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Abstract: Structural Health Monitoring (SHM) of reinforced concrete (RC) beams is critical for ensuring the safety and
longevity of civil infrastructure. Conventional SHM approaches often rely on manual inspection or standalone machine
learning and deep learning models, which are limited in capturing nonlinear damage characteristics and temporal
degradation patterns under varying loading conditions. To address these limitations, this paper proposes a hybrid XGBoost—
LSTM model that integrates gradient boosting—based feature learning with long short-term memory-based temporal
sequence modeling for effective damage detection and severity assessment of RC beams. Initially, damage-sensitive features
are extracted from sensor-based structural response data in both time and frequency domains. XGBoost is employed to
perform nonlinear feature selection and preliminary damage estimation, enabling the identification of the most influential
structural parameters. The selected feature sequences are then fed into an LSTM network to model the time-dependent
evolution of structural damage. The proposed hybrid framework is evaluated using multiple performance metrics and
compared against conventional machine learning and deep learning models, including support vector machines, random
forest, standalone XGBoost, and LSTM. Experimental results demonstrate that the hybrid XGBoost—LSTM model achieves
superior accuracy, robustness under noisy conditions, and improved damage severity prediction, with performance gains of
up to 10-15% over baseline models. The findings confirm that the proposed approach provides a reliable and scalable
solution for intelligent SHM of RC beams, supporting the development of data-driven, real-time infrastructure monitoring
systems.
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L INTRODUCTION acquisition methods to monitor structural responses such as
strain,  acceleration,  displacement, and  vibration
characteristics. These data-driven approaches enable early
detection of structural anomalies and facilitate condition-

Reinforced concrete (RC) structures constitute a
significant portion of modern civil infrastructure, including

buildings, bridges, and industrial facilities. Over time, these
structures are subjected to various deterioration mechanisms
such as material aging, fatigue loading, environmental
exposure, and unexpected extreme events, leading to
progressive damage and potential structural failure [1].
Ensuring the safety, serviceability, and durability of RC
beams, which are critical load-bearing components,
necessitates effective and reliable Structural Health
Monitoring (SHM) techniques. Conventional inspection-
based approaches, primarily relying on visual assessment and
periodic non-destructive testing, are often labor-intensive,
subjective, and incapable of providing continuous and real-
time condition assessment, particularly for large-scale
infrastructure systems [2].

With advancements in sensing technologies, SHM
systems have increasingly adopted sensor-based data

IJISRT26JAN353

based maintenance strategies [3]. However, the complex
nonlinear behavior of RC beams, coupled with the influence
of noise and environmental variability, poses significant
challenges for traditional signal processing and rule-based
damage detection techniques. Consequently, there has been a
growing interest in applying artificial intelligence (AI) and
machine learning (ML) techniques to enhance the accuracy
and automation of SHM systems[4-7].

In recent years, machine learning models such as
support vector machines, decision trees, random forests, and
gradient boosting methods have been widely explored for
damage detection and condition classification in RC
structures. These models are effective in learning nonlinear
relationships between structural response features and
damage states [8,9]. Among them, Extreme Gradient
Boosting (XGBoost) has gained particular attention due to its
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superior predictive performance, robustness to overfitting,
and ability to provide feature importance measures. Despite
these advantages, conventional ML models, including
XGBoost, are inherently limited in capturing temporal
dependencies present in time-series SHM data, which are
essential for understanding damage progression and
structural degradation over time [10-12].

To address temporal modeling limitations, deep learning
techniques, particularly recurrent neural networks (RNNs)
and Long Short-Term Memory (LSTM) networks, have been
increasingly employed in SHM applications. LSTM networks
are specifically designed to model sequential data and have
demonstrated promising performance in capturing long-term
dependencies in structural response signals [13]. Several
studies have reported improved damage detection and
prediction accuracy using LSTM-based models for vibration-
and strain-based SHM. However, deep learning models often
require large volumes of high-quality data and are sensitive
to noisy or irrelevant input features, which can lead to
increased  computational complexity and reduced
generalization performance [14].

Recent research efforts have highlighted the potential of
hybrid learning frameworks that combine the strengths of
machine learning and deep learning models to overcome
individual limitations [15]. Hybrid approaches enable
effective feature learning and selection while simultaneously
modeling temporal dynamics, making them particularly
suitable for complex SHM problems. Despite this potential,
limited studies have systematically investigated hybrid
models that integrate ensemble learning techniques such as
XGBoost with sequence learning models like LSTM for the
structural health monitoring of reinforced concrete beams
[16]. Moreover, existing studies often focus on either damage
classification or regression-based prediction without
adequately addressing robustness under noisy conditions and
model interpretability, which are critical for practical
deployment [17].

Motivated by these research gaps, this study proposes a
hybrid XGBoost-LSTM framework for structural health
monitoring of reinforced concrete beams [18]. The proposed
approach leverages XGBoost to perform nonlinear feature
learning and importance-based feature selection from time-
and frequency-domain structural response data. The selected
damage-sensitive feature sequences are subsequently fed into
an LSTM network to model the temporal evolution of
structural damage and predict damage states or severity
levels[19]. By integrating ensemble-based feature learning
with deep temporal modeling, the proposed framework aims
to enhance prediction accuracy, robustness to noise, and
interpretability compared to standalone machine learning and
deep learning models [20].

» The Main Contributions of this Study are Summarized as
Follows:

e Anovel hybrid XGBoost—-LSTM framework is developed

for effective damage detection and severity prediction in
reinforced concrete beams.
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e A comprehensive feature engineering strategy is
employed to extract damage-sensitive parameters from
structural response data in both time and frequency
domains.

e The proposed hybrid model is systematically compared
with conventional machine learning and deep learning
approaches to demonstrate its superior performance.

e Robustness analysis under noisy conditions is conducted
to evaluate the practical applicability of the proposed
method.

e Feature importance and explainability analysis are
incorporated to enhance model transparency and
reliability for real-world SHM applications.

The remainder of this paper is organized as follows.
Section 2 presents a comprehensive review of related work in
structural health monitoring and Al-based damage detection.
Section 3 describes the data sources and feature engineering
process. Section 4 details the proposed hybrid XGBoost—
LSTM methodology. Section 5 discusses the experimental
setup and model implementation. Section 6 presents and
analyzes the results, followed by conclusions and future
research directions in Sections 7 and 8, respectively.

II. LITERATURE REVIEW

» Structural Health Monitoring of Reinforced Concrete
Beams
Structural Health Monitoring (SHM) aims to assess the
condition of structures by continuously or periodically
evaluating their response to operational and environmental
loads. Reinforced concrete (RC) beams, being primary load-
carrying members, are susceptible to various damage
mechanisms such as cracking, corrosion of reinforcement,
stiffness degradation, and fatigue. Traditional SHM
approaches for RC beams include visual inspection,
ultrasonic testing, acoustic emission, and vibration-based
methods. While these techniques provide valuable insights,
they are often labor-intensive, subjective, and limited in their
ability to support continuous monitoring and early damage
detection.

Vibration-based SHM methods have gained popularity
due to their non-destructive nature and capability to capture
global structural behavior. Parameters such as natural
frequencies, mode shapes, and damping ratios are commonly
used as damage indicators. However, these parameters are
often sensitive to environmental and operational variations,
making damage identification challenging using conventional
threshold-based or physics-driven approaches alone. This
limitation has motivated the adoption of data-driven
techniques for SHM of RC structures.

» Machine Learning Approaches in Structural Health
Monitoring

Machine learning (ML) techniques have been widely
applied to SHM problems due to their ability to model
nonlinear relationships between structural response features
and damage states. Early studies employed statistical pattern
recognition and shallow learning models such as k-nearest
neighbors, artificial neural networks, and support vector

WWWw.ijisrt.com 660


https://doi.org/10.38124/ijisrt/26jan353
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

machines for damage detection and classification. These
approaches demonstrated improved automation and accuracy
compared to traditional methods.

Ensemble learning techniques, including Random
Forest (RF) and Gradient Boosting Machines (GBM), have
shown superior performance in handling high-dimensional
and noisy SHM data. Among these, Extreme Gradient
Boosting (XGBoost) has emerged as a powerful algorithm
due to its regularization capability, efficient handling of
missing data, and robustness against overfitting. Several
studies have successfully utilized XGBoost for predicting
structural damage indices, crack severity, and stiffness
degradation in concrete structures. Additionally, the inherent
feature importance mechanism of XGBoost provides
valuable insights into damage-sensitive parameters,
enhancing model interpretability. Nevertheless, ML-based
approaches typically treat SHM data as independent samples
and do not explicitly account for temporal dependencies
inherent in time-series structural response data.

» Deep Learning Models for SHM

Deep learning (DL) techniques have gained increasing
attention in SHM applications due to their capability to
automatically learn hierarchical feature representations from
raw data. Convolutional Neural Networks (CNNs) have been
widely used for image-based crack detection and vibration
signal classification, demonstrating high accuracy in damage
identification tasks. However, CNN-based approaches
primarily focus on spatial feature extraction and are less
effective in capturing long-term temporal behavior.

Recurrent Neural Networks (RNNs), particularly Long
Short-Term Memory (LSTM) networks, are specifically
designed for sequential data analysis and have been
successfully applied to time-series SHM data. LSTM models
have been used for predicting structural response, detecting
damage progression, and estimating remaining useful life of
structural components. Their gated architecture enables
effective modeling of long-term dependencies, making them
suitable for capturing gradual degradation patterns in RC
beams. Despite these advantages, LSTM models are
computationally intensive and highly sensitive to noisy or
redundant input features, which can negatively affect
generalization performance when data quality is limited.

» Hybrid and Ensemble Al Models in Civil Engineering
Applications
To overcome the limitations of standalone ML and DL
models, recent research has focused on hybrid and ensemble
learning frameworks that integrate multiple algorithms.
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Hybrid models aim to leverage the strengths of different
learning paradigms, such as combining feature selection
capabilities of ML models with the temporal modeling power
of DL architectures. In civil engineering applications, hybrid
models have been applied to concrete strength prediction,
settlement estimation, flood forecasting, and traffic flow
prediction, demonstrating enhanced accuracy and robustness.

In the context of SHM, hybrid frameworks combining
wavelet transforms with neural networks, autoencoders with
classifiers, and ensemble learners with deep networks have
been proposed. Some studies have explored ML-based
feature selection followed by DL-based prediction,
highlighting the effectiveness of reducing input
dimensionality prior to deep learning. However, limited
research has systematically investigated the integration of
XGBoost and LSTM specifically for SHM of reinforced
concrete beams. Existing studies often focus on either static
damage classification or short-term prediction and do not
adequately address temporal damage evolution, noise
robustness, and interpretability in a unified framework.

» Research Gaps and Motivation
Based on the critical review of existing literature, the
following research gaps are identified:

e Conventional SHM techniques lack automation and real-
time damage assessment capability for RC beams.

e Machine learning models such as XGBoost provide
strong predictive performance but fail to capture temporal
degradation behavior.

e Deep learning models, particularly LSTM, effectively
model time-series data but are sensitive to noisy and high-
dimensional input features.

e Existing hybrid approaches in SHM are limited in scope
and rarely integrate ensemble learning with temporal deep
learning for RC beam monitoring.

e Model interpretability and robustness under noisy
conditions are often overlooked, limiting practical
applicability.

These gaps highlight the need for a robust, interpretable,
and scalable hybrid framework that integrates nonlinear
feature learning with temporal damage modeling. This study
addresses these challenges by proposing a hybrid XGBoost—
LSTM model for structural health monitoring of reinforced
concrete beams.

» Summary of Related Works

Table 1 Summary of Related Works

Study Focus Methodology Key Findings Limitations
Vibration-based SHM Statistical & modal analysis Effective for global damage Sensitive to noise
ML-based SHM SVM, RF, XGBoost Good nonlinear mapping No temporal modeling
DL-based SHM CNN, LSTM Captures complex patterns Data-intensive, noisy
Hybrid Al models ML + DL Improved accuracy Limited SHM focus
Proposed Study XGBoost + LSTM Accurate, robust, interpretable —
IJISRT26JAN353 WWW.ijisrt.com 661


https://doi.org/10.38124/ijisrt/26jan353
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

II1. DATA DESCRIPTION AND
FEATURE ENGINEERING

» Structural Response Data Description

The effectiveness of any data-driven structural health
monitoring (SHM) framework strongly depends on the
quality and relevance of the acquired structural response data.
In this study, the SHM of reinforced concrete (RC) beams is
performed wusing sensor-based response measurements
collected under varying loading and damage conditions. The
monitored parameters represent the dynamic and quasi-static
behavior of RC beams, which are highly sensitive to stiffness
degradation, cracking, and damage progression.

The dataset comprises time-series measurements
obtained from sensors installed at critical locations along the
RC beam. These sensors capture the structural response under
controlled loading scenarios, including healthy, moderately
damaged, and severely damaged states. The response data
reflect the nonlinear behavior of RC beams, making them
suitable for evaluating advanced machine learning and deep
learning models.

The Primary Types of Structural Response Data
Considered in this Study Include:

Strain response obtained from strain gauges,
Acceleration response measured using accelerometers,
Displacement or deflection measurements,

Vibration response signals under dynamic excitation.

ANENENEN

Each data sample is associated with a corresponding
damage label or damage severity index, enabling both
classification and regression-based SHM analysis.

» Sensor Configuration and Measurement Parameters

Sensors are strategically placed at locations of
maximum stress concentration and expected crack formation,
such as mid-span and near support regions of the RC beam.
The selection of sensor locations is guided by structural
mechanics principles to ensure high sensitivity to damage-
induced changes.

o The Key Measurement Parameters Include:

v' Sampling frequency selected to capture dominant
vibration modes,

v" Sensor resolution and sensitivity appropriate for low-
amplitude structural responses,

v" Synchronization of multi-sensor data streams to preserve
temporal consistency.

To ensure realistic SHM conditions, the collected data
incorporate environmental and operational variations, such as
minor noise disturbances and load fluctuations, reflecting
real-world monitoring scenarios.

» Data Preprocessing and Noise Handling

Raw structural response data often contain noise,
missing values, and inconsistencies due to sensor limitations
and environmental effects. Prior to feature extraction, the data
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are subjected to a comprehensive preprocessing pipeline to
enhance data quality and reliability.

The Preprocessing Steps Include.

Removal of erroneous and incomplete records,
Interpolation or imputation of missing values,

Signal denoising using filtering techniques where
necessary,

Normalization of features using min—-max scaling or z-
score normalization to ensure numerical stability during
model training.

SNEEENENEN

Additionally, data segmentation is performed to convert
continuous time-series signals into fixed-length windows
suitable for feature extraction and sequential modeling. This
segmentation preserves temporal characteristics while
enabling efficient processing.

» Time-Domain Feature Extraction

Time-domain features provide valuable information
about the amplitude and statistical characteristics of structural
response signals. These features are computationally efficient
and widely used in SHM applications due to their sensitivity
to damage-induced changes.

The Extracted Time-Domain Features Include:

Mean and standard deviation,
Root Mean Square (RMS),
Peak-to-peak amplitude,
Skewness and kurtosis,
Signal energy.

ANANENENEN

These features capture variations in signal intensity and
distribution, which are directly influenced by stiffness
degradation and crack propagation in RC beams.

» Frequency-Domain Feature Extraction
Frequency-domain analysis is essential for identifying
changes in structural dynamic properties caused by damage.
Damage in RC beams often leads to shifts in natural
frequencies and alterations in vibration energy distribution.

Frequency-domain features are extracted by applying
Fast Fourier Transform (FFT) to the preprocessed time-series
data. The extracted features include:

Dominant frequency components,
Frequency shift indicators,
Spectral energy distribution,
Spectral entropy.

These features provide complementary information to
time-domain features and enhance the ability of learning
models to distinguish between different damage states.

» Feature Selection and Dimensionality Reduction
The combined time- and frequency-domain feature set
results in a high-dimensional feature space, which may
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contain redundant or less informative features. High-
dimensional data can negatively impact model performance,
particularly for deep learning models sensitive to irrelevant
inputs.

To address this issue, feature selection is performed
using XGBoost’s inherent feature importance mechanism.
XGBoost evaluates the contribution of each feature to
prediction accuracy based on information gain and split
frequency. Features with low importance scores are
eliminated, retaining only damage-sensitive parameters that
significantly influence model output.

o This Feature Selection Process:

v Reduces model complexity,

v Improves computational efficiency,
v Enhances generalization capability,
v' Increases robustness against noise.

» Damage State Definition and Labeling

For supervised learning, the structural response data are
labeled according to predefined damage states. In this study,
damage conditions are categorized into multiple levels, such
as:

Healthy state,

Minor damage state,
Moderate damage state,
Severe damage state.

Alternatively, a continuous damage severity index is
used for regression-based analysis, depending on the
experimental setup and data availability. The labeling strategy
is consistent with structural performance criteria and ensures
meaningful interpretation of prediction results.

» Dataset Partitioning

To ensure unbiased performance evaluation, the dataset
is divided into training, validation, and testing subsets. The
partitioning is performed chronologically to preserve
temporal dependencies in the data, which is essential for
sequence-based models such as LSTM.

Cross-validation techniques are also employed to assess
model stability and generalization performance. This strategy
ensures that the proposed framework is robust across varying
data distributions and damage scenarios.

Iv. PROPOSED HYBRID
XGBOOST-LSTM METHODOLOGY

» Overview of the Proposed Framework

This study proposes a hybrid XGBoost-LSTM
framework for effective structural health monitoring (SHM)
of reinforced concrete (RC) beams. The core idea of the
proposed methodology is to combine the strengths of
ensemble-based machine learning and deep learning models
to overcome the limitations of standalone approaches.
XGBoost is employed to perform nonlinear feature learning
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and importance-based feature selection, while Long Short-
Term Memory (LSTM) networks are utilized to model the
temporal evolution of structural damage using sequential
data.

e The Proposed Framework is Designed to:

v' Identify damage-sensitive features from high-dimensional
SHM data,

v’ Capture temporal dependencies associated with damage
progression,

v' Improve prediction accuracy and robustness under noisy
conditions,

v’ Provide interpretable insights into critical structural
parameters.

Figure X illustrates the overall architecture of the
proposed hybrid model (to be included in the final
manuscript).

» Hybrid Learning Strategy
The hybrid learning strategy follows a two-stage
modeling approach:

e Stage | — XGBoost-Based Feature Learning and Initial
Prediction
e Stage Il - LSTM-Based Temporal Damage Modeling

In the first stage, XGBoost operates on engineered
features extracted from structural response data to learn
nonlinear relationships and determine feature importance. In
the second stage, the most influential features identified by
XGBoost are organized into time-ordered sequences and used
as inputs to the LSTM network to model damage evolution.

This sequential integration ensures that only damage-
relevant information is passed to the deep learning model,
reducing computational complexity and improving
generalization.

» XGBoost-Based Feature Learning

XGBoost is a gradient boosting algorithm that
constructs an ensemble of decision trees using an additive
learning strategy. It optimizes a regularized objective function
that balances prediction accuracy and model complexity.

o The Objective Function of XGBoost is Expressed as:

L= Ziyi. Zﬂfk

Where [(-)represents the loss function, y;and y;are the
actual and predicted outputs, and Q(f;)is the regularization
term controlling model complexity.
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o In this Study, XGBoost is Trained Using the Extracted
Time- and Frequency-Domain Features to:

v" Perform nonlinear mapping between features and damage
states,

Rank features based on their importance scores,
Eliminate redundant and less informative features.

AN

The output of this stage includes an optimized feature
subset and preliminary damage predictions.

» Feature Importance-Based Selection

Feature importance scores obtained from XGBoost are
used to select the most damage-sensitive features. Features
with importance values below a predefined threshold are
discarded. This selection process:

¢ Reduces dimensionality,
e Enhances noise resistance,
e Improves LSTM training efficiency.

The selected features are then arranged into fixed-length
temporal sequences to preserve the chronological nature of
SHM data.

» LSTM-Based Temporal Damage Modeling

Long Short-Term Memory (LSTM) networks are a
special class of recurrent neural networks designed to model
long-term dependencies in sequential data. LSTM overcomes

the vanishing gradient problem using gated memory cells that
regulate information flow.

o The Internal Operations of an LSTM Cell are Defined as:
fo = o(Wylhi—1, 2] + by)
it = o(Wilhi—1, x| + bi)

¢ = tanh(W.[h¢—1,x:] + b.)

" —

ct = fr-eci—1+ iy - ¢

h; = o4 - tanh(c¢;)

Where f;, i;, and o,represent the forget, input, and
output gates, respectively.

e In the Proposed Framework, the LSTM Network
Processes Sequences of Selected Features to:

v" Capture temporal degradation trends,

v Model progressive damage behavior,
v" Predict damage states or severity indices.
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» Integration of XGBoost and LSTM

The integration of XGBoost and LSTM is achieved
through a feature-level fusion strategy. XGBoost acts as a
feature selector and nonlinear mapper, while LSTM performs
sequence learning on the refined feature set.

o This Integration Ensures:

v Reduced sensitivity to noisy inputs,

v Improved convergence speed,

v’ Enhanced interpretability through feature importance
analysis.

The hybrid framework enables effective learning from
limited and noisy SHM data, making it suitable for real-world

monitoring scenarios.

» Algorithmic Flow of the Proposed Model

Algorithm 1: Hybrid XGBoost—LSTM SHM Framework

Acquire raw sensor data from RC beams

Preprocess and normalize structural response signals
Extract time-domain and frequency-domain features
Train XGBoost model on extracted features

Rank features using importance scores

Select top damage-sensitive features

Form time-series sequences from selected features
Train LSTM model on feature sequences

Predict damage state or severity

Evaluate performance using appropriate metrics

N N N N N S N

» Computational Complexity Considerations

The proposed hybrid framework reduces computational
burden by limiting LSTM inputs to a compact feature set.
XGBoost efficiently handles high-dimensional data during
the initial learning stage, while the LSTM network focuses on
temporal modeling using reduced input dimensions. This
strategy improves scalability and supports potential real-time
SHM implementation.

V. MODEL IMPLEMENTATION
AND EXPERIMENTAL SETUP

» Experimental Environment and Tools

The proposed hybrid XGBoost-LSTM framework is
implemented using the Python programming language due to
its extensive support for machine learning and deep learning
libraries. The experiments are conducted on a workstation
equipped with a multi-core processor and sufficient memory
to handle time-series SHM data efficiently.

o The Primary Sofiware Tools and Libraries Used in this
Study Include:

NumPy and Pandas for data handling and preprocessing,
Scikit-learn for baseline machine learning models,
XGBoost library for ensemble learning implementation,
TensorFlow/Keras for LSTM network development,
Matplotlib and Seaborn for result visualization.

ASANENENEN
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This experimental environment ensures reproducibility
and scalability of the proposed framework.

» Dataset Preparation and Training Strategy

Following preprocessing and feature engineering, the
dataset is divided into training, validation, and testing subsets
to evaluate model performance objectively. A chronological
split is employed to preserve the temporal structure of the
SHM data, which is critical for sequence-based learning
models.

o The Training Strategy Consists of:

v' Using the training set to learn model parameters,

v" Employing the validation set for hyperparameter tuning
and early stopping,

v’ Assessing final performance using the independent testing
set.

To further enhance reliability, k-fold cross-validation is
performed for machine learning models, while the LSTM
model uses a hold-out validation approach due to its
sequential nature.

» XGBoost Model Configuration

The XGBoost model is configured to optimize
predictive performance while avoiding overfitting. Key
hyperparameters are tuned through grid search and
validation-based optimization.

o The Major Hyperparameters Include:

Number of trees (estimators),
Maximum tree depth,
Learning rate,

Subsample ratio,

Column sampling rate,
Regularization parameters.

ANENENENE NN

Early stopping criteria are applied to prevent overfitting
and improve generalization. The trained XGBoost model
provides feature importance scores that guide the subsequent
feature selection process.

» LSTM Network Architecture

The LSTM network is designed to model temporal
degradation patterns in structural response data. The
architecture consists of:

An input layer receiving sequences of selected features,
One or more LSTM layers with gated memory cells,
Dropout layers to mitigate overfitting,

A fully connected output layer for damage state
classification or severity prediction.

The LSTM model is trained using backpropagation
through time with an adaptive optimizer. Hyperparameters
such as the number of hidden units, sequence length, batch
size, and learning rate are optimized using validation
performance.
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» Comparative Models

To validate the effectiveness of the proposed hybrid
framework, several baseline models are implemented for
comparison. These include:

Support Vector Machine (SVM),
Random Forest (RF),
Standalone XGBoost,
Standalone LSTM.

All comparative models are trained using the same
dataset and evaluation criteria to ensure fair comparison. This
comparative analysis highlights the benefits of hybrid
learning over individual models.

» Evaluation Metrics

The performance of the proposed and baseline models
is assessed using multiple evaluation metrics appropriate for
SHM applications.

For Classification-Based Analysis:

Accuracy,
Precision,
Recall,
F1-score.

ANANENEN

For Regression-Based Analysis:

Root Mean Square Error (RMSE),
Mean Absolute Error (MAE),
Coefficient of determination (R?).

ANANEN

These metrics provide a comprehensive evaluation of
prediction accuracy, robustness, and reliability.

» Noise Robustness Analysis

To assess the robustness of the proposed framework
under realistic monitoring conditions, artificial noise is
introduced into the structural response data. Noise levels of
varying intensities are added to simulate sensor inaccuracies
and environmental disturbances.

The performance of each model is evaluated under noisy
conditions to analyze sensitivity and stability. This analysis is
crucial for assessing practical deployment feasibility in real-
world SHM systems.

» Implementation Workflow

o The Overall Implementation Workflow Follows these
Steps:

Data preprocessing and normalization,

Feature extraction and selection using XGBoost,
Sequence formation for LSTM input,

Model training and validation,

Performance evaluation and comparison,
Robustness and explainability analysis.

ASANENANENRN
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VI. RESULTS AND DISCUSSION

» Performance Comparison of Models

The performance of the proposed hybrid XGBoost—
LSTM framework is evaluated and compared with
conventional machine learning and deep learning models,
including Support Vector Machine (SVM), Random Forest
(RF), standalone XGBoost, and standalone LSTM. All
models are trained and tested using the same dataset and
evaluation metrics to ensure a fair comparison.

The experimental results indicate that the hybrid
XGBoost-LSTM  model consistently outperforms the
baseline models in both damage classification and severity
prediction tasks. The improved performance can be attributed
to the effective integration of nonlinear feature learning and
temporal sequence modeling. While traditional ML models
demonstrate reasonable accuracy, they fail to capture damage
progression over time. Similarly, standalone LSTM models
exhibit sensitivity to noisy and redundant input features,
resulting in comparatively lower generalization performance.

» Damage Detection and Severity Prediction Accuracy

The hybrid model achieves superior accuracy across all
damage states, including healthy, minor damage, moderate
damage, and severe damage conditions. The confusion matrix
analysis reveals a significant reduction in misclassification
between adjacent damage states, which is a common
challenge in SHM applications.

In regression-based severity prediction, the proposed
framework achieves lower RMSE and MAE values and
higher Rz scores compared to baseline models. These results
confirm the model’s ability to accurately estimate the extent
of structural damage, which is crucial for condition-based
maintenance and decision-making.

» Temporal Damage Evolution Analysis

One of the key advantages of the proposed hybrid
framework is its ability to capture temporal degradation
trends in structural response data. The LSTM component
effectively learns long-term dependencies associated with
progressive cracking and stiffness degradation in RC beams.

Compared to standalone ML models, which treat
samples independently, the hybrid framework demonstrates
improved prediction stability over time. This temporal
modeling capability enables early detection of damage
initiation and reliable tracking of damage progression,

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan353

enhancing the practical applicability of the proposed
approach.

> Noise Robustness Evaluation

The robustness of the proposed framework is evaluated
by introducing artificial noise into the structural response data
to simulate real-world monitoring conditions. The hybrid
XGBoost-LSTM model exhibits minimal performance
degradation under increasing noise levels, outperforming
standalone LSTM and other baseline models.

The improved robustness can be attributed to the feature
selection capability of XGBoost, which filters out noise-
sensitive features before temporal modeling. This result
highlights the suitability of the proposed framework for real-
world SHM applications, where sensor noise and
environmental disturbances are unavoidable.

> Explainability and Feature Importance Analysis

To enhance model transparency and interpretability,
feature importance analysis is conducted using XGBoost and
SHAP-based explainability techniques. The analysis
identifies critical damage-sensitive features such as RMS
acceleration, frequency shift, strain energy, and spectral
entropy as dominant contributors to damage prediction.

These insights align with established structural
engineering principles, reinforcing the physical relevance of
the selected features. The explainability analysis improves
trust in the Al-based predictions and supports informed
decision-making by structural engineers.

» Discussion on Practical Applicability

The experimental results demonstrate that the proposed
hybrid framework offers a reliable and scalable solution for
structural health monitoring of RC beams. Its ability to
integrate sensor-based data, handle noise, and provide
interpretable predictions makes it suitable for deployment in
real-time SHM systems.

Furthermore, the computational efficiency achieved
through feature selection enables potential integration with
loT-based monitoring platforms and edge computing
environments. These characteristics position the proposed
framework as a promising tool for intelligent infrastructure
management.

» Summary of Results

Table 2 Summary of Results

Model Accuracy (%) RMSE MAE R?
SVM Lower Higher Higher Lower
RF Moderate Moderate Moderate Moderate
XGBoost High Lower Lower High
LSTM High Moderate Moderate High
Hybrid XGB-LSTM Highest Lowest Lowest Highest
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VIL CONCLUSION AND FUTURE SCOPE
» Conclusion

This study presented a hybrid XGBoost-LSTM
framework for structural health monitoring of reinforced
concrete beams, addressing key challenges associated with
nonlinear structural behavior, temporal damage progression,
and noisy sensor data. By integrating ensemble-based feature
learning with deep temporal sequence modeling, the proposed
approach effectively combines the strengths of machine
learning and deep learning techniques.

The experimental results demonstrated that the hybrid
framework significantly outperforms conventional machine
learning models and standalone deep learning approaches in
terms of damage detection accuracy and severity prediction.
The XGBoost component efficiently identified damage-
sensitive features and reduced input dimensionality, while the
LSTM network successfully captured long-term temporal
dependencies in structural response data. The proposed model
also exhibited strong robustness under noisy conditions,
highlighting its suitability for real-world monitoring
scenarios.

Furthermore, the incorporation of feature importance
and explainability analysis enhanced the transparency and
interpretability of the proposed framework, which is essential
for gaining trust in Al-driven decision-making processes
within civil engineering applications. Overall, the findings
confirm that the hybrid XGBoost-LSTM model provides a
reliable, scalable, and intelligent solution for data-driven
structural health monitoring of reinforced concrete beams.

» Future Scope

Although the proposed framework demonstrated
promising performance, several directions can be explored to
further enhance its applicability and effectiveness:

e Extension of the proposed framework to full-scale
structural systems such as bridges, slabs, and frame
structures.

o Integration with Internet of Things (IoT) platforms for
real-time data acquisition and continuous structural
monitoring.

e Development of physics-informed hybrid models that
incorporate structural mechanics principles into data-
driven learning.

e Exploration of federated and edge learning approaches for
distributed SHM systems.

e Application of advanced explainable Al techniques to
further improve model transparency and decision support.

e Validation of the proposed approach using long-term field
data under varying environmental conditions.

These future research directions will contribute to the

advancement of intelligent and resilient infrastructure
monitoring systems.
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