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Abstract: The movement of currents and water particles in the oceans, both at the surface and at depth, plays an important
role in ocean circulation and the description of surface waves. The movement of water particles is generally influenced by
the passage of surface waves. This movement provides a better understanding of the influence of waves on the movements
of water particles at the surface and at the bottom. In this study, the evolution of wave and particles movement can be
determined by considering a channel with linearly varying bottom. The nonlinear Stokes theory equations to be solved in
this case will allow us to determine the solutions for the hydrodynamic wave parameters. Because of the non-linearity of the
equations, finite difference method and iterative method of Gauss-Siedel by using the Successive over relaxation (S.0.R.)
are used to resolve numerically the nonlinear equations. Our results are obtained using the FORTRAN and MATLAB
software to visualize the temporal propagation of the wave in the channel and its influence on the water motion at the free
surface and at the bottom. Finally, we will also look at the influence of the linear bottom on the evolution of the wave and

the movement of water particles.
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I INTRODUCTION

The interaction between bottom swell and free surface
swell is a natural physical phenomenon that is very important
in coastal dynamics. This interaction causes many natural
consequences such as coastal erosion, wave energy
dissipation, wave refraction and even energy production. To
understand this interaction phenomenon, it is necessary to
understand the hydrodynamic aspect of waves. The movement
of fluid particles is caused by the spread of the swell from the
surface to the bottom [1]. Several natural factors can influence
wave propagation and thus alter particle movement (bottom,
barriers, etc.). To simulate wave propagation in the first
instance, we use the Stokes wave theory model in a numerical
wave channel. [2]

Wave’s propagation and its hydrodynamic comportment
have been experimenting by researchers with swell channels
to reproduce the real phenomenon .for this mathematical and
numerical theories have been developed to give approximate
solutions. Molin et al. [3] and Rahman et al. [4] focused on the
study of second-order wave interaction with a vertical square
cylinder and a circular cylinder, respectively. Similarly, a
time-domain method is used to analyze wave interactions with
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a group or an array of cylinders. The non-linear free surface
boundary conditions are satisfied based on the perturbation
method up to second order. The first- and second-order
velocity potential problems at each time step are solved using
a finite element method (FEM). Belibassakis, K.A.and
Athanassoulis, G.A [5] present second-order Stokes theory has
been extended to the case of a generally shaped bottom profile
connecting two half-strips of constant (but possibly different)
depths, initiating a method for generalizing the Stokes
hierarchy of second- and higher-order wave theory, without
the assumption of spatial periodicity. In modelling the wave—
bottom interaction three partial problems arise: the first order,
the unsteady second order and the steady second order.
Ge Wei a, James T. Kirby b, Amar Sinhaa [6] present a
method for generating waves in Boussinesg-type wave models
is described. The method employs a source term added to the
governing equations, either in the form of a mass source in
the continuity equation or an applied pressure forcing in the
momentum equations. Assuming linearity, they derive a
transfer function which relates source amplitude to surface
wave characteristics. They then test the model for generation
of desired incident waves, including regular and random
waves, for both one and two dimensions.
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Our goal is to study the interaction between the
propagation of the swell and the movement of particles at the
free surface and at the bottom. By considering the swell as a
Stokes wave, we will determine this interaction through the
evolution of the potential field as a function of that of the
wave. We use in our model a numerical wave channel with a
fixed linear bottom whose entry is determined by a linear
stokes wave. We determine at first a study of the
hydrodynamic aspect buy using the equations governing the
propagation of stokes waves to finally get the evolution of the
free surface elevation and the distribution of the velocity
potential in the wave channel.

We will observe the effect of the outlet condition of the
channel, considered to be a permeable wall, and the slope on
the interaction between the wave and the free surface and,
finally, between the wave and the bottom
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To do this we will first describe the physical model to be
studied and describe the calculation through the mathematical
formulation. The equations obtained being nonlinear, we will
finally approach the numerical formulation to give the results.

1. FORMULATION OF THE
PHYSICAL PROBLEM

We will expose our problem by proposing a numerical
wave channel to simulate our physical model. We consider in
our case and irrotational, a non-viscous and incompressible
fluid that is on movement under the effect of a Stokes wave in
a wave channel of length L, wavelength A and amplitude A see
Figure 2. The bottom condition is considered as a linear form
(equation 1).the effect of the waves on particles motions from
the free surface to the bottom are given in this study by the
evolution of the potentiel field.

jdL A+

z =1, free surface
elevation+

.
.

- = / z = He, free
P
/\ / surface «
V\m -
M
fire v
Entry+
Linear stokes Exit +
Hev
wave+ Impermeable wall+
z = h(x),bottom«
T.:\_ i hl}"'l
.:'I — _ i _'}l.._l
< .
L+
Fig 1 Physical Description of the Problem
h . i
h(x) = fox ) e Dynamic Free Surface Condition: z = n(x;t);0 <x < L

» The Nonlinear System of Equations Representing Stokes
Wave Theory are

e Laplace Equation: h(x) <z <n(x;t);0<x <L

Ap =0 )

e Kinematic Free Surface Condition: z =n(x;t);0 <x <
L
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Considering a linear wave downstream the channel, the
hydrodynamic conditions at the inlet will be determined by

n(x; t) = Acos(kx-wt) (6)

Ag cosh[k(He+2)]
w sinh(kHg)

o(x; z;t) = sin(kx — wt) (7
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Finally we can give the initial conditions and the edge
conditions for the free surface elevation n and the velocity
potential ¢ to complete the system of equations to solve.
¢ Initial Condition At t =0
n(x;t =0) = H, + Acos(kx) (8)

Ag cosh[k(z + H,)]

P(x;z;t=0) = w  sinh(ed) sin(kx) 9

e Entry Condition: x = 0; h(0) <z <n(0;t)

Att >0
n(0;t) = Acos(wt) + H, (10)
¢(0;z;t) = Ag coshlk(z + H,)] sin(—wt) 11

w sinh(kH,)

e Exit Condition: x = L; h(L) <z <n(L;t)

For the free surface elevation, we evaluate equation (6)
for X=L and for the velocity potential we consider an
impermeable wall

n(x = L;t) = Acos(kL — wt) + H, (12)
0
% =0 (13)

1. NON DIMENSION FORMULATION

It would be helpful to develop a method to reduce the
number of parameters that interfere with the entire system of
equations in our mathematical model. We can accomplish this
by combining them into dimensionless groupings that have
physical meaning and that enable us to learn about the answer
before the problem is solved. This method is used to get
dimensionless number to simulate nonlinear problem. For this
we write the physical parameters as product of the non-
dimension parameter and reference parameter.
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With t, , L and h, are respectively parameters of the
time, the length along the x axis and the length along the z

axis.

Two dimensionless numbers are used to simulate our
model.

e Froude Number

12 [2w?

1, _ghet§  ghg
/Fr

e Parameter of the Geometry of the Problem

L
ﬂ - ho
V. TRANSFORMATION

To make the control of the boundaries easier, we use a
curvilinear coordinate system that allows us to account for the
irregularity of the fond and to always adopt the form of the free
surface. This change makes it easier to write conditions to
limits on irregular borders and in evolving domains. This
transformation transforms the domain of our model into a
mathematical domain (as shown in Figure 2) at each
dimensionless instant t* is defined by.

{ T:D - Dt
(x*z7) e (€7

' =hE)
() = ke (x)

X =x ¢

'
Free surface

elevation+

:

Bottom+

-""| -._____.-"'---.-- ‘

]
+

Free surface +

D+

offom+

Fig 2 Physical Domain Transformation
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The dimensionless equations in rectangular domain will
be solved. The hydrodynamic parameters are obtained,
respectively, by solving the coupled kinematic and Laplace
equations in mathematical domain.

V. NUMERICAL METHOD

The algebraic equations obtained from our study are
coupled and nonlinear. We therefore need to use a numerical
method in order to be able to solve them. In our case, we will
use the finite difference method since the equations are
essentially composed of partial derivatives. The finite
difference method allows us to provide an approximation of
the algebraic solutions with discrete solutions. As illustrated
in figure 4, nodes selected from grid that partitions the domain
are used to approximate discrete places in space. At each grid
node, the discretization process approximates the spatial
derivatives of the flow variables included in the differential
equation.

7 Free surface

j+1

Exit

Nodes i-1 [ i+1

bottom

Fig 3 Meshing of the Rectangular Domain

Classical finite difference schemes [7] of order 2 will be
used to approximate the spatial partial derivatives derived
from the system's equations and an implicit method with to
approximate time derivative.The discretization computation
will clarify the decision between the upstream and
downstream off-center diagrams and provide justification
based on the geometry of our situation. This decision was
made in order to guarantee that the fluid's movement stays
inside the computation domain.

VI NUMERICAL TECHNIQUE

After discretizing the equations, we obtained a system of
linear algebraic equations.To solve this system, several
numerical solution techniques exist in the literature.

We will use the iterative method of relaxation line by line
of Gauss-Siedel [8] by using the Successive Over relaxation
(S.0.R.) [9]. The principle of iterative methods consists in
seeking the solution of the system using a series of successive
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approximations. From an arbitrary vector of components (f;)*
, we can find (f;)*** at the next iteration. The process is
stopped when the following convergence criterion is met by
considering equation (14)

Tt — R
Sl T

(14)

With &, a fixed error criterion for iterative calculation.

Since the problem is unsteady, it is also necessary to stop
the time iterative process when the difference between the
values at two successive times begins to become constant. To
do this, we consider equation (15), which stops the iterative
process.

max{en; e¢} < e, (15)

With e is the fixed error criterion for the iterative calculation
such that

.- Zi:llml(ﬁ)n+1 _ (fl)nl
T sEm ()

VILI. RESULTS

(16)

The simulations will be carried out using FORTRAN and
MATLAB software. The results obtained from these
simulations show us the evolution of the free surface at early
and later times for different slope values. We will then present
the influence of wave propagation on water motion inside the
channel through the evolution of the potential field for
different depths. For that we study a numerical waves channel
with an amplitude A = 0.5 a wavelength A = 0.25 and an
average height He=10 as parameters for an linear incident
wave. The first results presented for a fixed slope g = 100,
the error criteria for the convergence of the iterative
calculations for the free surface elevation and the velocity
potential is set to 1. 103,

VIIL. WAVE PROFILE FOR DIFFERENT
VALUES OF BAT THE FIRST AND
LONGER TIMES

A linear evolution of the wave at the initial time for
t=0.0025 is observed for each value of 8 in the channel. This
evolution is characterised by a peak height equal to the trough
depth (Fig. 4 left). At long times, the wave is non-linear (Fig.
4 right). There is a decrease in peak height relative to an
increase in trough depth when beta increase

An increase in the value of g accounts for the decrease
in slope, resulting in an increase in depth. In fact, there is a
slight decrease in crest height as depth increases.
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IX. VARIATION IN THE POTENTIAL FIELD

FOR DIFFERENT VALUES OF g AT T=0.0025

This evolution is accompanied by movement of the fluid
particles in the water.in the early phase (t=0.0025) and for each
value of B a particle movement is observed with maximum
intensity at the surface of the channel below the crests and
troughs. This intensity decreases until it is cancelled out as we
get closer to the bottom. The positive intensity is relative to

Fig 4 Longitudinal Wave Profile for t=0.025 (Left) and t=1.07 (Right) for Different Values of g

movement in the direction of the wave and the negative
intensity in the opposite direction. As the wave increases, the
slope decreases, i.e. as the depth increases, the intensity of
movement in the proximity of the surface decrease slightly

Initially, there is no interaction between the wave and the

bottom, since there is no movement near the bottom for all
values of g (Fig 5).
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Fig 5 Particle Motion for Different Depths and Different Values of g for t=0.025

X. VARIATION IN THE POTENTIAL FIELD

FOR DIFFERENT VALUES OF g AT T=1.07

At long times, the intensity of the movement is always
highest near the free surface. However, the movement only
occurs under the troughs (in the opposite direction to the
wave). This is due to the nature of the non-linear wave at long
times, where we have low crest heights compared to large
trough depths (Fig. 4 left).When the slope decreases (increase
in depth), we notice that the intensity of the movement
decrease near the surface of the channel, as in the early
stages.We also notice an interaction at long times between the
non-linear wave and the bottom, since small particle
movements are felt near the bottom (Fig. 5). These movements
are induced by the increase in trough depth (Fig. 4 left). These
movements therefore occur in the opposite direction to the
wave, as shown in Fig. 5.When the depth increases, there is
virtually no variation in the intensity of the movement near the
bottom.

XI. CONCLUSION

A numerical wave channel was used in our simulation to

observe the effect of the stokes wave on particules movement

from free surface to bottom. To do this, we used a
mathematical method based on Stokes' theory to determine the
free surface elevation and the potential Field. We observed a
simulation using the nonlinear stokes theory to describe the
calculation in a hydrodynamic approach using a channel with
a linear bottom and an exit condition taken as an impermeable
wall. The numerical hydrodynamic results are obtained by
using the finite difference method and the iterative method of
relaxation line by line of Gauss-Siedel .For the first times,
there is only movement in the proximity of the free surface up
to a certain depth, but little movement begins to occur in the
proximity of the bottom at greater times. This is because the
impermeable wall taken as the exit condition reflects the wave,
creating an interaction between it and the bottom. However,
the interaction is significant in the proximity of the free
surface, since this is where the velocity potential field is
strongest. The wave has a greater influence on movement at
the surface than at the bottom.

Finally, we also observe that there is no interaction
between the wave and the bottom as depth increases.
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Fig 6 Particle Motion for Different Depths and Different Values of g for t=1.07
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