Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/26jan518

Examination Schedule Management System for
Faculty Members at Tay Do University

Trinh Quang Minh'; Ngo Thi Lan?

IFSB Institute of Management & Technology, FPT University
2 Faculty of Engineering - Technology, Tay Do University, Can Tho City, Viet Nam.

Publication Date: 2026/01/28

Abstract: This paper presents the design and implementation process of an Exam Invigilation Scheduling Management
System for lecturers at Tay Do University. The system automates the assignment of invigilators based on real-world data
collected during the period 2021-2025. The core solution of the research is the combination of Graph Coloring algorithms
to handle time conflicts and Greedy heuristics algorithms to ensure fairness in workload allocation. Exam sessions are
modeled as nodes in the graph, where edges represent scheduling conflicts (matching dates and times). The system has
been deployed on the Kaggle platform with interactive dashboards, allowing for transparent data analysis and
visualization. Experimental results show that the system is capable of: Automatically detecting and eliminating 100% of
scheduling conflicts between lecturers and exam rooms. Balancing workloads across departments helps reduce standard
deviation in task allocation. Optimizing human resources through faculty rotation using modulo operations. Providing an
intuitive query interface by date, class, or faculty member enhances educational management efficiency. This research
contributes a data-driven approach, transitioning from manual management processes to intelligent automation systems,
suitable for the practical context of Vietnamese universities.

Keywords: Greedy Algorithm, Graph Coloring Algorithm, Optimization, Scheduling, Invigilation, Data Visualization.

How to Cite: Trinh Quang Minh; Ngo Thi Lan (2026) Examination Schedule Management System for Faculty Members at Tay

Do University. International Journal of Innovative Science and Research Technology, 11(1), 2045-2052.

https://doi.org/10.38124/ijisrt/26jan518
. INTRODUCTION

Organizing and managing exam invigilation schedules is
one of the most important and complex administrative tasks at
higher education institutions. At Tay Do University, a key
training institution in the Mekong Delta region, the volume of
exams and the number of invigilators are very large.
However, the current assignment of invigilation schedules still
relies heavily on manual processes, leading to several
significant challenges: Errors and conflicts: Manual
scheduling easily leads to scheduling conflicts (a lecturer
being assigned to two different exam rooms at the same time).
Unbalanced workload: It is difficult to ensure absolute
fairness in the number of invigilation shifts among lecturers
and departments. Lack of intuitiveness: Administrators have
difficulty monitoring the overall situation and quickly
retrieving data when unexpected changes occur. This research
aims to design and implement a data-driven Exam Invigilation
Schedule Management System to thoroughly address these
issues. The system integrates modern optimization algorithms
such as Graph Coloring and Greedy algorithms to automate
the assignment process. The main contributions of this paper
include: Building a mathematical model: Transforming the
staff assignment problem into a graph coloring problem,
where exam sessions are nodes and time conflicts are edges.
Resource optimization: Using Modulo operations to rotate

JISRT26JANS18

faculty, ensuring fair and efficient allocation. Data
visualization: Developing interactive dashboards on the
Kaggle platform, enabling transparent management and
analysis of the actual exam schedule from 2021-2025. The
research results not only solve a practical problem at Tay Do
University but also provide a reference framework for
applying data science to educational management in Vietnam.

1. METHODOLOGY & RELATED WORK

Previous research on exam scheduling has focused on:
Timetabling algorithms in universities (graph coloring,
constraint satisfaction). Fair workload distribution using
greedy heuristics. Visualization dashboards for non-technical
users. However, few studies apply these techniques directly to
Vietnamese universities with real datasets. This paper
contributes by adapting graph theory and greedy algorithms to
the context of Tay Do University.

» Dataset

Four cleaned Excel datasets (2021-2025) containing
exam schedules, invigilator assignments, and departmental
summaries.

WWW.ijisrt.com 2045

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/26jan518

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

o Key Tables: Exam Schedule, Exam Invigilators, CBCT
Summary.

» System Design

e Data preprocessing: cleaning, normalization, merging
sheets.

e Conflict detection: checking overlapping exams by date,
time, and room.

e Graph Coloring Algorithm: each exam slot is a node;
edges represent conflicts; colors represent safe invigilator
groups.

o Greedy Algorithm: ensures fair distribution of invigilators
across departments.

e Dashboard (Gradio/Plotly): interactive visualization of
schedules and assignments.

> Implementation

e Environment: Kaggle Notebook (Python, Pandas,
NetworkX, Plotly).

e Code repositories: Main system: Kaggle Notebook
(kaggle.com)

e Graph Coloring
(kaggle.com)

Algorithm: Kaggle Notebook

» Some Notable Studies:

e Al-Based Intelligent System for Personalized Examination
Scheduling. Authors: Marco Barone, Muddasar Naeem,
Matteo Ciaschi, Giancarlo Tretola, Antonio Coronato.
Content: Applying artificial intelligence to build a
personalized exam scheduling system for students. Source:
MDPI Technologies, 2025

e Cornell University Uses Integer Programming to Optimize
Final Exam Scheduling. Authors: Tinghan Ye, Adam S.
Jovine, Willem van Osselaer, Qihan Zhu, David B.
Shmoys. Content: Using integer programming to optimize
final exam scheduling at Cornell University. Source:
arXiv, 2024

e University Exam Scheduling System Using Graph
Coloring Algorithm and RFID Technology. Authors:
Akhan Akbulut, Giiray Yilmaz. Content: Applying a graph
coloring algorithm combined with RFID to solve the exam
scheduling problem. Source: 1JIMT

e Exam Timetabling Using Graph Coloring Approach.
Authors: Burairah Hussin, Abd Samad Hasan Basari,
Abdul Samad Shibghatullah, Siti Azirah Asmai. Content:
Research on applying a graph coloring algorithm to the
exam scheduling problem at universities. Source: CORE
Repository, UTeM Malaysia

e Modeling and Optimization of the Exam Invigilator
Assignment Problem Based on Preferences. Content:
Modeling and optimizing the assignment of invigilators
based on preferences and constraints. Source:
Academia.edu

JISRT26JANS18

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan518
. RESULTS AND DISCUSSION

The implementation of the proposed system vyielded
significant results across different academic terms. During the
HK2 2023-2024 period, the system successfully processed
635 exam slots over 16 days, while for HK3 2024-2025, it
managed 72 slots across 4 days. The system's conflict
detection module effectively identified overlaps in both
invigilator assignments and room utilization. By applying a
Graph Coloring algorithm, the model generated non-
conflicting proctor groups, while the Greedy Algorithm
ensured a balanced workload distribution, significantly
reducing the standard deviation of assignments. Furthermore,
integrated visualization dashboards allowed faculty members
to efficiently query schedules by date, class, or lecturer.

> Statistics:

HK?2 2023-2024: 635 exam slots across 16 days.
HK3 2024-2025: 72 exam slots across 4 days.

e Conflict Detection: identified overlapping invigilator
assignments and room usage.

e Graph Coloring Output: produced non-conflicting
invigilator groups.

e Greedy Algorithm Output: balanced workload distribution,
reducing standard deviation of assignments.

e Visualization: dashboards enabled faculty to query
schedules by date, class, or lecturer.

» Introduction to the Graph Coloring Algorithm

In this study, the problem of assigning invigilators is
modeled as a graph coloring problem. The goal is to optimize
personnel allocation to avoid time conflicts and ensure fair
distribution. This flowchart helps you clearly visualize how
the system operates from data input — algorithm processing
— task assignment — verification — result output.

e General Process Flowchart (System Workflow)

v" Start — Receive Excel data from the school

v' Data Preprocessing — Clean NaN and inf values

v" Normalization — Column names (Date, Time, Class), date
format

Merge — Sheets into a unified dataset

Graph Coloring Algorithm — Group exam sessions
without conflicts

Assign Invigilators — Use Modulo to rotate instructors
Verification — Ensure no scheduling conflicts

Export Results — Submission.csv file and Dashboard

End

NN N

Detailed Flowchart of the Graph Coloring Logic
Algorithm

Initialize graph G — Each exam session is a Node

Set edges — If two sessions have the same Day & Time
— join the edge

v Greedy Coloring (largest first) — Prioritize nodes with
the most conflicts

S

WWW.ijisrt.com 2046

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

v’ Assign Color Group — Each Node receives a different
color from its neighbors

Allocate personnel — Divide instructors into pairs

Apply formula — Index = (Group_ID x2) (mod N)

Assign invigilators — Assign instructors by color group
End

AN NN

Validation Flowchart

Start

Convert data — melt() to vertical format

Group — by Date, Time, Instructor

Check for duplicates — If Count > 1 — Warn of conflict

Verify — If no errors — Schedule valid
End

AN N N N NN

Details of the Graph Coloring Algorithm (Core Algorithm
Logic)

v" Flowchart LR

subgraph Modeling

node[Moi ca thi = 1 N(t]
edge_logic[Trung Ngay + Git = 1 Canh]
end

v" Subgraph Coloring

sort[Sap xép Nt theo bac giam dan: Largest First]
apply_color[Gan mau nho nhat khéng trung vai 1ang giéng]
end

v Subgraph Assignment

modulo[Sir dung phép chia lay du Modulo]
pair[Xoay vong cip giang vién vao Nhém mau]
end

node --> edge_logic
edge_logic --> sort

sort --> apply_color
apply_color --> modulo
modulo --> pair

» Problem Modeling

e Node: Each specific exam session (identified by Date +
Time + Class) is considered a node in the graph.

e Edge: An edge is established between two nodes if those
two exam sessions take place on the same day and at the
same time (i.e., there is a time conflict).

e Color: Each color represents a group of non-conflicting
exam sessions that can be taken simultaneously by
different groups of instructors without causing scheduling
conflicts for any individual.

JISRT26JANS18

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan518
» Code Implementation Process
Implementation)
The source code uses the networkx library for graph
processing and pandas for data management. The main steps
include:

(Pseudocode &

e Step 1: Build the Conflict Graph

The source code iterates through the list of exam
sessions and creates edges connecting sessions with
overlapping times:

v’ # Excerpt of the Source Code for Building the Edge.

for i in range(len(df)):

for j in range(i + 1, len(df)):

if dfiloc[i][Ngay'] == df.iloc[j]J[Ngay'] and df.iloc[i][Gio
==df.iloc[j]['Gio:

G.add_edge(df.iloc[i]['Slot_ID", df.iloc[j]['Slot_ID'])

e Step 2: Implement Greedy Coloring

Use the largest first strategy to prioritize coloring
vertices with the most degrees (most conflicts) first, in order
to minimize the number of colors needed:

v' # Perform graph coloring
coloring =
strategy="largest_first")

nx.coloring.greedy color(G,

e Step 3: Assigning Instructors (Assignment Logic)
Based on the defined "color groups,” the algorithm
rotates instructor pairs to ensure fairness:

Divide the list of instructors into pairs.

Use the modulo operator (%) to rotate and assign
instructor pairs to the color groups.

> Validation and Evaluation

To ensure the accuracy of the paper, the source code
includes a validation function (validate_results) to verify that
no lecturer is assigned two classes simultaneously:

e Input data: Data cleaned from actual Excel files such as
Lichthi_HK3_2024-2025.

e Results: The system automatically detects and warns if
there is a duplication (e.g., detected 379 exam and test
sessions with overlapping schedules). The application of
the graph coloring algorithm completely automates the
complex capital allocation process, minimizing manual
errors and optimizing faculty resources within the unit.
The final results are exported to a submission.csv file for
management purposes. Report on Exam Proctor
Scheduling System Using Graph Coloring and Data
Processing. This work presents the design and
implementation of an Examination Schedule Management
System for faculty members at Tay Do University. The
system was developed as part of a Master’s internship
project in Software Engineering at FSB Institute of
Management & Technology, FPT University. The primary
objective is to automate exam scheduling and proctor

WWW.ijisrt.com 2047

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

assignment, ensuring fairness, efficiency, and avoidance
of conflicts in faculty workloads.

» Data Sources and Preprocessing

o Datasets: Multiple Excel files containing exam timetables,
faculty assignments, and proctor lists were collected from
university records.

e Cleaning Process:

Removal of invalid values (NaN, inf).

Standardization of column names (e.g., “Ngay thi” — “Date”,
“Gio thi” — “Time”).

Conversion of date formats to dd/mm/yyyy using
pandas.to_datetime(dayfirst=True).

Integration: Sheets from different files were merged to link
exam sessions with assigned proctors and supervisors.

» Query and Analysis Functions
The codebase provides several query capabilities:

e By Date: Retrieve all exams scheduled on a specific day.

o By Class: Display exams associated with a given class.

e By Lecturer: List exams supervised by a particular faculty
member.

e Conflict Detection: Identify overlapping assignments
where the same lecturer or room is scheduled for multiple
exams simultaneously.

e Statistics: Count the number of exam sessions per day and
the total number of exam days.

» Proctor Assignment Algorithms
Two main approaches were implemented:

e Direct Filtering

Extract exam sessions where specific lecturers (e.g.,
Trinh Quang Minh, Ngd Thi Lan) were assigned as CBCT 1
or CBCT 2. Provide detailed tables of exam dates, times,
subjects, and rooms.

e Graph Coloring Algorithm

v Modeling: Each exam session is represented as a node.

v’ Edges: Created between nodes that overlap in time (same
date and hour).

v Coloring: A greedy coloring algorithm assigns distinct
colors to conflicting nodes.

v Assignment: Faculty members are grouped into pairs and
rotated across color groups, ensuring no lecturer is double-
booked.

v/ Output: Results are exported to submission.csv for
validation and backup.

» Interactive Dashboards
Implemented using Plotly and ipywidgets.

o Features: Dropdown selectors for exam date and lecturer.

Real-time visualization of exam distribution across rooms.
Tables showing assigned proctors per session. Benefit:

JISRT26JANS18

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan518

Provides administrators with a user-friendly interface to
monitor schedules and assignments.

> Validation

e Conflict Checking: Melted data structures were used to
verify that no lecturer was assigned to multiple exams at
the same time.

e Results: The algorithm successfully minimized conflicts,
though some overlapping cases were detected in large
datasets (e.g., >700 exam sessions).

e Backup: All outputs were saved in CSV format for
reproducibility.

» Contributions

Automated exam scheduling and proctor assignment.
Reduced manual workload and minimized human errors.
Introduced graph theory into academic scheduling,
demonstrating its effectiveness in conflict resolution.
Provided interactive dashboards for real-time monitoring.

The system integrates data cleaning, query functions,
conflict detection, and graph coloring algorithms to optimize
exam scheduling. It ensures fairness in faculty assignments
and enhances transparency in exam management. Future work
may extend the model to include optimization criteria such as
faculty preferences, workload balancing, and integration with
university ERP systems.

» Presenting the Python Code with Explanations and
Comments so it’s how the Exam Scheduling and Proctor
Assignment System Works

Import necessary libraries

import pandas as pd # For data processing and Excel file
handling

import numpy as np # For numerical operations

import networkx as nx # For graph theory (Graph Coloring

Algorithm)
import warnings # To suppress unnecessary warnings
import 0s # For file path operations

import plotly.express as px # For interactive charts

import ipywidgets as widgets # For interactive dashboard
controls

from IPython.display import display

e Load and Clean Data

Define dataset paths (Excel files containing exam schedules
and assignments)

datasets = [
'fkaggle/input/.../Lichthi_HK3_2024-2025_K1619 Dot1.xls',
'fkaggle/input/.../LichthiHK2_2023-2024.xls',
‘fkaggle/input/.../.CBCT_LT_VB2QTKD_VB2NNA.xIsx,
‘fkaggle/input/.../6_CBCT_LT_VB2QTKD_VB2NNA xlIsx'
]

Function to load and clean multiple datasets

def load_and_clean_data(paths):

all_data=1]

for path in paths:

if 0s.path.exists(path):

WWW.ijisrt.com 2048

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

try:

df = pd.read_excel(path) # Read Excel file
df.columns = df.columns.str.strip() # Clean column names
Standardize column names

col_map={

'Ngay thi": 'Date’, 'NGAY": 'Date’,

'Gio thi'; 'Time', 'GIO"; 'Time,

'Lop hoc': 'Class', 'Ma 16p': 'Class'

}

df.rename(columns=col_map, inplace=True)

Keep only essential columns

required = ['Date’, 'Time', 'Class']

if all(c in df.columns for c in required):
all_data.append(dffrequired])

except Exception as e:

print(f"Error reading {path}: {e}")

return pd.concat(all_data, ignore_index=True).dropna()
Load all exam data

exam_data = load_and_clean_data(datasets)
print(f'Loaded {len(exam_data)} exam sessions.")

v Explanation: Reads multiple Excel files. Cleans column
names. Standardizes key fields (Date, Time, Class).
Merges them into one unified dataset.

o Build Conflict Graph (Graph Coloring)

def apply_graph_coloring(df, proctors):

Create unique ID for each exam slot

dff'Slot_ID'] = range(len(df))

Build conflict graph

G = nx.Graph()

G.add_nodes_from(df['Slot_ID")

for i in range(len(df)):

for j in range(i + 1, len(df)):

Conflict if same Date and Time

if df.iloc[i]['Date’] == df.iloc[j]['Date’] and df.iloc[i]['Time]
==df.iloc[j][Time"]:

G.add_edge(df.iloc[i]['Slot_ID', df.iloc[j]['Slot_ID)

Conflict if same Class has two exams at same Date

if df.iloc[i]['Class'] == df.iloc[j]['Class’] and df.iloc[i]['Date’]
==df.iloc[j]['Date:

G.add_edge(df.iloc[i]['Slot_ID', df.iloc[j]['Slot_ID')

Perform greedy graph coloring
color_map =
strategy="largest_first")
df['Color_Group'] = dff'Slot_ID'].map(color_map)

Assign proctors based on color groups

proctor_pairs = [proctors[i:i+2] for i in range(0, len(proctors),
2)]

assignments =[]

for idx, row in df.iterrows():

pair_idx = row['Color_Group'] % len(proctor_pairs)

assigned = proctor_pairs[pair_idx]

assignments.append({

'Date’: row['Date"],

"Time": row['Time1,

'Class’: row['Class'],

'Proctor_1": assigned[0] if len(assigned) > 0 else "N/A",
'Proctor_2": assigned[1] if len(assigned) > 1 else "N/A",
'Conflict_Group': row['Color_Group']

nx.coloring.greedy color(G,

JISRT26JANS18

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan518

b

return pd.DataFrame(assignments)

v’ Explanation: Each exam slot is a node. If two exams
overlap in time or class, an edge is added. Graph coloring
ensures overlapping exams get different “colors”. Proctors
are assigned by rotating pairs across color groups.

o Validation (Check for Conflicts)

def validate_results(df):

Convert assignments into long format

long df = pd.melt(df, id_vars=['Date’, Time',
value_vars=['Proctor_1', 'Proctor_2'], value_name="'Proctor’)
long_df =long_df[long_dff'Proctor'] '= "N/A"]

Check if a proctor is assigned to multiple exams at the same
time

conflicts = long_df.groupby(['Date', ‘Time',
'Proctor).size().reset_index(name="Count')

return conflicts[conflicts['Count’] > 1]

Run validation

errors = validate_results(exam_data)

if errors.empty:

print(" & No scheduling conflicts detected.")

else:

print(" /\ Conflicts found:")

print(errors)

v' Explanation: Ensures no lecturer is double-booked.
Reports conflicts if a proctor is assigned to more than one
exam at the same time.

e Interactive Dashboard

Merge exam schedule with proctor assignments
submission_df = apply_graph_coloring(exam_data, [

"Trinh Quang Minh", "Ngé Thi Lan", "Bui Xuan Tung",
"Nguyén Minh Hiéu", "Dang Kim San", "Lé Van A"

)

Dropdown filters

date_options =
sorted(submission_df['Date"].dropna().unique())

date_picker = widgets.Dropdown(options=date_options,
description="Exam Date:")
proctor_options = ["-- All =" +

sorted(set(submission_df['Proctor_1"].dropna()) |
set(submission_dff'Proctor_2'].dropna()))

proctor_picker = widgets. Dropdown(options=proctor_options,
description="Proctor:")

Dashboard function

def show_dashboard(date_selected, proctor_selected):

df filtered = submission_df[submission_df['Date’] ==
date_selected]

if proctor_selected !'="-- All --":

df filtered = df filtered[(df filtered['Proctor_17 ==

proctor_selected) |
proctor_selected)]
display(df_filtered)

fig = px.histogram(df_filtered, x="Class", color="Proctor_1",
title="Exam Distribution by Class")

(df_filtered['Proctor_2'] ==

WWW.ijisrt.com 2049

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

fig.show()

Interactive controls

widgets.interact(show_dashboard, date_selected=date picker,
proctor_selected=proctor_picker)

v’ Explanation: Provides a visual dashboard with dropdown
filters. Displays exam distribution by class and proctor.
Helps administrators monitor schedules interactively.

e Summary

Step 1: Load and clean multiple exam datasets.

Step 2: Build a conflict graph using Graph Coloring
Algorithm.

Step 3: Assign proctors fairly, avoiding overlaps.

Step 4: Validate assignments to detect conflicts.

Step 5: Provide an interactive dashboard for visualization.

AN

AN

» Technical Implementation: Exam Invigilator Assignment
System
The following implementation outlines the core logic of
the automated invigilator scheduling system using the Graph
Coloring Algorithm.

Import pandas as pd

import 2050etwork as nx

def assign_proctors_graph(exam_data, lecturer_list):

Step 1: Graph Construction and Scheduling Optimization.
This function models exam slots as nodes and time conflicts
as edges.

[33213]

1.1 Initialization: Create a graph object

G = nx.Graph()

Add nodes: Each exam slot (Date + Time + Class) is a
vertex in the graph

for index, row in exam_data.iterrows():

G.add_node(index, info=row)

1.2 Edge Creation: Establish edges between slots occurring
at the same Date and Time

This represents a conflict where one person cannot be at two
places simultaneously.

for i in range(len(exam_data)):

for jin range(i + 1, len(exam_data)):

if (exam_data.iloc[i]['Ngay'] == exam_data.iloc[j]['Ngay'] and
exam_data.iloc[i]['Gio'] == exam_data.iloc[j]['Gio']):
G.add_edge(i, j)

1.3 Graph Coloring: Apply the Greedy Algorithm with
'largest_first' strategy

to minimize the number of required color groups (sessions).
color_map = nx.coloring.greedy color(G,
strategy="largest_first")
exam_data['Color
exam_data.index.map(color_map)
1.4 Invigilator Allocation: Map color groups to the lecturer
list

Group'] =

JISRT26JANS18

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan518

Ensures a balanced workload distribution using the modulo
operator.

num_lecturers = len(lecturer_list)

results =]

for index, row in exam_data.iterrows():

group_id = row['Color Group']

Select two proctors for each exam slot based on the assigned
color group

pl_idx = (group_id * 2) % num_lecturers

p2_idx = (group_id * 2 + 1) % num_lecturers
results.append({

'Date’; row['Ngay1],

‘Time": row['Gio"],

'Class": row['LapT,

'Proctor_1": lecturer_list[p1_idx],

'Proctor_2": lecturer_list[p2_idx]

by,

return pd.DataFrame(results)

--- Step next: Validation Module ---

def validate_assignments(df):

Automated check to detect if any lecturer is assigned to
multiple slots

at the same time (zero-conflict verification).

Reshape data for analysis

melted = pd.melt(df, id_vars=['Date’, Time',
value_vars=['Proctor_1', 'Proctor_2'], value_name="Lecturer")
Count occurrences per time slot per lecturer

conflicts = melted.groupby(['Date’, ‘Time',
‘Lecturer']).size().reset_index(name='Count’)

return conflicts[conflicts['Count'] > 1]

e Explanation of Steps: Data Preprocessing: The system
imports exam schedules from Excel files using pandas,
stripping whitespace and normalizing date/time formats to
ensure data integrity.

e Conflict Modeling: By treating each exam as a node in a
graph, the system identifies "conflicts" (edges) where
exams happen concurrently. This mathematical
representation is crucial for applying combinatorial
optimization.

e Algorithmic Optimization: The greedy color function
with the largest first strategy is utilized. This heuristic
prioritizes coloring nodes with the highest degree of
conflict first, which effectively reduces the total number of
"colors" (or distinct personnel groups) needed.

e Workload Balancing (Greedy Logic): To prevent burnout
and ensure fairness, lecturers are rotated through the color
groups. The use of circular indexing (modulo arithmetic)
ensures that the workload is distributed as evenly as
possible across the faculty.

e Automated Validation: The final step involves an
automated sanity check. By grouping the resulting
assignments by date and time, the system verifies that no
lecturer appears twice in the same time slot, guaranteeing
a 100% conflict-free schedule.

WWW.ijisrt.com 2050

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan518
A coccde Kk HE Xk Quinly | k Kaggle k Kaggle! | (0 Mee @ | & 15Thu: | M Hopth. | G Google | 4 Google | M Microsc | B Google | + @ &« - X
&« 2> C B kagglecom/codeftrmhquangminh140/h-th-ng-qu-n---ch-g-c-thi-tr-nh-quang-minh R Q % @ a m & ® =
_ +
= kagg|e Q_ search . @

+ Create AN
: e

Notebook Input Output Logs Comments (0) Settings

(& Home @
Q@ Competitions Phan phi s 1an phan céng CBCT o
@ Datasets 2 - ﬂ
% Models &
dh Benchmarks 20

&) Game Arena

5
<> Code & »
B
E] Discussions
ol
‘gl Learn /
~ More 5 | | |
‘\ ‘
Your Work 1‘i
o) = — T
- VIEWED 2.5 50 7.5 10.0 125 15.0 175 200 225
S8 1an phin cbng

§ Héthang Quan Iy lich... 'ﬁ
F Quinlylich géc thiG... Téng s CBCT: 61 S

1 CSIRO - Image2Biom... A D5 léch chudn s& 1an phan céng: 3.82 :9

A S8 truang hgp CBCT bi tring lich: 168
= . I) Théi gian xir 1§: 8.41 giay
IO View Active Events a p—

Fig 1 Total Number of Invigilators, Standard Deviation of the Number of Assignments, Number of Cases where Invigilators have
Conflicting Schedules, Processing Time. Link: https://www.kaggle.com/code/trnhquangminh140/h-th-ng-qu-n-I-l-ch-g-c-thi-tr-
nh-quang-minh

G ede cbe Kk Hethdr | By Google k Qu Xk Kaggle | k Kaggle | G Mec @ | & 15.Thu | M Hopth | G Google | 4 Google | @ Micros + Q@ « = x
C @ kaggle.com/code/trnhquangminh140/qu-n-I-l-ch-g-c-thi-gi-i-thu-t-24mse4302 %R Q % @ 6 0 m & ® =
+
= Q search 3
-3 % Share # Edit
Create)
(=
Notebook Input Output Logs Comments (0) Settings
® Home ®
Table of Contents
@ Competitions Distribution of Invigilator Assignments i thut 75 mbu B6 thi (Graph Gol. D
Biéu dé phan phdi sé |an phan cong CBCT
@ Datasets - — — BEGIN 0
2
5 120
= Kiém tra va Xac thyc (Validation) =
& Models E By
& 100 £ ¥ nghia doan code:
dh Benchmarks - l
@ e0
)} Game Arena -
€
g
<> Code E
5 Ly
8
E] Discussions < a0
k-]
= Learn 2 2
E
E
v Mare o
& N & * @\3 & ‘p“% &
) & & o & ¥ G & &
Your Work &F & i F & o
& & & o -
- VIEWED ep i1 2 A]
Invigilater / Can b§ coi thi
¥ Quanly lich gac thi_ Q
b | 4 théng Quan Iy lich Summary of Invigilator Assignments / Thdng ké phan céng CBCT
cBCT
SIRO - Image! .
¥ cs Image2Biom Trinh Quang Minh 127 ®
3 Ngé Thi Lan 127
View Activ
O View Active Events Nouyén Minh Higu 164

Fig 2 Distribution of Invigilator Assignments, Invigilator, Number of Assignments . Link:
https://mww.kaggle.com/code/trnhquangminh140/qu-n-I-1-ch-g-c-thi-gi-i-thu-t-24mse4302

JISRT26JANS18 WWW.ijisrt.com 2051

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

V. CONCLUSION

The proposed system has successfully automated the
scheduling of exam invigilation for lecturers at Tay Do
University. By combining Graph Coloring and Greedy
heuristic algorithms, this solution not only ensures fairness in
work allocation but also completely eliminates scheduling
conflicts. Key contributions and future development
directions include: Automation and Efficiency: The system
replaces manual processes, minimizing human error and
optimizing lecturer resources within the unit. Transparency:
The integration of interactive dashboards allows managers to
monitor schedules and lecturer allocation visually and in real
time. Data Scalability: In the future, the system will be
upgraded to handle larger datasets with thousands of exam
sessions. Advanced Optimization: Integrate Linear
Programming models to further optimize criteria such as
instructor personal preferences and workload balancing.
Practical Implementation: Develop and deploy a complete
web-based dashboard that can be easily used by non-technical
staff.

ACKNOWLEDGMENT

I would like to sincerely thank the teachers of FPT
School of Business & Technology and my colleagues in the
class 24MSE43022 - Master of Software Engineering for their
enthusiastic support in completing this article. My colleagues
at Tay Do University have helped me with time and facilities
for the research on Scientific Articles. | would like to express
my sincere gratitude to Associate Professor Dr. Nguyen
Thanh Hai — my supervising lecturer — for his dedicated
guidance, professional direction, and inspiration throughout
the research process. His invaluable support has been a
driving force in helping me successfully complete this report.

REFERENCES

[1]. Abdi, H. (2007). The greedy algorithm: An
introduction. In N. J. Salkind (Ed.), Encyclopedia of
Measurement and Statistics (pp. 414-417). Retrieved
from SAGE Publications:
https://books.google.com.vn/books/about/Encyclopedi
a_of Measurement_and_Statisti.html?id=dqc5DQAA
QBAJ

[2]. Cormen, T. H., Leiserson, C. E., Rivest, R. L., &
Stein, C. (2009). Introduction to algorithms (3rd ed.).
Retrieved from MIT Press:
https://archive.org/details/introduction-to-algorithms-
third-edition-2009/

[3]. Pandas Development Team. (2023). pandas: Powerful
Python data analysis toolkit. Retrieved from pandas:
https://pandas.pydata.org

[4]. Gradio Team. (2023). Gradio: Build machine learning
web apps in Python. Retrieved from Gradio:
https://gradio.app

[5]. Kaggle. (2023). Kaggle: Your machine learning and
data science community. Retrieved from Kaggle:
https://www.kaggle.com

[6]. Welsh, D. J. A, & Powell, M. B. (1967). An upper
bound for the chromatic number of a graph and its

JISRT26JANS18

[71.

[8].

[9].

[10].

[11].

[12].

[13].

WWW.ijisrt.com

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan518

application to timetabling problems. Retrieved from
The Computer Journal:
https://academic.oup.com/comjnl/article-
abstract/10/1/85/376064

Wren, A. (1996). Scheduling, timetabling and
rostering — A special relationship? In E. K. Burke &
P. Ross (Eds.), Practice and theory of automated
timetabling (pp. 46-75). Retrieved from Springer:
https://link.springer.com/chapter/10.1007/3-540-
61794-9 51

Trinh, Q. M. (2025). Hé thdng quan 1y lich géc thi cua
giang vién Truong Dai hoc Tay D6 [Kaggle code
repository]. Retrieved from Kaggle:
https://www.kaggle.com/code/trnhquangminh140/h-
th-ng-qu-n-I-1-ch-g-c-thi-tr-nh-quang-minh

Akbulut, A., & Yilmaz, G. (2015). University Exam
Scheduling System Using Graph Coloring Algorithm
and RFID Technology. International Journal of
Innovation, Management and Technology. Retrieved
from: https://www.ijimt.org/papers/359-D0129.pdf
Barone, M., Naeem, M., Ciaschi, M., Tretola, G., &
Coronato, A. (2025). Al-Based Intelligent System for
Personalized Examination Scheduling. Technologies,
13(11), 518. MDPI. Retrieved from:
https://www.mdpi.com/2227-7080/13/11/518

Ye, T., Jovine, A. S., van Osselaer, W., Zhu, Q., &
Shmoys, D. B. (2024). Cornell University Uses
Integer Programming to Optimize Final Exam
Scheduling. arXiv preprint. Retrieved from:
https://arxiv.org/pdf/2409.04959

Hussin, B., Basari, A. S. H., Shibghatullah, A. S., &
Asmai, S. A. (2010). Exam Timetabling Using Graph
Colouring Approach. Universiti Teknikal Malaysia
Melaka. Retrieved from:
https://filesO1.core.ac.uk/download/235629014.pdf
(2021). Modelling and Optimization of the Exam
Invigilator ~ Assignment ~ Problem Based on
Preferences. Academia.edu. Retrieved from:
https://www.academia.edu/68798359/Modelling_and_
Optimization_of the Exam_Invigilator_Assignment_
Problem_Based_on_Preferences (academia.edu)

2052

https://doi.org/10.38124/ijisrt/26jan518
http://www.ijisrt.com/

	I. INTRODUCTION
	ACKNOWLEDGMENT
	REFERENCES

