Hand-crafted features
CNN-based methods CPU/GPU Deep CNN
Dynamic gesture models GPU RNN / Attention
FPGA CNN accelerators FPGA Optimized CNN

Proposed System

PYNQ-Z2 FPGA

Lightweight CNN

Nonetheless, many existing works focus primarily on
accel- erator design, with limited discussion of complete
end-to- end deployment on embedded platforms. Depthwise
separable convolution has emerged as an effective strategy
for reducing computational cost in FPGA-based CNN
accelerators [13], [14]. By decoupling spatial and channel-
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wise convolution, these architectures significantly reduce
parameter count and arithmetic operations, making them
suitable for low-cost FPGA platforms. Building on these
ideas, the proposed system integrates a lightweight CNN
accelerator into a complete real- time hand gesture
recognition pipeline, emphasizing end-to- end deployment
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on a low-cost FPGA platform rather than isolated
accelerator evaluation.

» Embedded Real-Time Gesture Recognition Systems

Several real-time hand gesture recognition systems
have been proposed for embedded platforms, focusing on
latency, stability, and power efficiency. FPGA-based
systems, in par- ticular, offer deterministic performance and
parallel execution, making them suitable for real-time vision
tasks. However, many existing implementations rely on
high-end FPGA de- vices or simplified pipelines that exclude
live visualization and user interaction. In contrast, the
proposed work demonstrates a complete end-to-end system
deployed on a low-cost FPGA platform, integrating live
camera input, hardware-accelerated inference, and user-
facing visualization.

» Embedded and Real-Time Gesture Recognition Systems

Several studies have investigated real-time hand
gesture recognition systems targeting embedded platforms.
These works typically emphasize latency reduction, system
stabil- ity, and deployment feasibility rather than peak
classification accuracy. FPGA-based and system-on-chip
implementations have been shown to offer predictable
performance and energy efficiency for real-time vision
applications. However, many existing systems rely on either
high-end FPGA devices or simplified pipelines that omit
end-to-end integration aspects such as live visualization and

| "L. Real-Time Gesture Recognition Pipeline on PYNQ-Z2

(0] INPUT

ROI Extraction Input Tensor
and Image Formatting and
reprocessing Memory

USB Camera —
Live Frame |——| P

Capture (64x64 RGB) Allocation

Postprocessing,
AXIDMA - PL to J
PS Output Softmax and

Gesture
anser Classification

Confidence
Threshold
Check

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan329

user interaction. The proposed work addresses this gap by
demonstrating a complete real- time system on a low-cost
FPGA platform with integrated software and hardware
components. The PYNQ platform en- ables rapid
prototyping of hardware-accelerated vision systems by
integrating Python-based control with FPGA acceleration
[15], [16]. This approach simplifies system development
while maintaining real-time performance.

1. SYSTEM OVERVIEW

» End-to-End Processing Pipeline

The proposed system follows a modular pipeline
consist- ing of image acquisition, preprocessing, hardware-
accelerated inference, and visualization. Live frames are
captured from a USB camera connected to the processing
system (PS). The captured images are resized and formatted
into fixed-size RGB tensors before being transferred to the
programmable logic (PL) using an AXI Direct Memory
Access (DMA) interface. The CNN accelerator processes
the input tensor and returns classification scores to the PS
for postprocessing and visualization. The overall pipeline
was refined iteratively based on observed data movement
overheads, synchronization constraints between the
processing system and programmable logic, and real-time
visualization requirements.

AXI DMA — Input
Transfer from PS
to PL

CNN Accelerator
(FPGA—PL)

‘) USER INTERFACE |

Below threshold_—|

Flask Web
Application —
Visualization

Above threshold Predicted
Gesture

Fig 1 Overall Real-Time Hand Gesture Recognition Pipeline on the PYNQ-Z2 Platform.

» Hardware—Software Co-Design Strategy

A hardware—software co-design approach is adopted to
balance flexibility and performance. The PS handles tasks
that benefit from software control, such as camera
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interfacing, preprocessing, thresholding, and user interface
management. The computationally intensive CNN inference
is offloaded to the PL, where parallelism and pipelining can
be exploited to reduce latency.
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V. CNN MODEL DESIGN AND TRAINING

> Dataset Description and Preprocessing

The CNN model is trained using a combination of
publicly available hand gesture datasets and curated
background im- ages. Hand gesture samples are sourced
from the OUHANDS dataset, which provides diverse hand
pose images suitable for recognition tasks. Additional
background images are included to represent non-gesture
scenarios. All images are resized to 64x64 RGB format to
ensure uniform input dimensions. Hand gesture samples are
sourced from the OUHANDS dataset, which provides
diverse hand poses suitable for detection and recognition
tasks [17]. Additional background images are incorporated
to improve robustness against non-gesture inputs [18].

Fig 2 Sample Hand Gesture Images from the Dataset.
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» Lightweight CNN Architecture

To enable efficient FPGA deployment, a compact
CNN architecture is employed. The model uses depthwise
sepa- rable convolutions to reduce the number of parameters
and arithmetic operations. The network consists of multiple
con- volutional blocks followed by pooling layers and a
small fully connected classifier. This design significantly
reduces computational complexity compared to standard
convolutional architectures. The architectural design
prioritizes a balance between representational capacity and
hardware efficiency. Depthwise separable convolutions are
selected to minimize parameter count while preserving
spatial feature extraction ca- pability. Pooling layers
progressively reduce spatial resolution, limiting memory
bandwidth requirements in later layers. This design enables
efficient mapping to FPGA hardware while maintaining
sufficient discriminative power for static hand gesture
recognition.

» Training Strategy

The CNN is trained offline using supervised learning
with categorical cross-entropy loss. Training and validation
splits are used to monitor convergence and prevent
overfitting. After training, model weights are exported for
hardware synthesis. While floating-point training is
performed for convenience, the architecture is designed
with gquantization compatibility in mind.

V. FPGA IMPLEMENTATION
AND INTEGRATION

» CNN Accelerator Design

The trained CNN model is translated into a hardware
accelerator using Vitis HLS. Each layer is implemented
as a sequence of pipelined operations, with careful
consideration of memory access patterns and data reuse. The
accelerator exposes AXI interfaces for control and streaming
data transfer.
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Fig 3 Lightweight CNN Architecture Based on Depth Wise Separable Convolutions.

» AXI-Based Data Movement

AXI DMA is used to transfer input tensors from PS
memory to the CNN accelerator and to retrieve output
results. FIFO buffers are employed to decouple data streams
and improve throughput. This approach allows efficient
communication  between  software and  hardware
components.
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» Vivado Block Design and Deployment

The accelerator is integrated into a Vivado block
design alongside the Zynq processing system, DMA engine,
and in- terconnects. After synthesis and implementation, the
generated bitstream and hardware description files are
deployed on the PYNQ-Z2 board.
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» Hardware Resource Utilization

The FPGA resource utilization of the CNN accelerator
is obtained from Vitis HLS synthesis reports. The results

indicate that the lightweight CNN architecture fits
comfortably within the available resources of the PYNQ-Z2
platform.

Table 2 FPGA Resource Utilization of the CNN Accelerator

Resource Utilization Capacity %Utilization
LUTs 42,609 53,000 80.39
Flip-Flops 21,461 106,000 20.25
DSP Blocks 140 220 63.63
BRAM 85 140 60.71
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» Design Trade-Offs and Implementation Considerations
The FPGA implementation involves trade-offs
between latency, resource utilization, and design
complexity. Loop pipelining and data reuse are employed to
improve throughput, while FIFO buffering decouples data
transfer from compu- tation. Although aggressive
optimization can further reduce latency, the current design
prioritizes stability and functional correctness, ensuring
reliable real-time operation on a low-cost FPGA platform.

VI EXPERIMENTAL SETUP
AND OBSERVATIONS

» Live Inference Setup

The system is evaluated using live video input from a
USB camera. The PS executes a Python-based control
application that manages frame capture, data transfer, and
result display. A web-based dashboard is implemented
using a lightweight server framework to visualize
predictions in real time.
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» Runtime Observations

The system achieves real-time inference with
consistent responsiveness, as supported by the measured
runtime perfor- mance metrics. The inclusion of an explicit
unknown gesture class helps handle ambiguous inputs.
Observed misclassifi- cations highlight the trade-off
between model compactness and classification robustness,
emphasizing the importance of dataset diversity and model
tuning.

» Runtime Performance Metrics

To evaluate real-time feasibility, runtime performance
met- rics are recorded during live system execution. These
metrics include frames per second (FPS), CNN inference
latency, and end-to-end (E2E) system latency, measured
from frame acquisition to final visualization output.
Runtime statistics are logged during continuous operation of
the system.

jupyter
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[INFO] DMA hard-reset at startup

status=0, value=-1, duration=-1

[INFO] Using /dev/videoO

[INFO] Starting Flask app...

* Serving Flask app 'inf' (lazy loading)
* Environment: production

* Debug mode: off
* Running on all addresses.

[INFO] THREE (100.0%)

192.168.29.51 — — [12/0ct/2025 19:41:17] "GET /favicon.ico
[INFO] THREE (100.0%)
[INFO] THREE (100.
[INFO] THREE (100.
[INFO] THREE (100.
[INFO] THREE (100.
[INFO] THREE (100.
[INFO] THREE (100.
[INFO] THREE (100.
[INFO] UNKNOWN (100.0%)
[INFO] ONE (100.0%)
[INFO] THREE (100.0%)
[INFO] UNKNOWN (100.0%)
[INFO] THREE (100.0%)
[INFO] UNKNOWN (100.0%)
[INFO] UNKNOWN (100.0%)
[INFO] PAIM (100.0%)
[INFO] THREE (100.0%)
[INFO] THREE (100.0%)
[INFO] THREE (100.0%)
[INFO] THREE (100.0%)
[INFO] THREE (100.0%)
[INFO] UNKNOWN (100.0%)
[INFO] UNKNOWN (100.0%)
[INFO] THREE (100.0%)
[INFO] UNKNOWN (100.0%)
[INFO] THREE (100.0%)

/usr/local/share/pyng-venv/1lib/python3.8/site-packages/pyng/overlay.py:681: UserWarning: Interrupt s2mm introut not created:

[ WARN:0] global ../modules/videoio/src/cap gstreamer.cpp (935) open OpenCV | GStreamer warning: Cannot query video position

WARNING: This is a development server. Do not use it in a production deployment.
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Fig 5 Real-Time Gesture Recognition Dashboard.

IJISRT26JAN329

WWW.ijisrt.com 1194


https://doi.org/10.38124/ijisrt/26jan329
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/26jan329

FPGA Live Gesture Debug Dashboard

Switch: |
delr»display), e.g

center |
nap/CSV (m

Mode: rgb  ROI:

Remap: GET /set Jset_map/9,1,7

IT‘HREE {000%

l

Top-Left: Raw center-crop | op-Right: Preprocessed (x5) Bottom-Left: Annotated Output | Bottom-Right: Probabilities

Fig 6 Real-Time Gesture Recognition Webpage Displaying Live Predictions.

VII. DISCUSSION VIIL. CONCLUSION AND FUTURE WORK

The presented system demonstrates the practicality of This paper presented a real-time hand gesture

de- ploying CNN-based hand gesture recognition on low-
cost FPGA platforms. While deeper models may offer
higher accuracy, the chosen lightweight architecture enables
real-time operation within resource constraints. The
hardware—software co-design approach provides flexibility
for future enhance- ments, such as model refinement or

recognition system implemented on a PYNQ-Z2 FPGA
platform using a lightweight CNN accelerator. The system
integrates live image acquisition, hardware-accelerated
inference, and web- based visualization. Experimental
observations confirm the feasibility of deploying CNN-
based gesture recognition on embedded FPGA platforms.

Future work includes improving model robustness,
exploring quantized inference, and extend- ing the system to
dynamic gesture recognition.

additional preprocessing.
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Table 3 Runtime Performance Metrics of the Proposed System

Metric Observed Value
Frames Per Second (FPS) 2.25-2.28
Inference Latency (ms) 8.8 -8.9
End-to-End Latency (ms) 429 — 434
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