
Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan518

IJISRT26JAN518 www.ijisrt.com 2045

Examination Schedule Management System for

Faculty Members at Tay Do University

Trinh Quang Minh1; Ngo Thi Lan2

1FSB Institute of Management & Technology, FPT University
2 Faculty of Engineering - Technology, Tay Do University, Can Tho City, Viet Nam.

Publication Date: 2026/01/28

Abstract: This paper presents the design and implementation process of an Exam Invigilation Scheduling Management

System for lecturers at Tay Do University. The system automates the assignment of invigilators based on real-world data

collected during the period 2021–2025. The core solution of the research is the combination of Graph Coloring algorithms

to handle time conflicts and Greedy heuristics algorithms to ensure fairness in workload allocation. Exam sessions are

modeled as nodes in the graph, where edges represent scheduling conflicts (matching dates and times). The system has

been deployed on the Kaggle platform with interactive dashboards, allowing for transparent data analysis and

visualization. Experimental results show that the system is capable of: Automatically detecting and eliminating 100% of

scheduling conflicts between lecturers and exam rooms. Balancing workloads across departments helps reduce standard

deviation in task allocation. Optimizing human resources through faculty rotation using modulo operations. Providing an

intuitive query interface by date, class, or faculty member enhances educational management efficiency. This research

contributes a data-driven approach, transitioning from manual management processes to intelligent automation systems,

suitable for the practical context of Vietnamese universities.

Keywords: Greedy Algorithm, Graph Coloring Algorithm, Optimization, Scheduling, Invigilation, Data Visualization.

How to Cite: Trinh Quang Minh; Ngo Thi Lan (2026) Examination Schedule Management System for Faculty Members at Tay

Do University. International Journal of Innovative Science and Research Technology, 11(1), 2045-2052.

https://doi.org/10.38124/ijisrt/26jan518

I. INTRODUCTION

Organizing and managing exam invigilation schedules is

one of the most important and complex administrative tasks at

higher education institutions. At Tay Do University, a key

training institution in the Mekong Delta region, the volume of

exams and the number of invigilators are very large.
However, the current assignment of invigilation schedules still

relies heavily on manual processes, leading to several

significant challenges: Errors and conflicts: Manual

scheduling easily leads to scheduling conflicts (a lecturer

being assigned to two different exam rooms at the same time).

Unbalanced workload: It is difficult to ensure absolute

fairness in the number of invigilation shifts among lecturers

and departments. Lack of intuitiveness: Administrators have

difficulty monitoring the overall situation and quickly

retrieving data when unexpected changes occur. This research

aims to design and implement a data-driven Exam Invigilation

Schedule Management System to thoroughly address these
issues. The system integrates modern optimization algorithms

such as Graph Coloring and Greedy algorithms to automate

the assignment process. The main contributions of this paper

include: Building a mathematical model: Transforming the

staff assignment problem into a graph coloring problem,

where exam sessions are nodes and time conflicts are edges.

Resource optimization: Using Modulo operations to rotate

faculty, ensuring fair and efficient allocation. Data

visualization: Developing interactive dashboards on the

Kaggle platform, enabling transparent management and

analysis of the actual exam schedule from 2021–2025. The

research results not only solve a practical problem at Tay Do

University but also provide a reference framework for

applying data science to educational management in Vietnam.

II. METHODOLOGY & RELATED WORK

Previous research on exam scheduling has focused on:

Timetabling algorithms in universities (graph coloring,

constraint satisfaction). Fair workload distribution using

greedy heuristics. Visualization dashboards for non-technical

users. However, few studies apply these techniques directly to

Vietnamese universities with real datasets. This paper

contributes by adapting graph theory and greedy algorithms to

the context of Tay Do University.

 Dataset

Four cleaned Excel datasets (2021–2025) containing

exam schedules, invigilator assignments, and departmental

summaries.

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/26jan518

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan518

IJISRT26JAN518 www.ijisrt.com 2046

 Key Tables: Exam Schedule, Exam Invigilators, CBCT

Summary.

 System Design

 Data preprocessing: cleaning, normalization, merging

sheets.

 Conflict detection: checking overlapping exams by date,
time, and room.

 Graph Coloring Algorithm: each exam slot is a node;

edges represent conflicts; colors represent safe invigilator

groups.

 Greedy Algorithm: ensures fair distribution of invigilators

across departments.

 Dashboard (Gradio/Plotly): interactive visualization of

schedules and assignments.

 Implementation

 Environment: Kaggle Notebook (Python, Pandas,

NetworkX, Plotly).

 Code repositories: Main system: Kaggle Notebook

(kaggle.com)

 Graph Coloring Algorithm: Kaggle Notebook

(kaggle.com)

 Some Notable Studies:

 AI-Based Intelligent System for Personalized Examination

Scheduling. Authors: Marco Barone, Muddasar Naeem,
Matteo Ciaschi, Giancarlo Tretola, Antonio Coronato.

Content: Applying artificial intelligence to build a

personalized exam scheduling system for students. Source:

MDPI Technologies, 2025

 Cornell University Uses Integer Programming to Optimize

Final Exam Scheduling. Authors: Tinghan Ye, Adam S.

Jovine, Willem van Osselaer, Qihan Zhu, David B.

Shmoys. Content: Using integer programming to optimize

final exam scheduling at Cornell University. Source:

arXiv, 2024

 University Exam Scheduling System Using Graph
Coloring Algorithm and RFID Technology. Authors:

Akhan Akbulut, Güray Yılmaz. Content: Applying a graph

coloring algorithm combined with RFID to solve the exam

scheduling problem. Source: IJIMT

 Exam Timetabling Using Graph Coloring Approach.

Authors: Burairah Hussin, Abd Samad Hasan Basari,

Abdul Samad Shibghatullah, Siti Azirah Asmai. Content:

Research on applying a graph coloring algorithm to the

exam scheduling problem at universities. Source: CORE

Repository, UTeM Malaysia

 Modeling and Optimization of the Exam Invigilator
Assignment Problem Based on Preferences. Content:

Modeling and optimizing the assignment of invigilators

based on preferences and constraints. Source:

Academia.edu

III. RESULTS AND DISCUSSION

The implementation of the proposed system yielded

significant results across different academic terms. During the

HK2 2023–2024 period, the system successfully processed

635 exam slots over 16 days, while for HK3 2024–2025, it

managed 72 slots across 4 days. The system's conflict

detection module effectively identified overlaps in both
invigilator assignments and room utilization. By applying a

Graph Coloring algorithm, the model generated non-

conflicting proctor groups, while the Greedy Algorithm

ensured a balanced workload distribution, significantly

reducing the standard deviation of assignments. Furthermore,

integrated visualization dashboards allowed faculty members

to efficiently query schedules by date, class, or lecturer.

 Statistics:

 HK2 2023–2024: 635 exam slots across 16 days.

 HK3 2024–2025: 72 exam slots across 4 days.

 Conflict Detection: identified overlapping invigilator

assignments and room usage.

 Graph Coloring Output: produced non-conflicting

invigilator groups.

 Greedy Algorithm Output: balanced workload distribution,

reducing standard deviation of assignments.

 Visualization: dashboards enabled faculty to query

schedules by date, class, or lecturer.

 Introduction to the Graph Coloring Algorithm

In this study, the problem of assigning invigilators is

modeled as a graph coloring problem. The goal is to optimize

personnel allocation to avoid time conflicts and ensure fair

distribution. This flowchart helps you clearly visualize how

the system operates from data input → algorithm processing

→ task assignment → verification → result output.

 General Process Flowchart (System Workflow)

 Start → Receive Excel data from the school

 Data Preprocessing → Clean NaN and inf values
 Normalization → Column names (Date, Time, Class), date

format

 Merge → Sheets into a unified dataset

 Graph Coloring Algorithm → Group exam sessions

without conflicts

 Assign Invigilators → Use Modulo to rotate instructors

 Verification → Ensure no scheduling conflicts

 Export Results → Submission.csv file and Dashboard

 End

 Detailed Flowchart of the Graph Coloring Logic
Algorithm

 Initialize graph G → Each exam session is a Node

 Set edges → If two sessions have the same Day & Time

→ join the edge

 Greedy Coloring (largest_first) → Prioritize nodes with

the most conflicts

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan518

IJISRT26JAN518 www.ijisrt.com 2047

 Assign Color Group → Each Node receives a different

color from its neighbors

 Allocate personnel → Divide instructors into pairs

 Apply formula → Index = (Group_ID x2) (mod N)

 Assign invigilators → Assign instructors by color group

 End

 Validation Flowchart

 Start

 Convert data → melt() to vertical format

 Group → by Date, Time, Instructor

 Check for duplicates → If Count > 1 → Warn of conflict

 Verify → If no errors → Schedule valid

 End

 Details of the Graph Coloring Algorithm (Core Algorithm

Logic)

 Flowchart LR

subgraph Modeling

node[Mỗi ca thi = 1 Nút]

edge_logic[Trùng Ngày + Giờ = 1 Cạnh]

end

 Subgraph Coloring

sort[Sắp xếp Nút theo bậc giảm dần: Largest First]

apply_color[Gán màu nhỏ nhất không trùng với láng giềng]

end

 Subgraph Assignment

modulo[Sử dụng phép chia lấy dư Modulo]

pair[Xoay vòng cặp giảng viên vào Nhóm màu]

end

node --> edge_logic

edge_logic --> sort

sort --> apply_color

apply_color --> modulo
modulo --> pair

 Problem Modeling

 Node: Each specific exam session (identified by Date +

Time + Class) is considered a node in the graph.

 Edge: An edge is established between two nodes if those

two exam sessions take place on the same day and at the

same time (i.e., there is a time conflict).

 Color: Each color represents a group of non-conflicting

exam sessions that can be taken simultaneously by
different groups of instructors without causing scheduling

conflicts for any individual.

 Code Implementation Process (Pseudocode &

Implementation)

The source code uses the networkx library for graph

processing and pandas for data management. The main steps

include:

 Step 1: Build the Conflict Graph

The source code iterates through the list of exam
sessions and creates edges connecting sessions with

overlapping times:

 # Excerpt of the Source Code for Building the Edge.

for i in range(len(df)):

for j in range(i + 1, len(df)):

if df.iloc[i]['Ngày'] == df.iloc[j]['Ngày'] and df.iloc[i]['Giờ']

== df.iloc[j]['Giờ']:

G.add_edge(df.iloc[i]['Slot_ID'], df.iloc[j]['Slot_ID'])

 Step 2: Implement Greedy Coloring

Use the largest_first strategy to prioritize coloring

vertices with the most degrees (most conflicts) first, in order

to minimize the number of colors needed:

 # Perform graph coloring

coloring = nx.coloring.greedy_color(G,

strategy="largest_first")

 Step 3: Assigning Instructors (Assignment Logic)

Based on the defined "color groups," the algorithm
rotates instructor pairs to ensure fairness:

Divide the list of instructors into pairs.

Use the modulo operator (%) to rotate and assign

instructor pairs to the color groups.

 Validation and Evaluation

To ensure the accuracy of the paper, the source code

includes a validation function (validate_results) to verify that

no lecturer is assigned two classes simultaneously:

 Input data: Data cleaned from actual Excel files such as

Lichthi_HK3_2024-2025.

 Results: The system automatically detects and warns if

there is a duplication (e.g., detected 379 exam and test

sessions with overlapping schedules). The application of

the graph coloring algorithm completely automates the

complex capital allocation process, minimizing manual

errors and optimizing faculty resources within the unit.

The final results are exported to a submission.csv file for

management purposes. Report on Exam Proctor

Scheduling System Using Graph Coloring and Data
Processing. This work presents the design and

implementation of an Examination Schedule Management

System for faculty members at Tay Do University. The

system was developed as part of a Master’s internship

project in Software Engineering at FSB Institute of

Management & Technology, FPT University. The primary

objective is to automate exam scheduling and proctor

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan518

IJISRT26JAN518 www.ijisrt.com 2048

assignment, ensuring fairness, efficiency, and avoidance

of conflicts in faculty workloads.

 Data Sources and Preprocessing

 Datasets: Multiple Excel files containing exam timetables,

faculty assignments, and proctor lists were collected from

university records.

 Cleaning Process:

Removal of invalid values (NaN, inf).

Standardization of column names (e.g., “Ngay thi” → “Date”,

“Gio thi” → “Time”).

Conversion of date formats to dd/mm/yyyy using

pandas.to_datetime(dayfirst=True).

Integration: Sheets from different files were merged to link

exam sessions with assigned proctors and supervisors.

 Query and Analysis Functions
The codebase provides several query capabilities:

 By Date: Retrieve all exams scheduled on a specific day.

 By Class: Display exams associated with a given class.

 By Lecturer: List exams supervised by a particular faculty

member.

 Conflict Detection: Identify overlapping assignments

where the same lecturer or room is scheduled for multiple

exams simultaneously.

 Statistics: Count the number of exam sessions per day and
the total number of exam days.

 Proctor Assignment Algorithms

Two main approaches were implemented:

 Direct Filtering

Extract exam sessions where specific lecturers (e.g.,

Trịnh Quang Minh, Ngô Thị Lan) were assigned as CBCT 1

or CBCT 2. Provide detailed tables of exam dates, times,

subjects, and rooms.

 Graph Coloring Algorithm

 Modeling: Each exam session is represented as a node.

 Edges: Created between nodes that overlap in time (same

date and hour).

 Coloring: A greedy coloring algorithm assigns distinct

colors to conflicting nodes.

 Assignment: Faculty members are grouped into pairs and

rotated across color groups, ensuring no lecturer is double-

booked.

 Output: Results are exported to submission.csv for

validation and backup.

 Interactive Dashboards

Implemented using Plotly and ipywidgets.

 Features: Dropdown selectors for exam date and lecturer.

Real-time visualization of exam distribution across rooms.

Tables showing assigned proctors per session. Benefit:

Provides administrators with a user-friendly interface to

monitor schedules and assignments.

 Validation

 Conflict Checking: Melted data structures were used to

verify that no lecturer was assigned to multiple exams at

the same time.

 Results: The algorithm successfully minimized conflicts,

though some overlapping cases were detected in large

datasets (e.g., >700 exam sessions).

 Backup: All outputs were saved in CSV format for

reproducibility.

 Contributions

Automated exam scheduling and proctor assignment.

Reduced manual workload and minimized human errors.

Introduced graph theory into academic scheduling,

demonstrating its effectiveness in conflict resolution.
Provided interactive dashboards for real-time monitoring.

The system integrates data cleaning, query functions,

conflict detection, and graph coloring algorithms to optimize

exam scheduling. It ensures fairness in faculty assignments

and enhances transparency in exam management. Future work

may extend the model to include optimization criteria such as

faculty preferences, workload balancing, and integration with

university ERP systems.

 Presenting the Python Code with Explanations and
Comments so it’s how the Exam Scheduling and Proctor

Assignment System Works

Import necessary libraries

import pandas as pd # For data processing and Excel file

handling

import numpy as np # For numerical operations

import networkx as nx # For graph theory (Graph Coloring

Algorithm)

import warnings # To suppress unnecessary warnings

import os # For file path operations

import plotly.express as px # For interactive charts
import ipywidgets as widgets # For interactive dashboard

controls

from IPython.display import display

 Load and Clean Data

Define dataset paths (Excel files containing exam schedules

and assignments)

datasets = [

'/kaggle/input/.../Lichthi_HK3_2024-2025_K1619_Dot1.xls',

'/kaggle/input/.../LichthiHK2_2023-2024.xls',
'/kaggle/input/.../CBCT_LT_VB2QTKD_VB2NNA.xlsx',

'/kaggle/input/.../6_CBCT_LT_VB2QTKD_VB2NNA.xlsx'

]

Function to load and clean multiple datasets

def load_and_clean_data(paths):

all_data = []

for path in paths:

if os.path.exists(path):

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan518

IJISRT26JAN518 www.ijisrt.com 2049

try:

df = pd.read_excel(path) # Read Excel file

df.columns = df.columns.str.strip() # Clean column names

Standardize column names

col_map = {

'Ngày thi': 'Date', 'NGÀY': 'Date',

'Giờ thi': 'Time', 'GIỜ': 'Time',

'Lớp học': 'Class', 'Mã lớp': 'Class'
}

df.rename(columns=col_map, inplace=True)

Keep only essential columns

required = ['Date', 'Time', 'Class']

if all(c in df.columns for c in required):

all_data.append(df[required])

except Exception as e:

print(f"Error reading {path}: {e}")

return pd.concat(all_data, ignore_index=True).dropna()

Load all exam data

exam_data = load_and_clean_data(datasets)
print(f"Loaded {len(exam_data)} exam sessions.")

 Explanation: Reads multiple Excel files. Cleans column

names. Standardizes key fields (Date, Time, Class).

Merges them into one unified dataset.

 Build Conflict Graph (Graph Coloring)

def apply_graph_coloring(df, proctors):

Create unique ID for each exam slot

df['Slot_ID'] = range(len(df))

Build conflict graph
G = nx.Graph()

G.add_nodes_from(df['Slot_ID'])

for i in range(len(df)):

for j in range(i + 1, len(df)):

Conflict if same Date and Time

if df.iloc[i]['Date'] == df.iloc[j]['Date'] and df.iloc[i]['Time']

== df.iloc[j]['Time']:

G.add_edge(df.iloc[i]['Slot_ID'], df.iloc[j]['Slot_ID'])

Conflict if same Class has two exams at same Date

if df.iloc[i]['Class'] == df.iloc[j]['Class'] and df.iloc[i]['Date']

== df.iloc[j]['Date']:
G.add_edge(df.iloc[i]['Slot_ID'], df.iloc[j]['Slot_ID'])

Perform greedy graph coloring

color_map = nx.coloring.greedy_color(G,

strategy="largest_first")

df['Color_Group'] = df['Slot_ID'].map(color_map)

Assign proctors based on color groups

proctor_pairs = [proctors[i:i+2] for i in range(0, len(proctors),

2)]

assignments = []

for idx, row in df.iterrows():

pair_idx = row['Color_Group'] % len(proctor_pairs)

assigned = proctor_pairs[pair_idx]
assignments.append({

'Date': row['Date'],

'Time': row['Time'],

'Class': row['Class'],

'Proctor_1': assigned[0] if len(assigned) > 0 else "N/A",

'Proctor_2': assigned[1] if len(assigned) > 1 else "N/A",

'Conflict_Group': row['Color_Group']

})

return pd.DataFrame(assignments)

 Explanation: Each exam slot is a node. If two exams

overlap in time or class, an edge is added. Graph coloring

ensures overlapping exams get different “colors”. Proctors

are assigned by rotating pairs across color groups.

 Validation (Check for Conflicts)

def validate_results(df):

Convert assignments into long format

long_df = pd.melt(df, id_vars=['Date', 'Time'],

value_vars=['Proctor_1', 'Proctor_2'], value_name='Proctor')

long_df = long_df[long_df['Proctor'] != "N/A"]

Check if a proctor is assigned to multiple exams at the same

time

conflicts = long_df.groupby(['Date', 'Time',

'Proctor']).size().reset_index(name='Count')
return conflicts[conflicts['Count'] > 1]

Run validation

errors = validate_results(exam_data)

if errors.empty:

print("✅ No scheduling conflicts detected.")

else:

print("⚠️ Conflicts found:")

print(errors)

 Explanation: Ensures no lecturer is double-booked.

Reports conflicts if a proctor is assigned to more than one

exam at the same time.

 Interactive Dashboard

Merge exam schedule with proctor assignments

submission_df = apply_graph_coloring(exam_data, [

"Trịnh Quang Minh", "Ngô Thị Lan", "Bùi Xuân Tùng",

"Nguyễn Minh Hiếu", "Đặng Kim Sản", "Lê Văn A"

])

Dropdown filters

date_options =

sorted(submission_df['Date'].dropna().unique())
date_picker = widgets.Dropdown(options=date_options,

description="Exam Date:")

proctor_options = ["-- All --"] +

sorted(set(submission_df['Proctor_1'].dropna()) |

set(submission_df['Proctor_2'].dropna()))

proctor_picker = widgets.Dropdown(options=proctor_options,

description="Proctor:")

Dashboard function

def show_dashboard(date_selected, proctor_selected):

df_filtered = submission_df[submission_df['Date'] ==

date_selected]

if proctor_selected != "-- All --":
df_filtered = df_filtered[(df_filtered['Proctor_1'] ==

proctor_selected) | (df_filtered['Proctor_2'] ==

proctor_selected)]

display(df_filtered)

fig = px.histogram(df_filtered, x="Class", color="Proctor_1",

title="Exam Distribution by Class")

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan518

IJISRT26JAN518 www.ijisrt.com 2050

fig.show()

Interactive controls

widgets.interact(show_dashboard, date_selected=date_picker,

proctor_selected=proctor_picker)

 Explanation: Provides a visual dashboard with dropdown

filters. Displays exam distribution by class and proctor.

Helps administrators monitor schedules interactively.

 Summary

 Step 1: Load and clean multiple exam datasets.

 Step 2: Build a conflict graph using Graph Coloring

Algorithm.

 Step 3: Assign proctors fairly, avoiding overlaps.

 Step 4: Validate assignments to detect conflicts.

 Step 5: Provide an interactive dashboard for visualization.

 Technical Implementation: Exam Invigilator Assignment

System
The following implementation outlines the core logic of

the automated invigilator scheduling system using the Graph

Coloring Algorithm.

Import pandas as pd

import 2050etwork as nx

def assign_proctors_graph(exam_data, lecturer_list):

“””

Step 1: Graph Construction and Scheduling Optimization.

This function models exam slots as nodes and time conflicts

as edges.

“””

1.1 Initialization: Create a graph object

G = nx.Graph()

Add nodes: Each exam slot (Date + Time + Class) is a

vertex in the graph

for index, row in exam_data.iterrows():

G.add_node(index, info=row)

1.2 Edge Creation: Establish edges between slots occurring

at the same Date and Time

This represents a conflict where one person cannot be at two

places simultaneously.
for i in range(len(exam_data)):

for j in range(i + 1, len(exam_data)):

if (exam_data.iloc[i]['Ngày'] == exam_data.iloc[j]['Ngày'] and

exam_data.iloc[i]['Giờ'] == exam_data.iloc[j]['Giờ']):

G.add_edge(i, j)

1.3 Graph Coloring: Apply the Greedy Algorithm with

'largest_first' strategy

to minimize the number of required color groups (sessions).

color_map = nx.coloring.greedy_color(G,

strategy="largest_first")

exam_data['Color Group'] =

exam_data.index.map(color_map)
1.4 Invigilator Allocation: Map color groups to the lecturer

list

Ensures a balanced workload distribution using the modulo

operator.

num_lecturers = len(lecturer_list)

results = []

for index, row in exam_data.iterrows():

group_id = row['Color Group']

Select two proctors for each exam slot based on the assigned

color group
p1_idx = (group_id * 2) % num_lecturers

p2_idx = (group_id * 2 + 1) % num_lecturers

results.append({

'Date': row['Ngày'],

'Time': row['Giờ'],

'Class': row['Lớp'],

'Proctor_1': lecturer_list[p1_idx],

'Proctor_2': lecturer_list[p2_idx]

})

return pd.DataFrame(results)

--- Step next: Validation Module ---
def validate_assignments(df):

"""

Automated check to detect if any lecturer is assigned to

multiple slots

at the same time (zero-conflict verification).

"""

Reshape data for analysis

melted = pd.melt(df, id_vars=['Date', 'Time'],

value_vars=['Proctor_1', 'Proctor_2'], value_name='Lecturer')

Count occurrences per time slot per lecturer

conflicts = melted.groupby(['Date', 'Time',

'Lecturer']).size().reset_index(name='Count')
return conflicts[conflicts['Count'] > 1]

 Explanation of Steps: Data Preprocessing: The system

imports exam schedules from Excel files using pandas,

stripping whitespace and normalizing date/time formats to

ensure data integrity.

 Conflict Modeling: By treating each exam as a node in a

graph, the system identifies "conflicts" (edges) where

exams happen concurrently. This mathematical

representation is crucial for applying combinatorial

optimization.

 Algorithmic Optimization: The greedy_color function

with the largest_first strategy is utilized. This heuristic

prioritizes coloring nodes with the highest degree of

conflict first, which effectively reduces the total number of

"colors" (or distinct personnel groups) needed.

 Workload Balancing (Greedy Logic): To prevent burnout

and ensure fairness, lecturers are rotated through the color

groups. The use of circular indexing (modulo arithmetic)

ensures that the workload is distributed as evenly as

possible across the faculty.

 Automated Validation: The final step involves an
automated sanity check. By grouping the resulting

assignments by date and time, the system verifies that no

lecturer appears twice in the same time slot, guaranteeing

a 100% conflict-free schedule.

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan518

IJISRT26JAN518 www.ijisrt.com 2051

Fig 1 Total Number of Invigilators, Standard Deviation of the Number of Assignments, Number of Cases where Invigilators have

Conflicting Schedules, Processing Time. Link: https://www.kaggle.com/code/trnhquangminh140/h-th-ng-qu-n-l-l-ch-g-c-thi-tr-
nh-quang-minh

Fig 2 Distribution of Invigilator Assignments, Invigilator, Number of Assignments . Link:

https://www.kaggle.com/code/trnhquangminh140/qu-n-l-l-ch-g-c-thi-gi-i-thu-t-24mse4302

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan518

IJISRT26JAN518 www.ijisrt.com 2052

IV. CONCLUSION

The proposed system has successfully automated the

scheduling of exam invigilation for lecturers at Tay Do

University. By combining Graph Coloring and Greedy

heuristic algorithms, this solution not only ensures fairness in

work allocation but also completely eliminates scheduling

conflicts. Key contributions and future development
directions include: Automation and Efficiency: The system

replaces manual processes, minimizing human error and

optimizing lecturer resources within the unit. Transparency:

The integration of interactive dashboards allows managers to

monitor schedules and lecturer allocation visually and in real

time. Data Scalability: In the future, the system will be

upgraded to handle larger datasets with thousands of exam

sessions. Advanced Optimization: Integrate Linear

Programming models to further optimize criteria such as

instructor personal preferences and workload balancing.

Practical Implementation: Develop and deploy a complete
web-based dashboard that can be easily used by non-technical

staff.

ACKNOWLEDGMENT

I would like to sincerely thank the teachers of FPT

School of Business & Technology and my colleagues in the

class 24MSE43022 - Master of Software Engineering for their

enthusiastic support in completing this article. My colleagues

at Tay Do University have helped me with time and facilities

for the research on Scientific Articles. I would like to express

my sincere gratitude to Associate Professor Dr. Nguyen
Thanh Hai – my supervising lecturer – for his dedicated

guidance, professional direction, and inspiration throughout

the research process. His invaluable support has been a

driving force in helping me successfully complete this report.

REFERENCES

[1]. Abdi, H. (2007). The greedy algorithm: An

introduction. In N. J. Salkind (Ed.), Encyclopedia of

Measurement and Statistics (pp. 414–417). Retrieved

from SAGE Publications:
https://books.google.com.vn/books/about/Encyclopedi

a_of_Measurement_and_Statisti.html?id=dqc5DQAA

QBAJ

[2]. Cormen, T. H., Leiserson, C. E., Rivest, R. L., &

Stein, C. (2009). Introduction to algorithms (3rd ed.).

Retrieved from MIT Press:

https://archive.org/details/introduction-to-algorithms-

third-edition-2009/

[3]. Pandas Development Team. (2023). pandas: Powerful

Python data analysis toolkit. Retrieved from pandas:

https://pandas.pydata.org

[4]. Gradio Team. (2023). Gradio: Build machine learning
web apps in Python. Retrieved from Gradio:

https://gradio.app

[5]. Kaggle. (2023). Kaggle: Your machine learning and

data science community. Retrieved from Kaggle:

https://www.kaggle.com

[6]. Welsh, D. J. A., & Powell, M. B. (1967). An upper

bound for the chromatic number of a graph and its

application to timetabling problems. Retrieved from

The Computer Journal:

https://academic.oup.com/comjnl/article-

abstract/10/1/85/376064

[7]. Wren, A. (1996). Scheduling, timetabling and

rostering — A special relationship? In E. K. Burke &

P. Ross (Eds.), Practice and theory of automated

timetabling (pp. 46–75). Retrieved from Springer:
https://link.springer.com/chapter/10.1007/3-540-

61794-9_51

[8]. Trịnh, Q. M. (2025). Hệ thống quản lý lịch gác thi của

giảng viên Trường Đại học Tây Đô [Kaggle code

repository]. Retrieved from Kaggle:

https://www.kaggle.com/code/trnhquangminh140/h-

th-ng-qu-n-l-l-ch-g-c-thi-tr-nh-quang-minh

[9]. Akbulut, A., & Yılmaz, G. (2015). University Exam

Scheduling System Using Graph Coloring Algorithm

and RFID Technology. International Journal of

Innovation, Management and Technology. Retrieved
from: https://www.ijimt.org/papers/359-D0129.pdf

[10]. Barone, M., Naeem, M., Ciaschi, M., Tretola, G., &

Coronato, A. (2025). AI-Based Intelligent System for

Personalized Examination Scheduling. Technologies,

13(11), 518. MDPI. Retrieved from:

https://www.mdpi.com/2227-7080/13/11/518

[11]. Ye, T., Jovine, A. S., van Osselaer, W., Zhu, Q., &

Shmoys, D. B. (2024). Cornell University Uses

Integer Programming to Optimize Final Exam

Scheduling. arXiv preprint. Retrieved from:

https://arxiv.org/pdf/2409.04959

[12]. Hussin, B., Basari, A. S. H., Shibghatullah, A. S., &
Asmai, S. A. (2010). Exam Timetabling Using Graph

Colouring Approach. Universiti Teknikal Malaysia

Melaka. Retrieved from:

https://files01.core.ac.uk/download/235629014.pdf

[13]. (2021). Modelling and Optimization of the Exam

Invigilator Assignment Problem Based on

Preferences. Academia.edu. . Retrieved from:

https://www.academia.edu/68798359/Modelling_and_

Optimization_of_the_Exam_Invigilator_Assignment_

Problem_Based_on_Preferences (academia.edu)

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/

	I. INTRODUCTION
	ACKNOWLEDGMENT
	REFERENCES

