Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan348

Agentic Al Overview

Somil Asthanat
1Tide. Co

Publication Date: 2026/01/21

Abstract: Agentic Al represents a paradigm shift from traditional single-shot LLM applications to iterative, autonomous
workflows that mirror human problem-solving approaches. Agents range from less autonomous to highly autonomous

enabling spectrum of use.

This article equips data scientists and Al practitioners with the conceptual framework and practical methodology to
design, implement, and optimize agentic Al workflows for complex, autonomous task execution using 4 foundational Agentic
design patterns. Giving pragmatic five-step approach to building agentic workflow.

How to Cite: Somil Asthana (2026) Agentic Al Overview. International Journal of Innovative Science and Research Technology,

11(1), 1344-1349. https://doi.org/10.38124/ijisrt/26jan348
l. INTRODUCTION

» What Is Agentic Al?

Traditional non-agentic LLM-based solutions, such as
chatbots, operate through single-shot execution—generating
outputs directly from prompts. While this approach has
proven effective for many use cases, it has inherent
limitations. Agentic Al workflows, by contrast, employ a
multi-step iterative process where agents mirror human
problem-solving patterns: they analyze, research, revise, and
refine their approach before producing a final result. This
iterative loop, built on LLM foundations, may require
multiple steps and introduce latency, but it consistently
delivers superior outputs compared to non-agentic solutions.

» Agentic Al Workflow

An Agentic Al workflow consists of multiple
coordinated steps designed to complete complex tasks with
varying degrees of autonomy. These solutions exist along a
spectrum:

e Less autonomous agents operate within fully
predetermined sequences, executing predefined steps with
limited flexibility. While effective for their assigned tasks,
their capabilities are constrained by their rigid structure.

o Highly autonomous agents possess substantial decision-
making freedom, including the ability to determine
internal processing steps, invoke appropriate tools,
generate code dynamically, and iteratively refine outputs
through multiple cycles of reflection and improvement.
These agents handle more sophisticated tasks and produce
higher-quality results.

IJISRT26JAN348

> Degree of Autonomy

e Less Autonomous Agents:

v All steps are predefined

v All tools are hard-coded

v Autonomy is limited to text generation
e Highly Autonomous Agents:

Make many decisions autonomously

Can create new tools or code on the fly
Determine their own processing strategies

ANRNEN

> Benefits of Agentic Al Workflows

e Effective execution: Agents perform tasks with some
accuracy and reliability.

e Complex output: Agents can handle sophisticated, multi-
faceted tasks that exceed single-shot capabilities.

e Parallelism: Agents can execute multiple intermediate
tasks concurrently and synthesize results.

e Modularity: Workflows can be modified by replacing
LLMs or adjusting available tools without restructuring
the entire system.

> Building Blocks for Agentic Workflow

A fundamental principle in designing agentic
workflows is decomposition: analyze existing system
processes and identify discrete steps that can be implemented
either through LLMs or specialized software tools. If agents
cannot execute a step effectively, it should be further
decomposed into manageable substeps.

WWW.ijisrt.com 1344

https://doi.org/10.38124/ijisrt/26jan348
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/26jan348

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan348

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

Table 1 Building Blocks for Agentic Workflow

Building Block Example Usecase
Models LLM Text generation, tool use, information extraction
Algorithms Machine Learning Models, Heuristic Models, Prediction, rule-based logic, regression models,
Statistical Regression Models, Python code pdf-to-text, text-to-speech, image analysis
Tools MCP, function tools Web Search, real-time feeds, check social profile,
handle, check calendar, RSS feeds
Information Retrieval Database, Retrieval System like RAG

The Tool Use pattern described in this tutorial is based
on the ReAct (Reasoning and Acting) framework introduced
by Yao et al. (2023) transforms the idea into practical
implementation.

1. LITERATURE COMPARISON AND
POSITIONING

This tutorial aligns closely with foundational work in
agentic Al while providing a practical, implementation-
focused perspective for data scientists and practitioners. The
four design patterns presented in this tutorial—Reflection,
Tool Use, Planning, and Multi-Agent—align directly with the
framework popularized by Andrew Ng in his 2024
presentations and DeepLearning.Al courses on agentic > Agentic Design Patterns
workflows (Ng, 2024). This tutorial extends his framework Four critical agentic design patterns form the
by providing detailed implementation guidance, evaluation foundation of sophisticated workflows. These patterns can be
strategies, and practical workflows for production combined in various configurations to create complex,
deployment. powerful systems.

Our evaluation framework uses objective (Python-
based) and subjective (LLM-as-judge) approaches as
documented by (Raschka, 2024; Chang et al., 2024)

Table 2 Agentic Design Patterns
Design Pattern Description
An LLM (the same or a different one) reviews previously generated text, evaluates its quality, and suggests
improvements. This iterative critique process enhances output quality.
Tool use LLMs are provided with tools (functions) to assist with assigned tasks. Examples include code execution for
analytical tasks, database resources and web search for information gathering, email/calendar tools for
productivity, and image libraries for visual tasks.
Planning A collaborative workflow incorporating four stages: (1) Task Planning, (2) Model Selection, (3) Task
Execution, and (4) Response Generation. This framework enables flexible, autonomous
operation.autonomously.
Multiple agents coordinate, debate, and converge toward consensus. While challenging to control,
preliminary research indicates these workflows can achieve exceptional accuracy.

Design Pattern
Reflection

Multi-agentic
workflow

» Agentic Pattern: Reflection
Just as humans reflect on their work to identify
improvements, LLMs can be prompted to evaluate their own

identifying inconsistencies and bugs. Incorporating external
feedback into the reflection process further enhances
generation efficiency and quality.

outputs. Reflection is particularly effective in code

generation, where reasoning-focused LLM models excel at The below figure illustrates a reflection pattern flow.

Prompt asking LLM
to ve_rl{:z{ the output

’ ! Final

Output

- LLM Output

r..
r..
=

This can be the same LLM
or different LLM

Reflection Desigm Pattern

Fig 1 Reflection Design Pattern

IJISRT26JAN348 WwWw.ijisrt.com 1345

https://doi.org/10.38124/ijisrt/26jan348
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

» Agentic Pattern: Tools

Tools extend LLM capabilities beyond text generation,
enabling agents to take actions, retrieve information, and
perform computations. In this pattern, tool information is

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan348

autonomously decides whether and when to invoke specific
functions. After execution, function outputs are fed back into
the conversation history, allowing agents to generate
informed final responses.

provided to the agentic workflow, and the LLM
List of Tools
Provided
J
For examp[e_, i there is function
named get_current_time() which is
— LLM g

Interestingly, the LLM

decide on their own whether
to call tools (in form of function
calling, they need not be supervised)

Agentic Tools Design Pattern

a PL{tL\OH function. LLMs when Prompteof
for current time. 'l'lnet,' will automa\t;;‘:a”l{
call ge.tﬂcurre.nt,.‘time(); Prompts do not
need to suggest a function tool lke
ge,tﬁcurre.nt._time().

Fig 2 Agentic Tools Design Pattern

Table 3 Agentic Pattern: Tools

Scenario

Tool

Expected Output

Prompt asking to search for nearby
recreational activity.

web search tool with location and date
time tool

Agents combine tools to provide
information about clubs or activity centers

Business Intelligence asking for specific
query on data

SQL query creation tool and SQL
execution Python function

Agents generate SQL queries, execute
them via database connections, and
provide business intelligence insights

Complex calculations to compute ROI
for a portfolio

Function call to retrieve asset prices
combined with ROI calculation tool

Agents calculate current portfolio ROI

Modern LLMs no longer require extensive descriptions
in prompts to invoke functions. Today's models are
increasingly trained to interpret and call functions based
solely on function names and docstrings, demonstrating
enhanced logical decision-making capabilities.

One of the most powerful tools available to agents is
code execution, which allows agents to generate Python code
that executes in the background. This transforms agents from
simple text generators into computational engines capable of
sophisticated planning and execution.

Another significant advancement is the Model Context

Protocol (MCP), which extends function tool capabilities to
remote servers, effectively allowing agents to leverage server

IJISRT26JAN348

WWW.ijisrt.com

functionalities as callable functions, dramatically expanding
their power and reach.

» Agentic Pattern: Planning

Agentic workflows become significantly more flexible
when planning components allow for dynamic rather than
fixed execution flows. In this pattern, LLMs determine the
optimal course of action rather than following predetermined
sequences. A planner LLM receives functional tools and
prompts as inputs, it generates step-by-step instructions
(plan) required for achieving desired outputs. Each
instruction/task, along with relevant context, prompt and
tools, is passed to subsequent LLMs to run, forming a
processing chain from input to final output.

1346

https://doi.org/10.38124/ijisrt/26jan348
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan348

ISSN No: -2456-2165
/ N
List of Tools
Provided

Planner

- =

Interestingly, the Planner LLM
not just decide the steps that
should be executed to achieve the

as Ptfthon code.

Generate a

LLM ., Plan

LM 1
Subsequent LLMs are given both
prompts, tools (inc[ud‘mg ptf‘tl«\on
SV\ippe‘ts) to run and feed the

LLM 1 output to next LLM till all steps
re_quire,d are executed.

LM 1

desired oubput but tlne.y also new tools

Agen‘tic Planner Design Pattern

Fig 3 Agentic Planner Design Pattern

This pattern eliminates the need to predefine function
call sequences. Instead, agents use available tools and
prompts to formulate plans—typically in JSON format—
specifying which function tools subsequent LLMs should
invoke. While this approach reduces control over execution
flow, it significantly enhances adaptability and problem-
solving capability.

» Agentic Pattern: Multi-Agent

While it might seem that extending a single agentic
workflow with additional function tools or layers would
suffice, multi-agent patterns offer distinct advantages. This
approach enables agent reuse across domains and promotes
modular development. For example, an agentic workflow
designed for creating graphic visualizations can be reused
across multiple applications. Additionally, teams can develop
agentic solutions independently and in parallel, then integrate
them later.

Multi-agent communication remains an active research
area, with ongoing work on optimal communication patterns
and coordination protocols. Despite control challenges, this
pattern offers substantial flexibility and scalability benefits.

1. EVALUATION

Building an optimal agentic workflow is inherently
iterative—it's difficult to know in advance which components
will succeed and how to evaluate them effectively. A best
practice is to build a "quick and dirty" initial prototype,
examine its outputs (including errors and unsatisfactory
results), and then systematically improve it.

Start by collecting 10-20 representative inputs and
running them through the agentic workflow to identify
common output errors. This empirical approach quickly
reveals the most frequent failure modes. For more systematic
evaluation, develop automated evaluation functions to track
specific error types. For instance, in an invoice processing
workflow, testing 10-20 invoices might reveal that date
extraction is the most common error. You can then create an
evaluation function specifically for date extraction, measure
accuracy, implement improvements, and monitor changes
over time.

Errors fall into two categories: objective and subjective.
Objective errors involving numerical outputs can be
evaluated using Python functions. Subjective errors,
particularly those involving text quality, benefit from an
"LLM-as-judge" approach, where outputs are compared
against 3-5 gold standard examples for each domain.

Table 4 Two “Axes” of Evaluation

Evaluate with python code

LLM-as-judge (subjective)

Target variable is
number or count

Checking for certain numerical variables like invoice date.
Python Eval Function

Count number of gold standard points
generated by agentic workflow

Target variable is
text

Checking for text length

Decoding images and charts

IJISRT26JAN348

WWW.ijisrt.com 1347

https://doi.org/10.38124/ijisrt/26jan348
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

V. STEPS FOR CREATING AN AGENTIC
WORKFLOW

The challenge in creating agentic workflows lies in the
multitude of possible approaches: Should you invest time
perfecting workflow design or focus on LLM selection? With
numerous design patterns available, the process can seem
daunting.

» Step 1: Plan a Quick and Direct Workflow Prototype

Avoid spending weeks or months theorizing about an
ideal solution. Given the novelty of these systems, it's more
effective to create a rapid, imperfect prototype that addresses
even a subset of requirements. This provides a concrete
foundation for iterative improvement.

» Step 2: Select or Design Functional Tools

Before evaluating LLM and trade-offs, identify and
implement the function tools agents will need. For an invoice
processing workflow, this might include: (1) PDF-to-text
conversion, (2) date extraction tool, and (3) database update
functionality for storing invoice details.

» Step 3: Initially Choose Small Language Models (SLM) or
Larger SLMs
Selecting the appropriate LLM-—balancing general-
purpose versus specialized multi-modal capabilities—can be
complex. For initial prototyping, start with Small Language
Models (SLMs), which can be replaced with more powerful
LLMs as needed.

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan348
e Examples of SLMs:

v’ Text generation: Llama 3.2-1B, DeepSeek-R1-1.5B, Phi-
3.5-Mini-3.8B

v Multi-modal: Phi-4-multimodal, Gemma 3-4B

v' Code generation: CodeGemma (Google), StarCoder2
(BigCode/HuggingFace)

> Step 4: Implement a Workflow
Write code and develop prompts to connect LLMs and
construct an initial prototype.

» Step 5: Conduct an Error Analysis

Error analysis identifies underperforming components
that degrade overall system performance. This process helps
prioritize improvements such as: one might need to replace
an LLM with a more capable model or, revise tools
(computational functions, web search, MCP) that produce
substandard outputs, or refine prompts with more explicit
instructions and examples.

Focus on the component producing the least satisfactory
intermediate output. Conduct component-level error analysis,
implement improvements, then move to the next problematic
component. This systematic approach drives overall
performance improvement and reveals workflow bottlenecks.

» Example: Stock Portfolio Agentic Workflow

An example workflow for stock portfolio management
connects to a broker account to fetch current information,
performs profit and loss calculations, and summarizes results
in a database.

* Broker MCP ge'c_m‘dir.?g
* Broker MCP place_order
* Broker MCP cancel_order
fe_Sharpe_R
* Broker MCP get_quotes o Sertin
' u::ﬁ;.'.5_:!..'...::.’;.e_;fv;-(_f,u
* Broker MeP ger-lip fe_Stock_PL
Update_d ¥)
* Broker NCP g.é"C_ﬂ'St':V‘-caf_iaIn ate_Portfolo : '
Broker MCP Tagk Conneet, Db
LN LA ' LA for Summar
Connect Execution Yy j
LM to decode the LM To extract LLA Yo sumnarise
user query extract assefs i user's PL stabenert along
sccourt detall portfolio with individual stock
perFormance.

Fig 4 Example: Stock Portfolio Agentic Workflow

IJISRT26JAN348

WWW.ijisrt.com

1348

https://doi.org/10.38124/ijisrt/26jan348
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

One Needs Following Tools

Broker MCP get_holdings
Broker MCP place_order
Broker MCP cancel_order
Broker MCP get_quotes
Broker MCP get_lItp

Broker MCP get_historical_data
Web tool
Calculate_Sharpe_Ratio
Calculate_Sortino_Ratio
Calculate_Stock_PL
Calculate_Portfolio_PL
Update_database_stock pl
Update_database_portfolio_pl

AN N N N NN Y Y N N N NN

LLMs to Complete Following Tasks

v" LLM to decode the user query extract broker account
details

v" LLM to extract assets from the user's portfolio, identify
the symbols. Fetch their LTP.

v" LLM to summarize PL statements along with individual
stock performance.

Finally, prompts along with context to stitch a complete
workflow.

V. CONCLUSION

Our novel contribution in writing this article 1)
Integrated Methodology: Rather than treating design patterns,
evaluation, and implementation in silo, we present an
integrated five-step guide for practitioners to prototype
Agentic workflow to production. 2) Emphasis on Rapid
Prototyping: Agentic Al is still an active area of research and
developers are trying to figure out best way to design and
code therefore, a "quick and dirty" prototype-first approach
followed by evaluation can assist in developing a workable
Agentic Al workflow that can be improved as one monitors
and verify the output. 3) Small Language Model (SLM)
Focus: Our recommendation to start with SLMs (Llama 3.2-
1B, DeepSeek-R1-1.5B, Phi-3.5-Mini) for initial prototyping
is often overlooked in practice - engineers and businesses
want to the best LLM and tools fail at times because of the
complexity involved in designing an Agentic workflow.

REFERENCES

[1]. Ng, A. (2024). Four design patterns for Al agentic
workflows. LinkedIn Post, March 2024. Retrieved
from
https://www.linkedin.com/posts/andrewyng_one-
agent-for-many-worlds-cross-species-activity-

7179159130325078016
[2]. Ng, A. (2024). Agentic Al [Online Course].
DeepLearning.Al. Retrieved from

https://www.deeplearning.ai/courses/agentic-ai/

[3]. Yao, S. zhao, J, Yu, D., Du, N., Shafran, I,
Narasimhan, K. & Cao, Y. (2023). ReAct:
Synergizing reasoning and acting in language models.

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/26jan348
International Conference on Learning

Representations (ICLR).
https://arxiv.org/abs/2210.03629

IJISRT26JAN348 WwWw.ijisrt.com 1349

https://doi.org/10.38124/ijisrt/26jan348
http://www.ijisrt.com/
https://www.linkedin.com/posts/andrewyng_one-agent-for-many-worlds-cross-species-activity-7179159130325078016
https://www.linkedin.com/posts/andrewyng_one-agent-for-many-worlds-cross-species-activity-7179159130325078016
https://www.linkedin.com/posts/andrewyng_one-agent-for-many-worlds-cross-species-activity-7179159130325078016
https://www.linkedin.com/posts/andrewyng_one-agent-for-many-worlds-cross-species-activity-7179159130325078016
https://www.linkedin.com/posts/andrewyng_one-agent-for-many-worlds-cross-species-activity-7179159130325078016
https://www.deeplearning.ai/courses/agentic-ai/
https://www.deeplearning.ai/courses/agentic-ai/
https://www.deeplearning.ai/courses/agentic-ai/
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

	I. INTRODUCTION
	 What Is Agentic AI?
	 Agentic AI Workflow
	 Degree of Autonomy
	 Benefits of Agentic AI Workflows

	 Building Blocks for Agentic Workflow

	II. LITERATURE COMPARISON AND POSITIONING
	 Agentic Design Patterns
	 Agentic Pattern: Reflection
	Fig 1 Reflection Design Pattern
	 Agentic Pattern: Tools
	 Agentic Pattern: Planning
	 Agentic Pattern: Multi-Agent

	III. EVALUATION
	IV. STEPS FOR CREATING AN AGENTIC WORKFLOW
	 Step 1: Plan a Quick and Direct Workflow Prototype
	 Step 2: Select or Design Functional Tools
	 Step 3: Initially Choose Small Language Models (SLM) or Larger SLMs
	 Step 4: Implement a Workflow
	 Step 5: Conduct an Error Analysis

	 Example: Stock Portfolio Agentic Workflow
	Fig 4 Example: Stock Portfolio Agentic Workflow
	V. CONCLUSION
	REFERENCES

