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Abstract: The movement of currents and water particles in the oceans, both at the surface and at depth, plays an important 

role in ocean circulation and the description of surface waves. The movement of water particles is generally influenced by 

the passage of surface waves. This movement provides a better understanding of the influence of waves on the movements 

of water particles at the surface and at the bottom. In this study, the evolution of wave and particles movement can be 

determined by considering a channel with linearly varying bottom. The nonlinear Stokes theory equations to be solved in 

this case will allow us to determine the solutions for the hydrodynamic wave parameters. Because of the non-linearity of the 

equations, finite difference method and iterative method of Gauss-Siedel by using the Successive over relaxation (S.O.R.) 

are used to resolve numerically the nonlinear equations. Our results are obtained using the FORTRAN and MATLAB 

software to visualize the temporal propagation of the wave in the channel and its influence on the water motion at the free 

surface and at the bottom. Finally, we will also look at the influence of the linear bottom on the evolution of the wave and 

the movement of water particles. 
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I. INTRODUCTION 

 

The interaction between bottom swell and free surface 

swell is a natural physical phenomenon that is very important 

in coastal dynamics. This interaction causes many natural 

consequences such as coastal erosion, wave energy 

dissipation, wave refraction and even energy production. To 

understand this interaction phenomenon, it is necessary to 
understand the hydrodynamic aspect of waves. The movement 

of fluid particles is caused by the spread of the swell from the 

surface to the bottom [1]. Several natural factors can influence 

wave propagation and thus alter particle movement (bottom, 

barriers, etc.). To simulate wave propagation in the first 

instance, we use the Stokes wave theory model in a numerical 

wave channel. [2] 

 

Wave’s propagation and its hydrodynamic comportment 

have been experimenting by researchers with swell channels 

to reproduce the real phenomenon .for this mathematical and 

numerical theories have been developed to give approximate 
solutions. Molin et al. [3] and Rahman et al. [4] focused on the 

study of second-order wave interaction with a vertical square 

cylinder and a circular cylinder, respectively. Similarly, a 

time-domain method is used to analyze wave interactions with 

a group or an array of cylinders. The non-linear free surface 

boundary conditions are satisfied based on the perturbation 

method up to second order. The first- and second-order 

velocity potential problems at each time step are solved using 

a finite element method (FEM). Belibassakis, K.A.and 

Athanassoulis, G.A [5] present second-order Stokes theory has 

been extended to the case of a generally shaped bottom profile 

connecting two half-strips of constant (but possibly different) 
depths, initiating a method for generalizing the Stokes 

hierarchy of second- and higher-order wave theory, without 

the assumption of spatial periodicity. In modelling the wave–

bottom interaction three partial problems arise: the first order, 

the unsteady second order and the steady second order. 

Ge Wei a, James T. Kirby b, Amar Sinha a [6] present a 

method for generating waves in Boussinesq-type wave models 

is described. The method employs a source term added to the 

governing equations, either in the form of a mass source in 

the continuity equation or an applied pressure forcing in the 

momentum equations. Assuming linearity, they derive a 

transfer function which relates source amplitude to surface 
wave characteristics. They then test the model for generation 

of desired incident waves, including regular and random 

waves, for both one and two dimensions. 

https://doi.org/10.38124/ijisrt/26jan338
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Our goal is to study the interaction between the 

propagation of the swell and the movement of particles at the 

free surface and at the bottom. By considering the swell as a 

Stokes wave, we will determine this interaction through the 

evolution of the potential field as a function of that of the 

wave. We use in our model a numerical wave channel with a 

fixed linear bottom whose entry is determined by a linear 

stokes wave. We determine at first a study of the 
hydrodynamic aspect buy using the equations governing the 

propagation of stokes waves to finally get the evolution of the 

free surface elevation and the distribution of the velocity 

potential in the wave channel. 

 

We will observe the effect of the outlet condition of the 

channel, considered to be a permeable wall, and the slope on 

the interaction between the wave and the free surface and, 

finally, between the wave and the bottom 

 

To do this we will first describe the physical model to be 

studied and describe the calculation through the mathematical 

formulation. The equations obtained being nonlinear, we will 

finally approach the numerical formulation to give the results. 

 

II. FORMULATION OF THE 

PHYSICAL PROBLEM 

 
We will expose our problem by proposing a numerical 

wave channel to simulate our physical model. We consider in 

our case and irrotational, a non-viscous and incompressible 

fluid that is on movement under the effect of a Stokes wave in 

a wave channel of length L, wavelength 𝜆 and amplitude 𝐴 see 

Figure 2. The bottom condition is considered as a linear form 

(equation 1).the effect of the waves on particles motions from 

the free surface to the bottom are given in this study by the 

evolution of the potentiel field. 

Fig 1 Physical Description of the Problem 

 

ℎ(𝑥) =
ℎ0

𝐿
𝑥                                                                                   (1) 

 
 The Nonlinear System of Equations Representing Stokes 

Wave Theory are 

 

 Laplace Equation: ℎ(𝑥) < 𝑧 < 𝜂(𝑥; 𝑡); 0 ≤ 𝑥 ≤ 𝐿 

 

∆𝜙 = 0                                                                                           (2) 

 

 Kinematic Free Surface Condition: 𝑧 = 𝜂(𝑥; 𝑡) ; 0 ≤ 𝑥 ≤
𝐿 

 
∂η

∂t
= −

𝜕𝜙

𝜕𝑥

∂η

𝜕𝑥
+

𝜕𝜙

𝜕𝑧
                                                                   (3) 

 

 Dynamic Free Surface Condition: 𝑧 = 𝜂(𝑥; 𝑡); 0 ≤ 𝑥 ≤ 𝐿 

 
∂∅

∂t
+

1

2
[(

𝜕ϕ

𝜕𝑥
)2 +

𝜕ϕ

𝜕𝑧
)2)] + 𝑔𝜂 = 0                                        (4) 

 

 Bottom Condition: 𝑧 = ℎ(𝑥); 0 ≤ 𝑥 ≤ 𝐿 

 
𝜕𝜙

𝜕𝑧
−

𝜕𝜙

𝜕𝑥

𝜕ℎ

𝜕𝑥
= 0                                                                          (5) 

 

Considering a linear wave downstream the channel, the 

hydrodynamic conditions at the inlet will be determined by 
 

η(x; t) = Acos(kx-ωt)                                                                (6) 

 

ϕ(𝑥; 𝑧; 𝑡) =
𝐴𝑔

𝜔
 

cosh[𝑘(𝐻𝑒+𝑧)]

sinh(𝑘𝐻𝑒)
 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)                           (7)  
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Finally we can give the initial conditions and the edge 

conditions for the free surface elevation 𝜂  and the velocity 

potential  𝜙 to complete the system of equations to solve. 

 

 Initial Condition At  𝑡 = 0 

 

𝜂(𝑥; 𝑡 = 0) = 𝐻𝑒 + 𝐴𝑐𝑜𝑠(𝑘𝑥)                                                  (8) 

 

𝜙(𝑥; 𝑧; 𝑡 = 0) =
𝐴𝑔

𝜔
 
cosh[𝑘(𝑧 + 𝐻𝑒)]

sinh(𝑘𝐻𝑒)
 𝑠𝑖𝑛(𝑘𝑥)                  (9) 

 

 Entry Condition:  𝑥 = 0;   ℎ(0) < 𝑧 < 𝜂(0; 𝑡) 

 

At 𝑡 > 0 

 

η(0; t) = 𝐴𝑐𝑜𝑠(𝜔𝑡) + 𝐻𝑒                                                         (10) 

 

𝜙(0; 𝑧; 𝑡) =
𝐴𝑔

𝜔
 
cosh[𝑘(𝑧 + 𝐻𝑒)]

sinh(𝑘𝐻𝑒)
 𝑠𝑖𝑛(−𝜔𝑡)                     (11) 

 

 Exit Condition: 𝑥 = 𝐿;   ℎ(𝐿) < 𝑧 < 𝜂(𝐿; 𝑡) 

For the free surface elevation, we evaluate equation (6) 

for X=L and for the velocity potential we consider an 

impermeable wall 

 

𝜂(𝑥 = 𝐿; 𝑡) = 𝐴𝑐𝑜𝑠(𝑘𝐿 − 𝜔𝑡) + 𝐻𝑒                                     (12) 

 
𝜕𝜙

𝜕𝑥
= 0                                                                                         (13) 

 

III. NON DIMENSION FORMULATION 

 
It would be helpful to develop a method to reduce the 

number of parameters that interfere with the entire system of 

equations in our mathematical model. We can accomplish this 

by combining them into dimensionless groupings that have 

physical meaning and that enable us to learn about the answer 

before the problem is solved. This method is used to get 

dimensionless number to simulate nonlinear problem. For this 

we write the physical parameters as product of the non-

dimension parameter and reference parameter. 

𝑡 = 𝑡∗ ∙ 𝑡0 ; 𝑥 = 𝑥∗ ∙ 𝐿 ; 𝑧 = 𝑧∗ ∙ ℎ0;   𝜂  = 𝜂∗ ∙ ℎ0;  𝜙 = 𝜙∗ ∙
𝐿2

𝑡0
; ℎ∗(𝑥∗) = 𝑥∗; 𝐴 = 𝐴∗. ℎ0 ; 𝐻𝑒 = 𝐻𝑒

∗. ℎ0 ; 𝑘 = 𝑘∗/ 𝐿 

 

With 𝑡0 , 𝐿  and ℎ0   are respectively parameters of the 

time, the  length along the x axis and the  length along the z 

axis. 

 

Two dimensionless numbers are used to simulate our 

model. 

 

 Froude Number 

 

1
𝐹𝑟⁄ =

𝑔ℎ0𝑡0
2

𝐿2
=

𝑔ℎ0

𝐿2𝜔2
 

 

 Parameter of the Geometry of the Problem 

 

𝛽 =
𝐿

ℎ0

 

 

IV. TRANSFORMATION 

 

To make the control of the boundaries easier, we use a 

curvilinear coordinate system that allows us to account for the 

irregularity of the fond and to always adopt the form of the free 

surface. This change makes it easier to write conditions to 

limits on irregular borders and in evolving domains. This 

transformation transforms the domain of our model into a 

mathematical domain (as shown in Figure 2) at each 

dimensionless instant 𝑡∗ is defined by. 

 

{
𝑇: 𝐷 → 𝐷𝑡 

(𝑥∗, 𝑧∗) ↦ (𝜒∗, 𝜉∗) 

 

With 

 

𝜒∗ = 𝑥∗             𝜁∗ =
𝑧∗ − ℎ∗(𝑥∗)

𝜂∗(𝑥∗; 𝑡∗) − ℎ∗(𝑥∗)
           𝑡∗ = 𝑡∗

 

Fig 2 Physical Domain Transformation 

https://doi.org/10.38124/ijisrt/26jan338
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The dimensionless equations in rectangular domain will 

be solved. The hydrodynamic parameters are obtained, 

respectively, by solving the coupled kinematic and Laplace 
equations in mathematical domain. 

 

V. NUMERICAL METHOD 

 

The algebraic equations obtained from our study are 

coupled and nonlinear. We therefore need to use a numerical 

method in order to be able to solve them. In our case, we will 

use the finite difference method since the equations are 

essentially composed of partial derivatives. The finite 

difference method allows us to provide an approximation of 

the algebraic solutions with discrete solutions. As illustrated 

in figure 4, nodes selected from grid that partitions the domain 
are used to approximate discrete places in space. At each grid 

node, the discretization process approximates the spatial 

derivatives of the flow variables included in the differential 

equation. 

 

 
Fig 3 Meshing of the Rectangular Domain 

 

 

Classical finite difference schemes [7] of order 2 will be 

used to approximate the spatial partial derivatives derived 

from the system's equations and an implicit method with to 
approximate time derivative.The discretization computation 

will clarify the decision between the upstream and 

downstream off-center diagrams and provide justification 

based on the geometry of our situation. This decision was 

made in order to guarantee that the fluid's movement stays 

inside the computation domain. 

 

VI. NUMERICAL TECHNIQUE 

 

After discretizing the equations, we obtained a system of 

linear algebraic equations.To solve this system, several 
numerical solution techniques exist in the literature. 

 

We will use the iterative method of relaxation line by line 

of Gauss-Siedel [8] by using the Successive Over relaxation 

(S.O.R.) [9]. The principle of iterative methods consists in 

seeking the solution of the system using a series of successive 

approximations. From an arbitrary vector of components (𝑓𝑖)
𝑘  

, we can find (𝑓𝑖)
𝑘+1 at the next iteration. The process is 

stopped when the following convergence criterion is met by 

considering equation (14) 

 

 ∑ |(𝑓𝑖)𝑘  − (𝑓𝑖 )𝑘+1|𝑖=𝑖𝑚
𝑖=1

∑ |(𝑓𝑖)𝑘+1|𝑖=𝑖𝑚
𝑖=1

   ≤ 𝜀 𝑓                                              (14) 

 

With 𝜀𝑓 a fixed error criterion for iterative calculation. 

 

Since the problem is unsteady, it is also necessary to stop 

the time iterative process when the difference between the 

values at two successive times begins to become constant. To 

do this, we consider equation (15), which stops the iterative 

process. 

 

𝑚𝑎𝑥{𝑒 𝜂 ;  𝑒 𝜙} ≤    𝑒 𝑡                                                                (15) 

 

With 𝑒𝑡 is the fixed error criterion for the iterative calculation 

such that 

 

𝑒 𝑓 =
∑ |(𝑓𝑖)

𝑛+1 − (𝑓𝑖)
𝑛|𝑖=𝑖𝑚

𝑖=1

∑ |(𝑓𝑖)𝑛+1|𝑖=𝑖𝑚
𝑖=1

                                                  (16) 

 

VII. RESULTS 

 

The simulations will be carried out using FORTRAN and 

MATLAB software. The results obtained from these 

simulations show us the evolution of the free surface at early 

and later times for different slope values. We will then present 

the influence of wave propagation on water motion inside the 

channel through the evolution of the potential field for 

different depths. For that we study a numerical waves channel 

with an amplitude 𝐴 = 0.5 a wavelength 𝜆 = 0.25 and an 
average height He=10 as parameters for an linear incident 

wave. The first results presented for a fixed slope 𝛽 = 100 , 

the error criteria for the convergence of the iterative 

calculations for the free surface elevation and the velocity 

potential is set to 1. 103. 

 

VIII. WAVE PROFILE FOR DIFFERENT 

VALUES OF  𝜷AT THE FIRST AND 

LONGER TIMES 

 

A linear evolution of the wave at the initial time for 

t=0.0025 is observed for each value of 𝛽  in the channel. This 

evolution is characterised by a peak height equal to the trough 

depth (Fig. 4 left). At long times, the wave is non-linear (Fig. 

4 right). There is a decrease in peak height relative to an 

increase in trough depth when beta increase 

 

An increase in the value of 𝛽 accounts for the decrease 

in slope, resulting in an increase in depth. In fact, there is a 

slight decrease in crest height as depth increases. 
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Fig 4 Longitudinal Wave Profile for t=0.025 (Left) and t=1.07 (Right) for Different Values of   𝛽

 

IX. VARIATION IN THE POTENTIAL FIELD 

FOR DIFFERENT VALUES OF 𝜷   AT T=0.0025 

 

This evolution is accompanied by movement of the fluid 

particles in the water.in the early phase (t=0.0025) and for each 

value of 𝛽 a particle movement is observed with maximum 

intensity at the surface of the channel below the crests and 
troughs. This intensity decreases until it is cancelled out as we 

get closer to the bottom. The positive intensity is relative to 

movement in the direction of the wave and the negative 

intensity in the opposite direction. As the wave increases, the 

slope decreases, i.e. as the depth increases, the intensity of 

movement in the proximity of the surface decrease slightly 

 

Initially, there is no interaction between the wave and the 

bottom, since there is no movement near the bottom for all 

values of  𝛽 (Fig 5). 

 

 
 

https://doi.org/10.38124/ijisrt/26jan338
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Fig 5 Particle Motion for Different Depths and Different Values of 𝛽 for t=0.025 

 

X. VARIATION IN THE POTENTIAL FIELD 

FOR DIFFERENT VALUES OF   𝜷 AT T=1.07 

 

At long times, the intensity of the movement is always 

highest near the free surface. However, the movement only 

occurs under the troughs (in the opposite direction to the 

wave). This is due to the nature of the non-linear wave at long 

times, where we have low crest heights compared to large 
trough depths (Fig. 4 left).When the slope decreases (increase 

in depth), we notice that  the intensity of the movement 

decrease near the surface of the channel, as in the early 

stages.We also notice an interaction at long times between the 

non-linear wave and the bottom, since small particle 

movements are felt near the bottom (Fig. 5). These movements 

are induced by the increase in trough depth (Fig. 4 left). These  

movements therefore occur in the opposite direction to the 

wave, as shown in Fig. 5.When the depth increases, there is 

virtually no variation in the intensity of the movement near the 

bottom. 

 

XI. CONCLUSION 

 

A numerical wave channel was used in our simulation to 

observe the effect of the stokes wave on  particules movement 

from free surface to bottom. To do this, we used a 

mathematical method based on Stokes' theory to determine  the  

free surface elevation and the potential Field. We observed a 

simulation using the nonlinear stokes theory to describe the 

calculation in a hydrodynamic approach using a channel with 

a linear bottom and an exit condition taken as an impermeable 

wall. The numerical  hydrodynamic results are obtained by 

using the finite difference method and the iterative method of 

relaxation line by line of Gauss-Siedel .For the first times, 
there is only movement in the proximity of the free surface up 

to a certain depth, but little movement begins to occur in the 

proximity of the bottom at greater times. This is because the 

impermeable wall taken as the exit condition reflects the wave, 

creating an interaction between it and the bottom. However, 

the interaction is significant in the proximity of the free 

surface, since this is where the velocity potential field is 

strongest. The wave has a greater influence on movement at 

the surface than at the bottom. 

 

Finally, we also observe that there is no interaction 
between the wave and the bottom as depth increases. 
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Fig 6 Particle Motion for Different Depths and Different Values of  𝛽 for t=1.07
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