
Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan348

IJISRT26JAN348 www.ijisrt.com 1344

Agentic AI Overview

Somil Asthana1

1Tide. Co

Publication Date: 2026/01/21

Abstract: Agentic AI represents a paradigm shift from traditional single-shot LLM applications to iterative, autonomous

workflows that mirror human problem-solving approaches. Agents range from less autonomous to highly autonomous

enabling spectrum of use.

This article equips data scientists and AI practitioners with the conceptual framework and practical methodology to

design, implement, and optimize agentic AI workflows for complex, autonomous task execution using 4 foundational Agentic

design patterns. Giving pragmatic five-step approach to building agentic workflow.

How to Cite: Somil Asthana (2026) Agentic AI Overview. International Journal of Innovative Science and Research Technology,

11(1), 1344-1349. https://doi.org/10.38124/ijisrt/26jan348

I. INTRODUCTION

 What Is Agentic AI?
Traditional non-agentic LLM-based solutions, such as

chatbots, operate through single-shot execution—generating

outputs directly from prompts. While this approach has

proven effective for many use cases, it has inherent

limitations. Agentic AI workflows, by contrast, employ a

multi-step iterative process where agents mirror human

problem-solving patterns: they analyze, research, revise, and

refine their approach before producing a final result. This

iterative loop, built on LLM foundations, may require

multiple steps and introduce latency, but it consistently

delivers superior outputs compared to non-agentic solutions.

 Agentic AI Workflow

An Agentic AI workflow consists of multiple

coordinated steps designed to complete complex tasks with

varying degrees of autonomy. These solutions exist along a

spectrum:

 Less autonomous agents operate within fully

predetermined sequences, executing predefined steps with

limited flexibility. While effective for their assigned tasks,

their capabilities are constrained by their rigid structure.

 Highly autonomous agents possess substantial decision-

making freedom, including the ability to determine

internal processing steps, invoke appropriate tools,

generate code dynamically, and iteratively refine outputs

through multiple cycles of reflection and improvement.

These agents handle more sophisticated tasks and produce

higher-quality results.

 Degree of Autonomy

 Less Autonomous Agents:

 All steps are predefined

 All tools are hard-coded

 Autonomy is limited to text generation

 Highly Autonomous Agents:

 Make many decisions autonomously

 Can create new tools or code on the fly

 Determine their own processing strategies

 Benefits of Agentic AI Workflows

● Effective execution: Agents perform tasks with some

accuracy and reliability.

● Complex output: Agents can handle sophisticated, multi-

faceted tasks that exceed single-shot capabilities.

● Parallelism: Agents can execute multiple intermediate

tasks concurrently and synthesize results.

● Modularity: Workflows can be modified by replacing

LLMs or adjusting available tools without restructuring

the entire system.

 Building Blocks for Agentic Workflow

A fundamental principle in designing agentic

workflows is decomposition: analyze existing system

processes and identify discrete steps that can be implemented

either through LLMs or specialized software tools. If agents

cannot execute a step effectively, it should be further

decomposed into manageable substeps.

https://doi.org/10.38124/ijisrt/26jan348
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/26jan348

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan348

IJISRT26JAN348 www.ijisrt.com 1345

Table 1 Building Blocks for Agentic Workflow

Building Block Example Usecase

Models LLM Text generation, tool use, information extraction

Algorithms Machine Learning Models, Heuristic Models,
Statistical Regression Models, Python code

Prediction, rule-based logic, regression models,
pdf-to-text, text-to-speech, image analysis

Tools MCP, function tools Web Search, real-time feeds, check social profile,

handle, check calendar, RSS feeds

 Information Retrieval Database, Retrieval System like RAG

II. LITERATURE COMPARISON AND

POSITIONING

This tutorial aligns closely with foundational work in

agentic AI while providing a practical, implementation-

focused perspective for data scientists and practitioners. The

four design patterns presented in this tutorial—Reflection,

Tool Use, Planning, and Multi-Agent—align directly with the

framework popularized by Andrew Ng in his 2024
presentations and DeepLearning.AI courses on agentic

workflows (Ng, 2024). This tutorial extends his framework

by providing detailed implementation guidance, evaluation

strategies, and practical workflows for production

deployment.

The Tool Use pattern described in this tutorial is based

on the ReAct (Reasoning and Acting) framework introduced

by Yao et al. (2023) transforms the idea into practical

implementation.

Our evaluation framework uses objective (Python-

based) and subjective (LLM-as-judge) approaches as

documented by (Raschka, 2024; Chang et al., 2024)

 Agentic Design Patterns

Four critical agentic design patterns form the

foundation of sophisticated workflows. These patterns can be

combined in various configurations to create complex,

powerful systems.

Table 2 Agentic Design Patterns

Design Pattern Design Pattern Description

Reflection An LLM (the same or a different one) reviews previously generated text, evaluates its quality, and suggests

improvements. This iterative critique process enhances output quality.

Tool use LLMs are provided with tools (functions) to assist with assigned tasks. Examples include code execution for

analytical tasks, database resources and web search for information gathering, email/calendar tools for

productivity, and image libraries for visual tasks.

Planning A collaborative workflow incorporating four stages: (1) Task Planning, (2) Model Selection, (3) Task

Execution, and (4) Response Generation. This framework enables flexible, autonomous
operation.autonomously.

Multi-agentic

workflow

Multiple agents coordinate, debate, and converge toward consensus. While challenging to control,

preliminary research indicates these workflows can achieve exceptional accuracy.

 Agentic Pattern: Reflection

Just as humans reflect on their work to identify

improvements, LLMs can be prompted to evaluate their own

outputs. Reflection is particularly effective in code

generation, where reasoning-focused LLM models excel at

identifying inconsistencies and bugs. Incorporating external

feedback into the reflection process further enhances

generation efficiency and quality.

The below figure illustrates a reflection pattern flow.

Fig 1 Reflection Design Pattern

https://doi.org/10.38124/ijisrt/26jan348
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan348

IJISRT26JAN348 www.ijisrt.com 1346

 Agentic Pattern: Tools
Tools extend LLM capabilities beyond text generation,

enabling agents to take actions, retrieve information, and

perform computations. In this pattern, tool information is

provided to the agentic workflow, and the LLM

autonomously decides whether and when to invoke specific
functions. After execution, function outputs are fed back into

the conversation history, allowing agents to generate

informed final responses.

Fig 2 Agentic Tools Design Pattern

Table 3 Agentic Pattern: Tools

Scenario Tool Expected Output

Prompt asking to search for nearby

recreational activity.

web search tool with location and date

time tool

Agents combine tools to provide

information about clubs or activity centers

Business Intelligence asking for specific

query on data

SQL query creation tool and SQL

execution Python function

Agents generate SQL queries, execute

them via database connections, and

provide business intelligence insights

Complex calculations to compute ROI

for a portfolio

Function call to retrieve asset prices

combined with ROI calculation tool

Agents calculate current portfolio ROI

Modern LLMs no longer require extensive descriptions

in prompts to invoke functions. Today's models are

increasingly trained to interpret and call functions based

solely on function names and docstrings, demonstrating

enhanced logical decision-making capabilities.

One of the most powerful tools available to agents is

code execution, which allows agents to generate Python code

that executes in the background. This transforms agents from

simple text generators into computational engines capable of

sophisticated planning and execution.

Another significant advancement is the Model Context

Protocol (MCP), which extends function tool capabilities to

remote servers, effectively allowing agents to leverage server

functionalities as callable functions, dramatically expanding

their power and reach.

 Agentic Pattern: Planning

Agentic workflows become significantly more flexible
when planning components allow for dynamic rather than

fixed execution flows. In this pattern, LLMs determine the

optimal course of action rather than following predetermined

sequences. A planner LLM receives functional tools and

prompts as inputs, it generates step-by-step instructions

(plan) required for achieving desired outputs. Each

instruction/task, along with relevant context, prompt and

tools, is passed to subsequent LLMs to run, forming a

processing chain from input to final output.

https://doi.org/10.38124/ijisrt/26jan348
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan348

IJISRT26JAN348 www.ijisrt.com 1347

Fig 3 Agentic Planner Design Pattern

This pattern eliminates the need to predefine function

call sequences. Instead, agents use available tools and

prompts to formulate plans—typically in JSON format—

specifying which function tools subsequent LLMs should
invoke. While this approach reduces control over execution

flow, it significantly enhances adaptability and problem-

solving capability.

 Agentic Pattern: Multi-Agent

While it might seem that extending a single agentic

workflow with additional function tools or layers would

suffice, multi-agent patterns offer distinct advantages. This

approach enables agent reuse across domains and promotes

modular development. For example, an agentic workflow

designed for creating graphic visualizations can be reused

across multiple applications. Additionally, teams can develop
agentic solutions independently and in parallel, then integrate

them later.

Multi-agent communication remains an active research

area, with ongoing work on optimal communication patterns

and coordination protocols. Despite control challenges, this

pattern offers substantial flexibility and scalability benefits.

III. EVALUATION

Building an optimal agentic workflow is inherently

iterative—it's difficult to know in advance which components
will succeed and how to evaluate them effectively. A best

practice is to build a "quick and dirty" initial prototype,

examine its outputs (including errors and unsatisfactory

results), and then systematically improve it.

Start by collecting 10-20 representative inputs and

running them through the agentic workflow to identify

common output errors. This empirical approach quickly

reveals the most frequent failure modes. For more systematic

evaluation, develop automated evaluation functions to track

specific error types. For instance, in an invoice processing

workflow, testing 10-20 invoices might reveal that date
extraction is the most common error. You can then create an

evaluation function specifically for date extraction, measure

accuracy, implement improvements, and monitor changes

over time.

Errors fall into two categories: objective and subjective.

Objective errors involving numerical outputs can be

evaluated using Python functions. Subjective errors,

particularly those involving text quality, benefit from an

"LLM-as-judge" approach, where outputs are compared

against 3-5 gold standard examples for each domain.

Table 4 Two “Axes” of Evaluation

 Evaluate with python code LLM-as-judge (subjective)

Target variable is

number or count

Checking for certain numerical variables like invoice date.

Python Eval Function

Count number of gold standard points

generated by agentic workflow

Target variable is

text

Checking for text length Decoding images and charts

https://doi.org/10.38124/ijisrt/26jan348
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan348

IJISRT26JAN348 www.ijisrt.com 1348

IV. STEPS FOR CREATING AN AGENTIC

WORKFLOW

The challenge in creating agentic workflows lies in the

multitude of possible approaches: Should you invest time

perfecting workflow design or focus on LLM selection? With

numerous design patterns available, the process can seem

daunting.

 Step 1: Plan a Quick and Direct Workflow Prototype

Avoid spending weeks or months theorizing about an

ideal solution. Given the novelty of these systems, it's more
effective to create a rapid, imperfect prototype that addresses

even a subset of requirements. This provides a concrete

foundation for iterative improvement.

 Step 2: Select or Design Functional Tools

Before evaluating LLM and trade-offs, identify and

implement the function tools agents will need. For an invoice

processing workflow, this might include: (1) PDF-to-text

conversion, (2) date extraction tool, and (3) database update

functionality for storing invoice details.

 Step 3: Initially Choose Small Language Models (SLM) or
Larger SLMs

Selecting the appropriate LLM—balancing general-

purpose versus specialized multi-modal capabilities—can be

complex. For initial prototyping, start with Small Language

Models (SLMs), which can be replaced with more powerful

LLMs as needed.

 Examples of SLMs:

 Text generation: Llama 3.2-1B, DeepSeek-R1-1.5B, Phi-

3.5-Mini-3.8B

 Multi-modal: Phi-4-multimodal, Gemma 3-4B

 Code generation: CodeGemma (Google), StarCoder2

(BigCode/HuggingFace)

 Step 4: Implement a Workflow

Write code and develop prompts to connect LLMs and

construct an initial prototype.

 Step 5: Conduct an Error Analysis

Error analysis identifies underperforming components

that degrade overall system performance. This process helps

prioritize improvements such as: one might need to replace

an LLM with a more capable model or, revise tools

(computational functions, web search, MCP) that produce

substandard outputs, or refine prompts with more explicit

instructions and examples.

Focus on the component producing the least satisfactory

intermediate output. Conduct component-level error analysis,

implement improvements, then move to the next problematic
component. This systematic approach drives overall

performance improvement and reveals workflow bottlenecks.

 Example: Stock Portfolio Agentic Workflow

An example workflow for stock portfolio management

connects to a broker account to fetch current information,

performs profit and loss calculations, and summarizes results

in a database.

Fig 4 Example: Stock Portfolio Agentic Workflow

https://doi.org/10.38124/ijisrt/26jan348
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/26jan348

IJISRT26JAN348 www.ijisrt.com 1349

 One Needs Following Tools

 Broker MCP get_holdings

 Broker MCP place_order

 Broker MCP cancel_order

 Broker MCP get_quotes

 Broker MCP get_ltp

 Broker MCP get_historical_data

 Web tool

 Calculate_Sharpe_Ratio

 Calculate_Sortino_Ratio

 Calculate_Stock_PL
 Calculate_Portfolio_PL

 Update_database_stock_pl

 Update_database_portfolio_pl

 LLMs to Complete Following Tasks

 LLM to decode the user query extract broker account

details

 LLM to extract assets from the user's portfolio, identify

the symbols. Fetch their LTP.

 LLM to summarize PL statements along with individual
stock performance.

Finally, prompts along with context to stitch a complete

workflow.

V. CONCLUSION

Our novel contribution in writing this article 1)

Integrated Methodology: Rather than treating design patterns,

evaluation, and implementation in silo, we present an

integrated five-step guide for practitioners to prototype

Agentic workflow to production. 2) Emphasis on Rapid
Prototyping: Agentic AI is still an active area of research and

developers are trying to figure out best way to design and

code therefore, a "quick and dirty" prototype-first approach

followed by evaluation can assist in developing a workable

Agentic AI workflow that can be improved as one monitors

and verify the output. 3) Small Language Model (SLM)

Focus: Our recommendation to start with SLMs (Llama 3.2-

1B, DeepSeek-R1-1.5B, Phi-3.5-Mini) for initial prototyping

is often overlooked in practice - engineers and businesses

want to the best LLM and tools fail at times because of the

complexity involved in designing an Agentic workflow.

REFERENCES

[1]. Ng, A. (2024). Four design patterns for AI agentic

workflows. LinkedIn Post, March 2024. Retrieved

from

https://www.linkedin.com/posts/andrewyng_one-

agent-for-many-worlds-cross-species-activity-

7179159130325078016

[2]. Ng, A. (2024). Agentic AI [Online Course].

DeepLearning.AI. Retrieved from

https://www.deeplearning.ai/courses/agentic-ai/
[3]. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I.,

Narasimhan, K., & Cao, Y. (2023). ReAct:

Synergizing reasoning and acting in language models.

International Conference on Learning
Representations (ICLR).

https://arxiv.org/abs/2210.03629

https://doi.org/10.38124/ijisrt/26jan348
http://www.ijisrt.com/
https://www.linkedin.com/posts/andrewyng_one-agent-for-many-worlds-cross-species-activity-7179159130325078016
https://www.linkedin.com/posts/andrewyng_one-agent-for-many-worlds-cross-species-activity-7179159130325078016
https://www.linkedin.com/posts/andrewyng_one-agent-for-many-worlds-cross-species-activity-7179159130325078016
https://www.linkedin.com/posts/andrewyng_one-agent-for-many-worlds-cross-species-activity-7179159130325078016
https://www.linkedin.com/posts/andrewyng_one-agent-for-many-worlds-cross-species-activity-7179159130325078016
https://www.deeplearning.ai/courses/agentic-ai/
https://www.deeplearning.ai/courses/agentic-ai/
https://www.deeplearning.ai/courses/agentic-ai/
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

	I. INTRODUCTION
	 What Is Agentic AI?
	 Agentic AI Workflow
	 Degree of Autonomy
	 Benefits of Agentic AI Workflows

	 Building Blocks for Agentic Workflow

	II. LITERATURE COMPARISON AND POSITIONING
	 Agentic Design Patterns
	 Agentic Pattern: Reflection
	Fig 1 Reflection Design Pattern
	 Agentic Pattern: Tools
	 Agentic Pattern: Planning
	 Agentic Pattern: Multi-Agent

	III. EVALUATION
	IV. STEPS FOR CREATING AN AGENTIC WORKFLOW
	 Step 1: Plan a Quick and Direct Workflow Prototype
	 Step 2: Select or Design Functional Tools
	 Step 3: Initially Choose Small Language Models (SLM) or Larger SLMs
	 Step 4: Implement a Workflow
	 Step 5: Conduct an Error Analysis

	 Example: Stock Portfolio Agentic Workflow
	Fig 4 Example: Stock Portfolio Agentic Workflow
	V. CONCLUSION
	REFERENCES

