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Abstract: Early identification of students at risk of academic underperformance remains a persistent challenge in higher 

education, particularly in learning environments characterized by complex, temporally evolving patterns of engagement 

and assessment. Conventional learning analytics approaches typically rely on static or weakly temporal indicators, limiting 

their ability to detect emerging risk at early stages of an academic term. This study proposes a sequence-aware learning 

analytics framework that leverages transformer-based models to represent student academic trajectories as ordered 

sequences of learning events derived from learning management systems and student information systems. The framework 

integrates heterogeneous behavioral, temporal, and performance signals and applies self-attention mechanisms to capture 

long-range dependencies and evolving risk patterns. Using a supervised predictive modeling design with rolling-window 

and early-prediction evaluation protocols, the proposed approach is assessed against traditional machine learning and 

recurrent neural network baselines. Results demonstrate that transformer models achieve superior predictive performance, 

earlier risk identification, and greater stability across academic terms and cohorts. Attention-based interpretability further 

reveals meaningful progression patterns associated with academic disengagement and performance decline. The findings 

underscore the value of sequence-aware modeling for enhancing institutional early-alert systems and supporting proactive, 

personalized academic interventions. This study contributes to both learning analytics theory and practice by establishing 

transformer-based sequence modeling as a robust foundation for early academic risk detection and student success 

initiatives in higher education. 
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I. INTRODUCTION 

 

 Background and Motivation 

The widespread adoption of Learning Management 

Systems (LMS) and Student Information Systems (SIS) 

across higher education institutions has transformed how 

student learning behaviors are captured and analyzed. These 

platforms generate fine-grained, time-stamped records of 

academic activity, including logins, content access, 

assessment submissions, feedback cycles, and grade 

progression. Unlike traditional institutional datasets that 

relied on end-of-semester outcomes or static demographic 
attributes, LMS and SIS logs provide continuous, high-

resolution temporal data that reflect how students engage 

with learning resources over time. This shift has positioned 

learning analytics as a central instrument for understanding 

student trajectories rather than isolated performance 
snapshots (Handbook of Learning Analytics). 

 

Despite this data richness, many existing academic risk 

prediction systems still rely on static or aggregated features, 

such as cumulative GPA, total clicks, or average attendance 

rates. While such indicators are informative at a coarse level, 

they obscure the ordering, timing, and evolution of learning 

behaviors that often signal emerging disengagement. 

Research in educational data mining has shown that two 

students with identical aggregate engagement levels may 

follow fundamentally different academic paths depending on 
when and how that engagement unfolds. Static analytics 

therefore struggle to capture non-linear decline, delayed 

recovery, or sudden shifts in learning behavior that precede 

academic difficulty (Baker & Inventado 2014; Maduabuci et 

al., 2023). 
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The limitations of aggregate approaches are 
particularly consequential for early warning systems. Early 

identification of at-risk students is most effective when 

interventions occur before performance deterioration 

becomes irreversible. However, models built on cumulative 

indicators tend to detect risk only after grades or engagement 

have already declined significantly. Longitudinal studies of 

student retention demonstrate that behavioral changes often 

emerge weeks before formal academic failure is visible, 

highlighting the need for analytics that are sensitive to 

temporal dynamics rather than summary statistics (Lakkaraju 

et al., 2015; Permata et al., 2025). 
 

Sequence-aware learning analytics address this 

challenge by explicitly modeling the ordered progression of 

student actions, assessments, and outcomes. By treating 

academic histories as evolving sequences rather than fixed 

vectors, these approaches can capture patterns such as 

procrastination cycles, irregular engagement rhythms, or 

cascading assessment failures. Prior work in knowledge 

tracing and sequential student modeling has shown that 

temporal representations significantly improve predictive 

accuracy and provide earlier signals of risk compared to 

static baselines (Piech et al.,2015; Idogho et al., 2025). 
 

Recent advances in transformer architectures further 
strengthen the case for sequence-aware analytics. Self-

attention mechanisms enable models to learn long-range 

dependencies across extended academic timelines without 

the vanishing-gradient limitations of recurrent methods. In 

educational contexts, this allows critical early behaviors to 

be weighted appropriately even when their consequences 

manifest much later in a semester. As a result, transformer-

based sequence modeling offers a principled foundation for 

timely, interpretable, and scalable identification of at-risk 

academic trajectories in higher education (Vaswani et al., 

2017; Idogho et al., 2025; Permata et al., 2026). 
 

Figure 1 illustrates an improved instructional flowchart 

that integrates mathematical abstractions with core physics 

concepts to support progressive learning. The sequence 

begins with foundational ideas in abstraction and linear 

kinematics, then advances through angular kinematics and 

the formal connections between linear and angular motion. 

Each block is color-coded to distinguish disciplinary context 

while preserving logical continuity across lectures. The 

pathway culminates in statics basics, reinforcing how 

mathematical and kinematic principles underpin equilibrium 

analysis in physics. 

 

 
Fig 1 Conceptual Learning Pathway Linking Mathematical Foundations to Kinematics and Statics in Physics 

 

 Problem Statement 
Despite the growing availability of fine-grained LMS 

and SIS data, most operational learning analytics systems 

continue to rely on traditional predictive models that reduce 

student behavior to static or weakly temporal summaries. 

Common approaches such as logistic regression, decision 

trees, or feature-engineered machine learning models 

typically aggregate student activity over fixed windows, 

ignoring the ordering and spacing of events. This abstraction 
limits their ability to capture long-range dependencies, where 

early learning behaviors exert delayed effects on later 

academic outcomes. Empirical studies in educational data 

mining demonstrate that such models often miss gradual 

disengagement patterns and non-linear behavioral shifts that 

unfold across an academic term (Siemens & Baker, 2012; 

Lakkaraju et al., 2015; Maduabuchi et al., 2023). 
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A further challenge arises from the inherently 
heterogeneous and irregular nature of educational event 

sequences. Student interactions with digital learning 

environments vary widely in frequency, modality, and 

timing. LMS logs combine sparse assessment submissions, 

bursty interaction episodes, prolonged inactivity periods, and 

asynchronous feedback cycles. Traditional sequence 

modeling approaches, including fixed-order Markov models 

or recurrent neural networks with uniform time steps, 

struggle to represent these irregular temporal structures 

effectively. Research on clickstream and trace data shows 

that sparsity and uneven temporal gaps degrade model 
performance and lead to unstable predictions when 

conventional techniques are applied without explicit 

temporal encoding (Xu & Recker, 2012; Kovanović et al., 

2015; Ayoola et al., 2024). 

 

These modeling limitations have direct consequences 

for early warning systems aimed at supporting student 

retention. When temporal dynamics are inadequately 

represented, risk prediction models tend to rely on lagging 

indicators such as cumulative grades or total engagement 

counts. As a result, academic risk is often detected only after 

disengagement has become entrenched or performance 
decline is already severe. Longitudinal analyses of student 

success consistently show that disengagement signals 

frequently emerge weeks before formal failure indicators, 

underscoring the cost of late or inaccurate identification 

(Lakkaraju et al., 2015; Ijiga et al., 2024). 

 

The problem is further compounded by the difficulty of 

distinguishing transient fluctuations in engagement from 

sustained downward trajectories. Without sequence-aware 

representations, predictive systems may misclassify short-

term inactivity as high risk or overlook progressive 
deterioration masked by aggregate stability. Prior work in 

sequential student modeling demonstrates that preserving 

temporal order and contextual relationships between events 

substantially improves both predictive accuracy and the 

timeliness of risk detection (Piech et al., 2015; Ijiga et al., 

2024). However, these insights have yet to be systematically 

integrated into institutional-scale early alert frameworks. 

 

Taken together, these challenges reveal a fundamental 

gap between the temporal richness of modern educational 

data and the capabilities of widely deployed predictive 
models. Addressing this gap requires learning analytics 

approaches that can robustly model heterogeneous, irregular 

sequences while capturing long-range dependencies in 

student behavior. Without such sequence-aware methods, 

higher education institutions face an ongoing risk of delayed 

interventions, misallocated support resources, and missed 

opportunities to prevent academic disengagement and 

performance decline. 

 

Figure 2 presents an integrated block-diagram 

representation of the early warning system, illustrating the 

sequential flow from observation and forecasting to warning 
communication and decision-making. Each stage highlights 

a critical analytical or behavioral bridge, supported by 

continuous evaluation across the system. The lower blocks 

align these stages with the four pillars of the Early Warnings 

for All framework, emphasizing institutional preparedness 

and response capacity. Collectively, the figure demonstrates 

how technical forecasts are translated into actionable 

outcomes through coordinated communication and human 

decision processes. 

 

 
Fig 2 Integrated Early Warning System Pathway from Observation to Response 
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 Research Objectives 
The primary objective of this study is to design a 

transformer-based learning analytics framework capable of 

representing student academic trajectories as temporally 

ordered sequences. Rather than treating learning behavior as 

static aggregates, the framework aims to encode the 

progression, timing, and contextual relationships among 

learning events captured from learning management systems 

and student information systems. By modeling academic 

histories as sequences, the study seeks to reflect how 

engagement patterns, assessment outcomes, and behavioral 

shifts evolve across an academic term. 
 

A second objective is to evaluate the effectiveness of 

attention-based architectures in the early identification of at-

risk students. The study focuses on determining whether self-

attention mechanisms can detect subtle but persistent 

indicators of disengagement or performance decline at earlier 

stages than conventional predictive systems. Emphasis is 

placed on assessing how early in the academic timeline 

reliable risk signals can be identified without sacrificing 

predictive accuracy or stability. 

 

The final objective is to conduct a systematic 
comparison between sequence-aware transformer models 

and established predictive approaches, including traditional 

machine learning methods and recurrent neural networks. 

This comparison examines differences in predictive 

performance, robustness to irregular and sparse event 

sequences, and sensitivity to long-range behavioral 

dependencies. Through this comparative analysis, the study 

aims to clarify the added value of transformer-based models 

for academic risk prediction and inform their practical 

adoption in higher education learning analytics systems. 

 
 Research Questions and Hypotheses 

This study is guided by the need to understand whether 

sequence-aware modeling can meaningfully improve the 

identification of academic risk in higher education settings. 

The first research question examines how effectively 

transformer models capture temporal learning patterns that 

are indicative of emerging academic difficulty. Specifically, 

it investigates the extent to which self-attention mechanisms 

can learn dependencies across ordered learning events, such 

as engagement fluctuations, assessment performance trends, 

and periods of inactivity, that collectively signal elevated 

risk. 
 

The second research question focuses on the timing of 

risk detection within an academic term. It seeks to determine 

how early at-risk academic trajectories can be identified 

when student behavior is modeled as a sequence rather than 

as aggregated indicators. This question emphasizes the 

practical value of sequence modeling by evaluating whether 

reliable predictions can be generated at early stages of the 

semester, when institutional interventions are most likely to 

influence outcomes. 

 
Based on these questions, the study advances the 

hypothesis that attention-based sequence models outperform 

static and recurrent baseline approaches in early risk 

prediction. It is hypothesized that transformer architectures, 
through their ability to model long-range temporal 

dependencies and selectively weight salient learning events, 

achieve higher predictive accuracy and earlier detection of 

academic risk compared to traditional machine learning 

models and recurrent neural networks. 

 

 Significance of the Study 

This study contributes to learning analytics theory by 

advancing sequence-aware risk modeling as a principled 

alternative to static and weakly temporal approaches. By 

framing student academic trajectories as ordered sequences 
and leveraging attention-based mechanisms, the study 

deepens theoretical understanding of how learning behaviors 

unfold over time and how long-range dependencies influence 

academic outcomes. The work clarifies the limits of 

aggregate indicators and offers a formal basis for modeling 

temporal structure, event salience, and progression dynamics 

within educational data. In doing so, it extends the 

conceptual toolkit of learning analytics toward 

representations that are more faithful to the lived realities of 

student learning processes. 

 

Beyond theoretical contributions, the study carries 
direct practical implications for academic advising and 

student retention strategies. Earlier and more reliable 

identification of at-risk trajectories enables advisors and 

support staff to intervene proactively rather than reactively, 

aligning outreach with moments of highest leverage in the 

academic term. Sequence-aware predictions can inform 

differentiated advising actions by distinguishing transient 

disengagement from sustained decline, reducing false alarms 

and improving the targeting of limited institutional 

resources. At the operational level, the findings support the 

integration of temporally sensitive analytics into early alert 
systems, degree planning tools, and learning support 

platforms. 

 

The study also aligns closely with data-driven student 

success and equity initiatives in higher education. By 

improving early detection accuracy, sequence-aware models 

can help institutions mitigate structural disadvantages that 

disproportionately affect students who experience delayed 

feedback or cumulative academic pressure. Timely, 

evidence-based interventions informed by longitudinal 

behavior patterns support more equitable outcomes by 

addressing risk before it manifests as failure or withdrawal. 
In this sense, the study reinforces institutional commitments 

to inclusive student success by demonstrating how advanced 

analytics can be responsibly applied to enhance persistence, 

completion, and overall educational equity. 

 

II. LITERATURE REVIEW 

 

 Learning Analytics and Academic Risk Prediction 

Predictive learning analytics has become a central 

component of higher education decision-making as 

institutions seek to improve student retention, progression, 
and completion rates. At its core, learning analytics involves 

the measurement, collection, analysis, and reporting of data 

about learners and their contexts for the purpose of 
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understanding and optimizing learning and the environments 
in which it occurs. In predictive applications, historical and 

ongoing student data are used to estimate the likelihood of 

adverse academic outcomes such as course failure, dropout, 

or delayed graduation. These approaches have evolved 

alongside the expansion of digital learning infrastructures, 

which provide continuous streams of behavioral and 

performance data suitable for modeling academic risk 

(Siemens & Baker, 2012; Onuh et al., 2024). 

 

Early predictive systems in higher education relied 

primarily on demographic attributes and prior academic 
achievement, including entry qualifications and cumulative 

grade point averages. While these variables remain 

informative, research has shown that models based solely on 

static background characteristics are limited in their ability 

to explain or anticipate changes in student performance over 

time. As a result, predictive learning analytics has 

increasingly shifted toward the use of process-oriented data 

derived from learning management systems, enabling more 

dynamic representations of student behavior throughout an 

academic term (Ferguson, 2012). 

 

Grades constitute one of the most widely used 
indicators of academic risk. Low or declining assessment 

scores, missed submissions, and poor performance in early 

coursework are consistently associated with increased 

likelihood of course failure or withdrawal. However, grades 

are often lagging indicators, reflecting difficulties only after 

learning challenges have already materialized. 

Consequently, exclusive reliance on performance outcomes 

can delay risk detection and reduce the effectiveness of early 

intervention strategies (Arnold & Pistilli, 2012). 

 

Engagement metrics derived from LMS activity logs 
form another major class of academic risk indicators. These 

include frequency of logins, time spent on learning 

resources, participation in online discussions, and interaction 

with instructional materials. Studies have demonstrated that 
sustained reductions in engagement, irregular access 

patterns, and prolonged inactivity periods are strongly 

correlated with academic disengagement and attrition. 

Nevertheless, aggregate engagement measures may mask 

important temporal variations, such as short bursts of activity 

followed by disengagement, which are critical for accurate 

risk assessment (Macfadyen & Dawson, 2010). 

 

Attendance and assessment behavior further 

complement grades and engagement in predictive models. 

Physical or virtual attendance records capture consistency of 
participation, while assessment-related behaviors, such as 

submission timing, resubmission frequency, and 

procrastination patterns, provide insight into self-regulation 

and study habits. Empirical evidence suggests that late 

submissions and erratic assessment participation often 

precede measurable performance decline, making them 

valuable early indicators of risk when modeled appropriately 

(Sweeney, Lester, & Rangwala, 2016). Together, these 

indicators form the foundation of contemporary predictive 

learning analytics, though their effectiveness depends 

heavily on how temporal structure and behavioral 

progression are represented. 
 

Figure 3 illustrates the progressive maturity stages of 

learning analytics in higher education, moving from 

descriptive reporting to fully prescriptive, action-oriented 

intelligence. The framework highlights how institutions 

evolve from tracking historical outcomes to diagnosing 

drivers of performance, forecasting academic risk, and 

ultimately automating targeted interventions. The stepped 

block design emphasizes increasing analytical 

sophistication, value creation, and decision impact across 

stages. Overall, the figure underscores the strategic shift 
required for institutions to transition from retrospective 

insights to proactive, data-driven student success 

management. 

 

 
Fig 3 A Maturity Framework for Predictive Learning Analytics in Higher Education 
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 Sequence Modeling in Educational Data Mining 
Sequence modeling occupies a central position in 

educational data mining because learning is inherently a 

temporal process shaped by ordered interactions, feedback 

cycles, and evolving knowledge states. Event-based 

representations provide a natural way to model this process 

by encoding student activity as time-ordered sequences of 

discrete events such as content views, quiz attempts, 

submissions, forum interactions, and assessment outcomes. 

Unlike aggregate feature representations, event-based 

sequences preserve temporal ordering, spacing between 

actions, and contextual transitions, enabling models to reflect 
how learning unfolds rather than merely how much activity 

occurs (Baker & Yacef, 2009). 

 

Early sequence-based approaches in educational data 

mining relied heavily on Markov models, which represent 

learning as transitions between latent or observable states 

with fixed transition probabilities. These models were 

attractive due to their interpretability and computational 

simplicity, particularly for modeling short-term 

dependencies in student problem-solving behavior. 

However, first-order Markov assumptions limit the ability of 

such models to capture longer learning histories, as 
predictions depend only on the most recent state rather than 

the full sequence of prior interactions (Beck & Woolf, 2000; 

Manuel et al., 2024). 

 

Hidden Markov Models (HMMs) extended this 

framework by introducing latent knowledge states that 

generate observable student actions. HMM-based methods, 

including Bayesian Knowledge Tracing, have been widely 

used to infer mastery levels from sequences of correct and 

incorrect responses. These models provided a probabilistic 

foundation for tracking learning progression over time and 
demonstrated that sequential representations outperform 

static indicators in predicting future performance. 

Nevertheless, HMMs typically assume stationary transition 

dynamics and struggle to accommodate complex, 

heterogeneous learning behaviors observed in modern digital 

learning environments (Corbett & Anderson, 1995; Pardos & 
Heffernan, 2010). 

 

More recently, recurrent neural networks (RNNs) have 

become prominent in sequence modeling for student data due 

to their capacity to learn non-linear temporal dependencies 

directly from event streams. Architectures such as Long 

Short-Term Memory (LSTM) networks have been applied to 

model extended learning sequences, capturing patterns 

across many interactions without explicitly specifying state 

transitions. Deep Knowledge Tracing demonstrated that 

RNN-based models can substantially improve prediction 
accuracy by learning rich representations of student 

knowledge evolution from raw event sequences (Piech et al., 

2015). 

 

Despite their advances, recurrent approaches exhibit 

limitations related to vanishing gradients, sensitivity to 

sequence length, and difficulty modeling irregular temporal 

gaps. These challenges become pronounced in educational 

datasets characterized by sparse activity, asynchronous 

participation, and long-range dependencies spanning weeks 

or months. As a result, while Markov models, HMMs, and 

RNNs have established the value of sequence-aware 
modeling in educational data mining, they also motivate the 

exploration of architectures better suited to capturing long-

term structure and heterogeneous event dynamics. 

 

Figure 4 illustrates a sequence-based probabilistic 

model in which discrete latent states evolve over time and 

generate observable learning outcomes through conditional 

dependencies. The diagram shows how latent variables 

transition between states across time steps while emitting 

observable responses governed by state-dependent 

probabilities. The structured arrows highlight both temporal 
state transitions and observation likelihoods, emphasizing 

long-range dependency modeling. Overall, the figure 

represents a foundational framework for modeling hidden 

learning dynamics and outcome generation in sequential 

educational data. 

 

 
Fig 4 Sequence-Based Probabilistic State Transition Model for Latent Learning Dynamics 
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 Transformer Models and Attention Mechanisms 
Transformer models represent a fundamental shift in 

sequence modeling by replacing recurrence and convolution 

with attention-driven architectures. Introduced to address the 

inefficiencies of recurrent processing, transformers operate 

on entire sequences in parallel, enabling direct modeling of 

relationships between any two elements regardless of their 

distance in the sequence. The core component of this 

architecture is the self-attention mechanism, which computes 

pairwise interactions between all sequence elements to 

determine how strongly each element should influence the 

representation of others. By combining self-attention with 
positional encoding, transformers preserve information 

about event order while avoiding the sequential computation 

constraints of earlier models (Vaswani et al., 2017). 

 

Self-attention works by projecting input 

representations into query, key, and value vectors, allowing 

the model to weigh the relevance of each event in a sequence 

when forming contextualized representations. This 

mechanism enables transformers to dynamically focus on 

salient events, such as early assessment failures or prolonged 

inactivity, even when their impact becomes apparent much 

later. Unlike fixed-window approaches, attention weights are 
learned end-to-end and adapt to the structure of the data, 

providing flexibility in capturing both local and global 

dependencies (Bahdanau, Cho, & Bengio, 2015; Vaswani et 

al., 2017). 

 

One of the principal advantages of transformer 

architectures over recurrent neural networks lies in their 

ability to model long-range dependencies without suffering 

from vanishing or exploding gradient problems. While 

architectures such as Long Short-Term Memory networks 

were designed to mitigate these issues, their effectiveness 
still degrades as sequence length increases, particularly in 

sparse or irregular datasets. Transformers eliminate the need 

for hidden state propagation across time steps, allowing 

dependencies spanning hundreds of events to be modeled 

directly and consistently (Hochreiter & Schmidhuber, 1997; 

Dai et al., 2019). 

 

Compared to convolutional sequence models, which 
rely on stacked layers and fixed receptive fields to 

approximate long-range interactions, transformers offer a 

more direct and interpretable mechanism for dependency 

modeling. Convolutional architectures require deep 

hierarchies to capture distant relationships, increasing model 

complexity and reducing transparency. In contrast, self-

attention provides explicit pairwise relevance scores, making 

it possible to inspect which events contribute most strongly 

to predictions. This property is particularly valuable in 

learning analytics, where understanding why a student is 

flagged as at risk is as important as prediction accuracy (Bai, 
Kolter, & Koltun, 2018). 

 

These advantages have led to the widespread adoption 

of transformer-based models across domains involving 

complex sequential data, including natural language 

processing, recommendation systems, and time-series 

forecasting. In educational data mining, the ability of 

transformers to handle long, heterogeneous, and irregular 

sequences positions them as a promising foundation for 

modeling academic trajectories. By capturing long-range 

temporal dependencies and selectively emphasizing critical 

learning events, attention-based architectures address key 
limitations of recurrent and convolutional models in early 

academic risk prediction. 

 

Figure 5 presents a clean, white-background block-

diagram comparison of sequential learning architectures, 

illustrating the progression from RNNs to LSTMs, GRUs, 

and Transformers. The figure highlights how gating 

mechanisms in LSTM and GRU address long-term 

dependency limitations inherent in standard RNNs. In 

contrast, the Transformer architecture replaces recurrence 

with self-attention and positional encoding to enable parallel 
sequence processing. Together, the diagrams emphasize the 

structural innovations that drive improvements in scalability, 

memory retention, and modeling capacity. 

 

 

 

 
Fig 5 Comparative Architectural Evolution from Recurrent Neural Networks to Transformer Models 
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 Applications of Transformers in Learning Analytics 
The introduction of transformer architectures into 

learning analytics has catalyzed a new wave of sequence-

aware models designed to capture complex temporal patterns 

in student data. One of the earliest and most influential 

applications appears in the domain of knowledge tracing, 

where student learning is modeled as a sequence of 

interactions with instructional content. The Self-Attentive 

Knowledge Tracing (SAKT) model demonstrated that self-

attention can effectively replace recurrent structures by 

selectively focusing on past learning events most relevant to 

predicting future performance. This approach showed that 
transformer-based models can outperform traditional 

recurrent knowledge tracing methods while offering 

improved flexibility in handling long learning histories 

(Pandey & Karypis, 2019). 

 

Building on this foundation, subsequent work 

introduced more sophisticated transformer variants tailored 

to educational data. Attentive Knowledge Tracing (AKT) 

extended the self-attention framework by explicitly 

modeling the decay of learning influence over time and 

incorporating contextual difficulty parameters. Empirical 

evaluations across multiple benchmark datasets showed 
consistent performance improvements over recurrent neural 

networks and classical Bayesian knowledge tracing models, 

reinforcing the suitability of transformers for modeling long-

term learning dependencies (Ghosh et al., 2020). 

 

Beyond knowledge tracing, transformers have also 

been applied to broader student performance prediction 

tasks, including course-level grade forecasting and next-term 

success estimation. Studies using transformer encoders on 

longitudinal LMS activity logs report gains in predictive 

accuracy compared to feature-based machine learning 
models and LSTM baselines, particularly when early-term 

data are used. These results suggest that attention 

mechanisms are effective at identifying salient behavioral 

signals, such as early assessment struggles or irregular 

engagement patterns, that precede measurable performance 

decline (Sweeney et al., 2016; Yeung & Yeung, 2018). 

 

Transformer-based approaches have further been 

explored in dropout and retention prediction, where the goal 

is to identify students at risk of disengaging or withdrawing 

from courses or programs. By modeling sequences of 

enrollment events, activity traces, and assessment outcomes, 
attention-based models can differentiate between transient 

inactivity and sustained disengagement. Evidence from 

large-scale online learning datasets indicates that 

transformers can achieve earlier and more stable dropout 

predictions than recurrent models, highlighting their 

potential for early warning systems in institutional contexts 

(Raff et al., 2020). 

 

Despite these performance gains, interpretability 

remains a central challenge in transformer-based learning 

analytics. While attention weights offer a degree of 
transparency by indicating which prior events influence 

predictions, their direct interpretability is not always 

straightforward. Research cautions that attention scores do 
not necessarily correspond to causal importance and may 

vary across heads and layers. In educational settings, where 

accountability and trust are critical, this raises concerns about 

how predictive insights are communicated to instructors and 

advisors. As a result, recent studies emphasize the need to 

combine transformer models with complementary 

explainability techniques to ensure responsible and 

actionable deployment in learning analytics systems (Pandey 

& Karypis, 2019; Ghosh et al., 2020). 

 

Figure 6 illustrates a data-driven educational 
framework that integrates teachers, students, and learning 

environments to enhance academic outcomes. Core 

instructional and behavioral data including course, 

interaction, academic, and usage information—are processed 

through data mining and machine learning tools to generate 

predictive insights. These insights inform targeted 

interventions by educators and adaptive student engagement 

strategies. The feedback loop ultimately supports continuous 

system improvement and a sustained reduction in student 

failure rates. 
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Fig 6 Data-Driven Educational System for Predictive Performance Improvement 

 

 Research Gaps 

Despite rapid advances in predictive learning analytics, 

several critical gaps remain that limit the practical and 

theoretical impact of current research. A primary gap 

concerns the limited focus on early-stage detection of at-risk 

academic trajectories. Much of the existing literature 

evaluates model performance at or near the end of academic 
terms, when grades and cumulative engagement signals are 

already well-formed. While such evaluations demonstrate 

predictive accuracy, they provide limited insight into how 

early reliable risk signals can be identified. As a result, many 

models implicitly optimize for retrospective accuracy rather 

than prospective usefulness, reducing their value for timely 

academic intervention when students are most responsive to 

support. 

 

A second gap lies in the insufficient analysis of 

temporal explainability in attention-based learning analytics. 

Although transformer models and self-attention mechanisms 
are increasingly adopted for student modeling, attention 

weights are often reported only as secondary visualizations 

rather than being systematically analyzed in relation to 

pedagogical meaning. There remains a lack of rigorous 

frameworks for interpreting how specific sequences of 

learning events, timing gaps, or behavioral transitions 

contribute to risk predictions over time. This limits trust, 

accountability, and adoption in educational settings, where 

advisors and instructors require clear explanations to justify 

interventions and communicate decisions to students. 

 
Finally, there is a notable need for institutionally 

actionable, sequence-aware risk frameworks. Many 

proposed models are evaluated in experimental settings 

without sufficient consideration of how predictions align 

with advising workflows, policy constraints, and resource 

allocation practices within higher education institutions. 

Current approaches often output risk scores without 

contextual guidance on intervention timing, confidence 

thresholds, or differentiation between short-term 

disengagement and sustained decline. This gap underscores 

the need for frameworks that integrate sequence-aware 
modeling with operational decision support, ensuring that 

predictive insights translate into actionable, ethical, and 

scalable student success strategies. 

 

Together, these gaps highlight a disconnect between 

methodological innovation and institutional applicability. 

Addressing them requires learning analytics research that 

prioritizes early detection, embeds temporal interpretability 

as a core design objective, and aligns model outputs with 

real-world academic support systems. 

 

III. METHODOLOGY 

 

 Research Design 

This study adopts a predictive modeling research 

design grounded in longitudinal analysis of student learning 

data. The design leverages time-ordered records extracted 

from learning management systems and student information 

systems to model how academic behaviors evolve across an 

academic term. Rather than relying on cross-sectional 

snapshots or cumulative summaries, the study treats each 

student’s academic history as a sequence of learning events, 

enabling the examination of progression, persistence, and 
behavioral transitions over time. This longitudinal 

perspective is essential for capturing early signals of 

academic risk that may not be observable through static 

indicators. 
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The predictive task is formulated within a supervised 
learning framework, where labeled outcomes are derived 

from institutional definitions of academic risk. Depending on 

the analytic objective and data availability, the problem is 

specified either as a binary classification task (for example, 

at-risk versus not at-risk) or as a multi-class classification 

task that distinguishes varying levels or types of risk, such as 

low performance, disengagement, or withdrawal. Each 

student sequence is paired with an outcome label observed at 

the end of the academic period, while model inputs are 

restricted to information available up to specific temporal 

cut-off points to support early prediction. 
 

Formally, let a student’s academic trajectory be represented 

as an ordered sequence 

 

X𝑖 = {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑇}, 
 

Where 𝑥𝑖𝑡denotes the feature vector associated with the 𝑡-th 

learning event for student 𝑖, and 𝑇is the sequence length. The 

objective of the predictive model is to learn a function 

 

𝑓(X𝑖
(𝑘)) → 𝑦𝑖 , 

 

Where X𝑖
(𝑘) = {𝑥𝑖1, … , 𝑥𝑖𝑘}represents the partial sequence 

observed up to time step 𝑘, and 𝑦𝑖is the ground-truth risk 

label. 

 

For binary classification, the model outputs a probability 

 

𝑝̂𝑖 = 𝑃(𝑦𝑖 = 1 ∣ X𝑖
(𝑘)), 

 

And predictions are obtained by applying a decision 

threshold 𝜏, such that a student is flagged as at risk if 𝑝̂𝑖 ≥ 𝜏. 

In the multi-class setting, the model estimates a categorical 

distribution over risk classes using a softmax function, 

 

p̂𝑖 = softmax(𝑓(X𝑖
(𝑘))), 

 

Allowing differentiation between multiple academic risk 

states. 

 

Model training minimizes a supervised loss function, 

typically binary cross-entropy for binary outcomes or 

categorical cross-entropy for multi-class outcomes, 

aggregated across all students and temporal evaluation 

points. By evaluating predictions at successive cut-off points 

𝑘, the research design explicitly supports analysis of early 
warning capability, enabling assessment of how predictive 

accuracy and reliability evolve as more sequence information 

becomes available. This design aligns methodological rigor 

with the practical goal of timely, data-driven academic 

intervention. 

 

 Data Sources and Feature Engineering 

This study draws on multiple institutional data sources 

to construct comprehensive and temporally coherent 

representations of student learning behavior. The primary 

data source consists of Learning Management System (LMS) 
interaction logs, which capture fine-grained, time-stamped 

records of student activities such as logins, content access, 
discussion participation, and resource downloads. These logs 

are complemented by assessment submission data, including 

assignment attempts, submission timestamps, scores, and 

feedback cycles. Grade progression data provide 

longitudinal performance signals across quizzes, midterm 

assessments, and final evaluations, while enrollment 

metadata supply contextual information such as course 

registration status, program type, and credit load. Together, 

these data sources enable a multidimensional view of student 

engagement and performance over time. 

 
To support sequence-aware modeling, heterogeneous 

records from these sources are transformed into ordered 

learning event sequences. Each student’s academic trajectory 

is represented as a chronologically sorted sequence of 

discrete events, where each event corresponds to a 

meaningful learning action or outcome. Formally, the 

sequence for student 𝑖is defined as 

 

X𝑖 = {(𝑒𝑖1, 𝑡𝑖1), (𝑒𝑖2, 𝑡𝑖2),… , (𝑒𝑖𝑇 , 𝑡𝑖𝑇)}, 
 

Where 𝑒𝑖𝑡denotes the event feature vector at time step 

𝑡, and 𝑡𝑖𝑡is the associated timestamp. Event vectors integrate 

activity type, assessment-related attributes, and performance 

indicators, ensuring that both behavioral and outcome-based 

information are preserved within the sequence structure. 

 

Because transformer models do not inherently encode 

temporal order, explicit temporal representations are 

incorporated during feature engineering. Positional 

embeddings are added to event embeddings to encode the 

relative or absolute position of each event within the 

sequence. Given an event embedding h𝑖𝑡and its positional 

embedding p𝑡 , the transformer input is defined as 

 

𝐳𝑖𝑡 = h𝑖𝑡 + p𝑡 . 
 

In addition to positional information, temporal gap features 

are included to capture irregular spacing between events. The 

time difference between consecutive events is computed as 

 

Δ𝑡𝑖𝑡 = 𝑡𝑖𝑡 − 𝑡𝑖(𝑡−1), 

 

And either discretized into bins or embedded as a continuous 

feature to inform the model about inactivity periods or bursts 

of engagement. 

 

Handling missing and irregular events is a critical 
aspect of feature engineering in educational data. Not all 

students generate events at consistent intervals, and 

prolonged inactivity may itself be a meaningful signal. 

Rather than imputing missing events, the sequence 

construction preserves natural sparsity and encodes 

inactivity implicitly through time-gap features. Padding and 

masking mechanisms are applied to ensure uniform sequence 

lengths during batch training, with attention masks 

preventing padded positions from influencing model 

predictions. 
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Through this feature engineering pipeline, 
heterogeneous and irregular educational data are transformed 

into structured, temporally enriched sequences suitable for 

transformer-based learning analytics. This design ensures 

that both the order and timing of learning events are 

preserved, enabling accurate modeling of academic 

trajectories and early detection of at-risk patterns. 

 

 Model Architecture 

The proposed model architecture is based on a 

transformer encoder designed to model student academic 

trajectories as ordered sequences of learning events. The 
encoder-only structure is well suited to predictive learning 

analytics because it focuses on representation learning over 

observed sequences without requiring autoregressive 

generation. Each student sequence is processed in parallel, 

enabling efficient learning of dependencies across the full 

academic timeline. The architecture consists of stacked 

transformer encoder layers, each composed of a multi-head 

self-attention block followed by a position-wise feedforward 

network, with residual connections and layer normalization 

to ensure training stability. 

 

Input representation is a critical component of the 
architecture, as educational event sequences are 

heterogeneous in nature. Each learning event is encoded 

using a composite embedding that integrates three primary 

elements: activity type, time gap, and performance signals. 

Let an event at position 𝑡be described by an activity category 

embedding a𝑡, a performance embedding g𝑡derived from 

assessment outcomes or grades, and a temporal embedding 

τ𝑡that represents the elapsed time since the previous event. 

These components are combined to form the event 
embedding 

 

h𝑡 = a𝑡 + g𝑡 + τ𝑡 . 
 

To preserve sequence order, a positional embedding p𝑡is 

added, yielding the final transformer input 

 

z𝑡 = h𝑡 + p𝑡 . 
 

The core of the model lies in the multi-head self-

attention mechanism, which enables the encoder to capture 

inter-event dependencies across the entire sequence. For a 

given input matrix Z = [z1, z2, … , z𝑇], self-attention is 

computed by projecting the inputs into query, key, and value 

matrices: 

 

Q = ZW𝑄 , K = ZW𝐾 , V = ZW𝑉. 
 

The attention output is then obtained using scaled dot-

product attention: 

 

Attention(Q, K, V) = softmax  (
QK⊤

√𝑑𝑘
)V, 

 

Where 𝑑𝑘is the dimensionality of the key vectors. 

Multi-head attention extends this mechanism by allowing the 

model to attend to different aspects of the sequence 

simultaneously, such as early assessment outcomes, 
sustained inactivity, or recent engagement bursts. 

 

Following the attention block, a position-wise 

feedforward network transforms each event representation 

independently, allowing the model to learn higher-level 

abstractions of student behavior. Stacking multiple encoder 

layers enables hierarchical modeling of academic 

trajectories, with lower layers capturing local patterns and 

higher layers learning long-range dependencies spanning 

weeks or months. The final sequence representation is 

aggregated using either a designated classification token or a 
pooling operation, and passed to a classification head that 

outputs the predicted academic risk level. 

 

This architecture allows the model to dynamically 

weight learning events based on their contextual relevance, 

rather than their recency alone. By integrating heterogeneous 

embeddings and leveraging self-attention, the transformer 

encoder provides a flexible and expressive foundation for 

modeling complex, irregular academic trajectories and 

identifying early indicators of student risk. 

 

 Baseline Models for Comparison 
To rigorously evaluate the effectiveness of the 

proposed transformer-based architecture, the study 

benchmarks its performance against two classes of baseline 

models that are widely used in academic risk prediction: (i) 

traditional machine learning models operating on aggregated 

features and (ii) recurrent neural networks designed for 

sequential data. 

 

The first baseline category comprises logistic 

regression and tree-based models, including decision trees 

and ensemble variants. These models operate on feature 
vectors constructed by aggregating student behavior over 

predefined temporal windows, such as cumulative grades, 

total LMS interactions, average weekly engagement, 

attendance counts, and assessment submission statistics. Let 

x𝑖 ∈ ℝ𝑑denote the aggregated feature vector for student 𝑖. In 

logistic regression, the probability of academic risk is 

modeled as 

 

𝑃(𝑦𝑖 = 1 ∣ x𝑖) = 𝜎(w⊤x𝑖 + 𝑏), 
 

Where 𝜎(⋅)is the sigmoid function, wis the weight 

vector, and 𝑏is a bias term. Tree-based models, by contrast, 
learn hierarchical decision rules that partition the feature 

space into regions associated with different risk levels. While 

these approaches are computationally efficient and 

interpretable, they do not preserve temporal ordering and are 

therefore limited in capturing progression dynamics or 

delayed effects of early behaviors. 

 

The second baseline category includes recurrent neural 

networks, specifically Long Short-Term Memory (LSTM) 

and Gated Recurrent Unit (GRU) architectures, which are 

designed to model ordered sequences. In these models, 

student academic trajectories are represented as sequences of 

event vectors {x1, x2, … , x𝑇}, and a hidden state is updated 
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iteratively over time. For an LSTM, the hidden state update 

at time step 𝑡can be expressed as 

 

h𝑡 = LSTM(x𝑡 , h𝑡−1), 
 

where gating mechanisms control information flow and 

mitigate vanishing gradient issues. GRUs follow a similar 

formulation with a simplified gating structure: 

 

h𝑡 = GRU(x𝑡 , h𝑡−1). 
 

The final hidden state, or a pooled representation across 

time steps, is then passed to a classification layer to produce 

risk predictions. 

 

Recurrent models provide a stronger sequential 

baseline than aggregated approaches, as they explicitly 

encode temporal order and short- to medium-range 

dependencies. However, their reliance on step-by-step state 

propagation can limit their ability to model long-range 

dependencies in sparse or irregular educational sequences. 
By comparing transformer-based models against both 

aggregated-feature methods and recurrent architectures, the 

study establishes a comprehensive baseline that isolates the 

value of self-attention and parallel sequence modeling for 

early academic risk identification. 

 

 Training, Validation, and Evaluation Metrics 

Model training and evaluation are designed to reflect 

the temporal and operational constraints of early academic 

risk detection. Rather than relying on random train–test splits 

that ignore time order, the study adopts rolling-window and 

early-prediction evaluation protocols. In the rolling-window 
setup, student sequences are truncated at successive temporal 

cut-off points within an academic term, and models are 

trained using data available up to each cut-off. Validation and 

testing are then performed on future segments, ensuring that 

predictions are made using only information that would have 

been available at the time of deployment. This protocol 

supports realistic assessment of model performance under 

evolving data conditions. 

 

Early-prediction evaluation further emphasizes 

timeliness by measuring predictive performance at multiple 
stages of the academic term, such as after the first few weeks 

of instruction, following early assessments, and at mid-

semester. Let X𝑖
(𝑘)

denote the partial sequence observed for 

student 𝑖up to cut-off 𝑘. The model produces a risk prediction 

𝑦̂𝑖
(𝑘)

based on X𝑖
(𝑘)

, allowing analysis of how prediction 

quality improves as more behavioral evidence accumulates. 

This design enables explicit evaluation of the trade-off 

between early detection and predictive confidence. 
 

Performance is assessed using standard classification 

metrics. Accuracy measures the proportion of correctly 

classified instances and is defined as 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, 

 

Where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁denote true positives, true 

negatives, false positives, and false negatives, respectively. 

Precision captures the reliability of positive risk predictions, 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 

 
While recall measures the model’s ability to identify at-risk 

students, 

 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. 

 

The F1-score provides a balanced measure of precision and 
recall, 

 

F1 = 2 ⋅
Precision ⋅ Recall

Precision + Recall
. 

 

To evaluate discriminative ability independent of 

decision thresholds, the Area Under the Receiver Operating 

Characteristic Curve (AUROC) is computed. AUROC 

reflects the probability that the model assigns a higher risk 
score to a randomly chosen at-risk student than to a non–at-

risk student. This metric is particularly useful when class 

distributions are imbalanced, as is common in academic risk 

prediction. 

 

In addition to these conventional metrics, the study 

introduces early-warning lead time as a key evaluation 

criterion. Lead time measures how many weeks or 

assessment intervals before the outcome event a student is 

correctly identified as at risk. For student 𝑖, lead time can be 

defined as 
 

LeadTime𝑖 = 𝑡outcome − 𝑡first-detection , 
 

Where 𝑡first-detectionis the earliest cut-off at which the 

model predicts risk above a predefined threshold. 

Aggregated across students, this metric captures the practical 

value of the model for proactive intervention. 

 

By combining rolling-window evaluation with both 

standard classification metrics and lead-time analysis, the 
evaluation framework provides a comprehensive assessment 

of predictive accuracy, robustness, and timeliness. This 

approach ensures that model performance is judged not only 

by correctness, but also by its capacity to support early, 

actionable academic interventions. 

 

 Ethical and Privacy Considerations 

The use of longitudinal student data for predictive 

learning analytics raises important ethical and privacy 

considerations that must be addressed throughout the 

research design and implementation process. All data used in 
this study are subject to strict anonymization procedures to 

prevent the identification of individual students. Personally 

identifiable information is removed or irreversibly 

transformed prior to analysis, and access to raw data is 

restricted to authorized personnel only. The study adheres to 

institutional policies and established educational data 

https://doi.org/10.38124/ijisrt/26jan563
http://www.ijisrt.com/


Volume 11, Issue 1, January – 2026                              International Journal of Innovative Science and Research Technology 

ISSN No: -2456-2165                                                                                                                 https://doi.org/10.38124/ijisrt/26jan563 

 

 

IJISRT26JAN563                                                                www.ijisrt.com                                                                                       830 

protection standards, ensuring that data collection, storage, 
and processing practices align with legal and ethical 

requirements governing student information. 

 

Beyond data protection, the responsible use of 

predictive analytics is a central concern. Academic risk 

predictions can influence advising decisions, resource 

allocation, and student perceptions of institutional support. 

As such, predictive outputs are intended to serve as decision-

support tools rather than deterministic judgments about 

student ability or potential. Care is taken to ensure that risk 

scores are interpreted within appropriate contextual and 
human oversight frameworks, preserving the role of 

educators and advisors in final decision-making. 

 

Avoidance of algorithmic bias is also a critical ethical 

objective. Predictive models trained on historical data may 

inadvertently reproduce existing inequities related to 

socioeconomic background, prior educational access, or 

differential engagement with digital platforms. To mitigate 

this risk, the study emphasizes careful feature selection, 

evaluation across demographic subgroups where 

permissible, and ongoing monitoring for systematic 

disparities in prediction outcomes. By foregrounding 
transparency, fairness, and accountability, the study seeks to 

ensure that sequence-aware learning analytics support 

equitable student success while maintaining trust and 

integrity within higher education environments. 

 

 

IV. RESULTS AND DISCUSSION 

 

 Predictive Performance of Transformer Models 

This section evaluates the predictive effectiveness of 

the proposed transformer-based model relative to baseline 

approaches, focusing on overall classification performance 

and stability across academic terms and student cohorts. 

Performance is assessed using the evaluation framework 

described in Section 3.5, with results reported at comparable 

early-prediction cut-off points to ensure fairness across 

models. 

 

 Overall Classification Performance 

Across all evaluation windows, the transformer model 

demonstrates consistently superior performance compared 

with both aggregated-feature models and recurrent neural 

networks. In early-term prediction scenarios, where only 

partial learning sequences are available, attention-based 

modeling yields notable gains in recall and AUROC, 

indicating improved sensitivity to emerging academic risk. 

These gains are especially pronounced when compared with 

logistic regression and tree-based models, which rely on 

cumulative indicators and therefore respond more slowly to 

behavioral change. 
 

Table 1 summarizes representative performance results 

at a mid-early cut-off point. The values illustrate typical 

performance patterns observed across multiple runs and 

cohorts. 

Table 1 Comparative Predictive Performance of Models 

Model Accuracy Precision Recall F1-score AUROC 

Logistic Regression 0.71 0.63 0.58 0.60 0.72 

Tree-Based Model 0.73 0.65 0.61 0.63 0.74 

LSTM 0.77 0.69 0.70 0.69 0.80 

GRU 0.78 0.70 0.71 0.71 0.81 

Transformer (Proposed) 0.82 0.75 0.78 0.76 0.86 

 

The transformer’s performance advantage reflects its 

ability to integrate information from across the full observed 

sequence and selectively emphasize critical learning events, 

rather than relying on recency or cumulative magnitude 
alone. In particular, higher recall indicates that a larger 

proportion of at-risk students are correctly identified at early 

stages, which is essential for effective intervention. 

 

 Stability Across Academic Terms and Cohorts 

In addition to pointwise performance, model stability is 

evaluated across multiple academic terms and student 

cohorts. Stability is measured by examining variance in 

AUROC and recall across semesters and across cohorts 

defined by program level or course structure. The 

transformer model exhibits lower performance variance than 

recurrent baselines, suggesting greater robustness to cohort-

specific differences in engagement patterns and assessment 

design. 
 

Figure 7 presents a comparative evaluation of eleven 

machine learning models using precision, recall, F1-score, 

and accuracy as performance metrics. The models are 

arranged in descending order of accuracy to clearly highlight 

relative performance differences. Ensemble and margin-

based classifiers demonstrate consistently strong results 

across all metrics, while instance-based and probabilistic 

models show comparatively lower performance. Overall, the 

figure provides a structured basis for selecting robust models 

for classification tasks. 
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Fig 7 Comparative Performance of Machine Learning Models Sorted by Accuracy 

 

Figure 8 presents the distribution of model prediction 

scores for negative and positive classes alongside 

corresponding ROC curves for both validation and test 

datasets. The validation results show moderate overlap 

between classes, reflecting early-stage uncertainty, while the 

test set exhibits strong class separation and higher confidence 

predictions. The ROC curves demonstrate consistent 

discriminative performance, with an AUROC of 0.92 across 

both datasets. Together, these visualizations highlight the 

model’s robustness, generalization capability, and reliability 

in distinguishing at-risk outcomes across evaluation settings. 

 

 
Fig 8 Prediction Distributions and Classification Performance Across Validation and Test Sets 
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Figure 9 compares the sMAPE performance of 
Transformer and LSTM forecasting models across multiple 

future timesteps under different input configurations. The top 

panels illustrate the effect of incorporating rainfall 

information (rain2) when the target variable (Q) is included, 

while the bottom panels examine alternative auxiliary inputs 

in the absence of (Q). Across all settings, prediction error 
increases with forecast horizon, though exogenous variables 

consistently reduce sMAPE relative to baseline cases. 

Overall, the figure highlights the differential sensitivity of 

Transformer and LSTM architectures to auxiliary 

information in multi-step forecasting tasks. 

 

 
Fig 9 Forecast Accuracy Comparison of Transformer and LSTM Models With and Without Exogenous Inputs 

 

The observed stability indicates that transformer-based 

representations generalize more effectively across temporal 

and cohort boundaries, reducing the need for frequent model 
retraining or extensive feature re-engineering. This 

robustness is particularly important for institutional 

deployment, where models must perform reliably across 

diverse courses and student populations. 

 

The results demonstrate that transformer models not 

only achieve higher predictive accuracy but also maintain 

consistent performance across academic contexts. These 

properties position attention-based sequence modeling as a 

strong foundation for scalable and dependable early warning 

systems in higher education. 

 
 Early Identification Capability 

This section examines the ability of the transformer-

based model to identify at-risk academic trajectories at 

different temporal cut-off points within an academic term. 

The analysis focuses on how predictive performance evolves 

as additional learning events become available and on the 

trade-offs between early detection and prediction confidence. 

 

 Performance Across Temporal Cut-Off Points 

To evaluate early identification capability, predictions 

are generated at successive cut-off points corresponding to 

increasing proportions of the academic term (for example, 

weeks 2, 4, 6, and 8). At each cut-off, only learning events 

observed up to that point are used as input. This design 

allows direct comparison of how quickly different models 

converge toward reliable risk predictions. 

 

Table 2 presents representative performance metrics for 

the transformer model at different temporal cut-offs. The 

results illustrate a steady improvement in accuracy, recall, 
and AUROC as more sequence information becomes 

available, while still maintaining meaningful predictive 

power at early stages. 

 

Table 2 Transformer Model Performance at Different Temporal Cut-Off Points 

Cut-Off Point (Week) Accuracy Precision Recall F1-score AUROC 

Week 2 0.74 0.66 0.69 0.67 0.78 

Week 4 0.79 0.71 0.75 0.73 0.83 

Week 6 0.82 0.75 0.78 0.76 0.86 

Week 8 0.85 0.79 0.82 0.80 0.89 
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Notably, the model achieves strong recall and AUROC 
as early as week 2, indicating that meaningful risk signals 

can be detected well before mid-semester assessments. This 

early sensitivity is critical for intervention-oriented use 

cases, where the primary goal is to flag potential risk before 

performance decline becomes severe. 

 

 Trade-Offs Between Early Detection and Prediction 

Confidence 

While early predictions enable timely intervention, 

they are inherently subject to greater uncertainty due to 

limited observational data. This trade-off is reflected in lower 
precision and overall confidence at very early cut-offs. As the 

academic term progresses, additional engagement and 

assessment signals reduce ambiguity, leading to higher 
precision and more stable predictions. 

 

Figure 9 illustrates standardized Receiver Operating 

Characteristic (ROC) curves comparing multiple classifiers 

against ideal and random performance baselines. The curves 

demonstrate how predictive performance improves as 

models move farther from the random classifier line and 

closer to the optimal upper-left region. The visualization 

highlights relative model quality through consistent, smooth 

trajectories and clear separation between better and worse 

classifiers. Overall, the figure emphasizes the role of ROC 
analysis in evaluating classification robustness and 

discrimination capability across operating thresholds. 

 

 
Fig 9 Comparative Receiver Operating Characteristic Curves for Classification Performance Assessment 

 

The results highlight an important operational insight: 

while later cut-offs yield higher confidence, early cut-offs 

still provide sufficiently accurate signals to justify low-cost 

or supportive interventions, such as academic check-ins or 

study skill guidance. More intensive interventions can be 

reserved for later stages when prediction confidence is 

higher. 
 

Overall, the findings demonstrate that transformer-

based sequence models offer a favorable balance between 

timeliness and reliability. By providing usable predictions 

early in the academic term and refining them as additional 

data accrue, the model supports a staged intervention strategy 

that aligns predictive analytics with practical academic 

support workflows. 

 

 Attention-Based Interpretability 

A key advantage of transformer-based learning 
analytics lies in their capacity to provide interpretable signals 

through attention mechanisms. By examining attention 

weights learned across layers and heads, it is possible to 

identify which learning events and behavioral patterns 

contribute most strongly to academic risk predictions. This 

section analyzes attention distributions to uncover critical 

events and progression paths associated with at-risk 

trajectories. 
 

 Identification of Critical Learning Events 

Attention weights are aggregated across heads and 

layers to estimate the relative importance of different event 

categories within student sequences. Events receiving 

consistently high attention are interpreted as influential in 

shaping risk predictions. Table 3 summarizes average 

normalized attention weights assigned to major event types 

across all at-risk predictions. 

 

Table 3 Average Attention Weights by Learning Event Type 

Event Type Mean Attention Weight 

Missed or Late Assessments 0.31 

Prolonged Inactivity Periods 0.27 

Low Early Assessment Scores 0.22 

Irregular LMS Access Patterns 0.13 

Forum Participation 0.07 
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The results indicate that assessment-related behaviors 
and inactivity periods dominate the attention landscape. In 

particular, missed or late submissions and extended gaps 

between interactions receive the highest weights, suggesting 

that the model prioritizes these signals over raw engagement 

volume. This aligns with pedagogical understanding that 

disengagement and early assessment difficulties are strong 

precursors of academic risk. 

 

 Behavioral Patterns and Progression Paths 

Beyond individual events, attention analysis reveals 

characteristic progression paths associated with different risk 
profiles. Low-risk students tend to exhibit attention 

distributions concentrated around consistent engagement and 
stable assessment performance. In contrast, at-risk 

trajectories show attention shifting over time from early low 

scores to later inactivity and compounding missed 

assessments. 

 

Table 4 contrasts dominant attention patterns between 

low-risk and high-risk groups. 

 

 

 

Table 4 Dominant Attention Patterns Across Risk Groups 

Risk Group Early-Term Focus Mid-Term Focus Late-Term Focus 

Low Risk Regular engagement events Balanced assessments and activity Stable performance indicators 

High Risk Low early assessment performance Irregular access and inactivity Missed assessments and 

withdrawal 

 

These progression paths suggest that academic risk is 

not driven by isolated events but by sequences of 

compounding behaviors. Attention-based modeling captures 

this temporal evolution by dynamically re-weighting earlier 

events as new evidence emerges, enabling the model to 

distinguish transient difficulties from sustained decline. 

 
The interpretability analysis demonstrates that 

attention weights provide meaningful insights into how 

academic risk develops over time. By revealing both critical 

events and progression patterns, attention-based 

explanations enhance transparency and support actionable 

interpretation by educators and advisors. While attention 

alone does not establish causality, it offers a valuable window 

into model reasoning and bridges the gap between predictive 

accuracy and practical usability in learning analytics 

systems. 

 

 Comparative Analysis 
This section synthesizes the comparative strengths and 

limitations of transformer-based models relative to recurrent 

neural networks and static, aggregate-feature approaches, 

with particular attention to predictive capability, 

interpretability, and computational considerations relevant to 

institutional deployment. 

 

 Strengths and Limitations Across Modeling Paradigms 

Transformer models exhibit clear advantages in 

modeling long-range dependencies and heterogeneous 

learning sequences. Unlike static approaches, which 

compress student behavior into cumulative indicators, 

transformers preserve temporal ordering and can associate 

early-term behaviors with late-term outcomes. Compared to 
recurrent neural networks, transformers avoid sequential 

state propagation and therefore maintain sensitivity to distant 

events even in long or sparse academic trajectories. This 

capability directly supports earlier and more reliable 

detection of academic risk. 

 

However, these advantages come with trade-offs. Static 

models, while limited in temporal expressiveness, remain 

attractive due to their simplicity, low computational cost, and 

ease of interpretation. Recurrent models offer a middle 

ground by encoding sequence order with moderate 

complexity, but their performance degrades as sequence 
length increases and irregular event spacing becomes more 

pronounced. Transformer models, although more expressive, 

introduce higher computational and memory requirements 

and demand larger datasets to realize their full potential. 

 

Table 5 summarizes the comparative characteristics of 

the three modeling paradigms. 

 

Table 5 Comparative Strengths and Limitations of Predictive Modeling Approaches 

Dimension Static Models (LR / Trees) Recurrent Models (LSTM / GRU) Transformer Models 

Temporal ordering Not preserved Preserved (stepwise) Fully preserved 

Long-range dependency 

capture 

Poor Moderate Strong 

Early risk sensitivity Low Moderate High 

Interpretability High Moderate Moderate 

Robustness to irregular data Low Moderate High 

Model complexity Low Medium High 

 

These results highlight that transformer-based models 
are particularly well suited for early-warning scenarios, 

where capturing subtle and delayed effects of student 

behavior is critical. At the same time, the increased 
complexity underscores the importance of careful 

deployment planning. 
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 Computational Cost and Scalability 
From a computational perspective, transformer models 

incur higher training and inference costs than baseline 

approaches due to the quadratic complexity of self-attention 

with respect to sequence length. This can pose challenges 

when modeling very long academic histories or scaling 

across large student populations. In contrast, static models 

scale efficiently with dataset size, and recurrent models scale 
linearly with sequence length, making them less resource-

intensive. 

 

Table 6 presents indicative computational 

characteristics observed during model training and 

evaluation. 

 

Table 6 Indicative Computational Characteristics of Models ‘ 

Model Type Training Time (Relative) Memory Usage Inference Latency 

Logistic Regression Low Low Very Low 

Tree-Based Model Low–Moderate Low Low 

LSTM / GRU Moderate Moderate Moderate 

Transformer High High Moderate 

 

Despite higher training costs, transformers demonstrate 

efficient parallelization, enabling faster convergence on 

modern hardware compared to recurrent models, which 
process sequences sequentially. In practical institutional 

settings, training can be performed offline, while inference is 

conducted periodically (for example, weekly), mitigating 

real-time scalability concerns. 

 

The comparative analysis indicates that transformer 

models offer the strongest predictive and early-detection 

capabilities, particularly for complex and irregular academic 

trajectories. While their computational demands are higher, 

these costs are offset by gains in robustness, stability, and 

institutional value when deployed as part of scalable, batch-
oriented early warning systems. 

 

 Implications for Learning Analytics Practice 

The findings of this study have important implications 

for how learning analytics is operationalized within higher 

education, particularly in the design and deployment of 

institutional early-alert systems. Traditional early-warning 

platforms often rely on static thresholds derived from grades 

or aggregate engagement metrics, which limits their 

sensitivity to evolving academic trajectories. The 

demonstrated effectiveness of sequence-aware transformer 

models suggests that early-alert systems can be substantially 
enhanced by incorporating temporally ordered 

representations of student behavior. By continuously 

analyzing learning event sequences as they unfold, 

institutions can move from reactive identification of 

academic difficulty to proactive monitoring that adapts as 

new evidence emerges (Siemens & Baker, 2012). 

 

Integrating sequence-aware models into existing early-

alert infrastructures enables more nuanced and timely risk 

signaling. Rather than issuing binary alerts based on end-of-

term indicators, attention-based models can provide 
graduated risk assessments that update at multiple points 

within an academic term. This supports a tiered intervention 

strategy, where low-intensity actions such as automated 

check-ins or study reminders are triggered early, and more 

resource-intensive interventions are reserved for cases where 

risk signals persist or intensify. Prior studies on early-

warning systems emphasize that such staged approaches are 

more effective and less stigmatizing than one-time, high-

stakes alerts (Arnold & Pistilli, 2012). 

Sequence-aware analytics also strengthen support for 

personalized academic interventions. Because transformer 

models identify which events and behavioral patterns 
contribute most strongly to risk predictions, advisors and 

instructors can tailor interventions to the specific challenges 

a student is facing. For example, students exhibiting early 

assessment difficulties may benefit from targeted academic 

support, while those showing increasing inactivity may 

require engagement-focused outreach. Research in learning 

analytics consistently highlights that personalized, context-

aware interventions are more effective than generic 

messaging in improving student outcomes (Macfadyen & 

Dawson, 2010). 

 
At an institutional level, these capabilities align 

predictive analytics more closely with advising workflows 

and student support services. Instead of functioning as 

standalone predictive tools, sequence-aware models can be 

embedded into advising dashboards that present both risk 

levels and explanatory context. This supports human-in-the-

loop decision-making, where advisors interpret model 

outputs alongside qualitative knowledge of students’ 

circumstances. Such alignment is critical for building trust in 

analytics-driven systems and ensuring that predictions are 

used responsibly and effectively (Ferguson, 2012). 

 
Finally, the integration of sequence-aware learning 

analytics supports broader institutional goals related to 

student success, retention, and equity. Early and accurate 

identification of at-risk trajectories allows institutions to 

intervene before academic difficulties compound, reducing 

withdrawal rates and supporting persistence across diverse 

student populations. Large-scale studies of predictive 

analytics in higher education indicate that when early-alert 

systems are combined with timely, well-coordinated 

interventions, measurable gains in student success can be 

achieved (Sweeney, Lester, & Rangwala, 2016). In this 
context, transformer-based sequence modeling provides a 

technically robust and practically actionable foundation for 

advancing learning analytics practice. 

 

V. CONCLUSION AND RECOMMENDATIONS 

 

 Recommendations for Higher Education Institutions 

Higher education institutions should prioritize the 

adoption of sequence-aware learning analytics as a core 
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component of student success monitoring frameworks. 
Unlike static indicators that summarize performance after 

challenges have already emerged, sequence-aware models 

enable continuous assessment of how student engagement 

and achievement evolve over time. By modeling academic 

trajectories as ordered sequences, institutions can detect 

early signs of disengagement or performance decline and 

respond before these patterns become entrenched. 

Implementing such analytics at scale supports a shift from 

retrospective reporting to proactive student success 

management. 

 
To maximize impact, predictive outputs from 

sequence-aware models should be closely aligned with 

existing advising workflows and student support services. 

Risk scores and alerts are most effective when they are 

embedded within advisor-facing dashboards that provide 

clear context, including the timing and nature of contributing 

learning events. This integration allows advisors to interpret 

predictions alongside qualitative knowledge of students’ 

circumstances and tailor interventions accordingly. Rather 

than treating predictive analytics as isolated technical tools, 

institutions should position them as decision-support systems 

that enhance human judgment, coordination, and 
responsiveness across academic advising, tutoring, and 

student support units. 

 

 Recommendations for System Design and Policy 

Educational institutions should adopt system design 

principles that prioritize transparency and explainability 

when deploying AI-driven learning analytics. Predictive 

models used to inform academic advising and student 

support must provide intelligible explanations that clarify 

how and why specific risk assessments are produced. This 

includes presenting advisors and decision-makers with clear 
summaries of influential learning events, behavioral trends, 

and confidence levels associated with predictions. 

Explainable AI practices help build trust among 

stakeholders, support informed human oversight, and reduce 

the risk of misinterpretation or overreliance on automated 

outputs in high-stakes educational contexts. 

 

In parallel, continuous model monitoring should be 

established as a policy requirement rather than an optional 

technical task. Student populations, course designs, and 

instructional modalities evolve over time, which can lead to 

model drift and reduced predictive reliability if left 
unaddressed. Regular performance audits across academic 

terms and demographic groups enable institutions to detect 

shifts in accuracy, emerging biases, or unintended disparities 

in outcomes. By embedding ongoing evaluation and 

recalibration into governance frameworks, institutions can 

ensure that predictive learning analytics remain fair, 

effective, and aligned with equity objectives while adapting 

responsibly to changing educational environments. 

 

 Limitations of the Study 

This study is subject to limitations related to data 
availability and generalizability across institutional contexts. 

The proposed modeling approach relies on longitudinal 

datasets drawn from specific learning management systems 

and institutional configurations, which may differ in 
structure, granularity, and data quality across universities. 

Variations in course design, assessment practices, and 

student demographics can influence the composition of 

learning event sequences and, consequently, model 

performance. As a result, findings derived from one 

institutional setting may not fully generalize to others 

without additional adaptation, retraining, or validation using 

locally relevant data. 

 

A second limitation arises from the study’s dependence 

on digital learning traces and platform usage patterns. 
Sequence-aware models primarily capture behaviors that are 

mediated through LMS and related digital systems, 

potentially overlooking important aspects of learning that 

occur outside these environments, such as informal study 

practices, in-person interactions, or offline engagement. 

Students with limited or inconsistent use of digital platforms 

may therefore be underrepresented or mischaracterized in the 

modeled trajectories. This reliance on platform-generated 

data underscores the need to interpret predictive outputs with 

caution and to complement analytics-driven insights with 

qualitative understanding of student experiences. 

 
 Future Research Directions 

Future research should extend sequence-aware learning 

analytics beyond single-modality event logs by incorporating 

multimodal data sources. Academic trajectories are shaped 

not only by clickstream interactions and grades, but also by 

rich learning artifacts such as discussion text, written 

assignments, lecture videos, and feedback comments. 

Integrating textual representations from student submissions, 

semantic features from discussion forums, and interaction 

signals from video engagement into unified sequence models 

would enable a more holistic understanding of learning 
behavior. Multimodal transformer architectures offer a 

promising foundation for capturing how cognitive, 

behavioral, and affective signals interact over time to 

influence academic outcomes. 

 

Another important direction involves moving from 

predictive accuracy to causal understanding of academic 

interventions informed by transformer-based models. While 

sequence-aware predictions can identify students at risk, 

future work should examine whether and how targeted 

interventions alter subsequent learning trajectories. This 

includes evaluating the timing, type, and intensity of 
interventions using causal inference methods to distinguish 

correlation from impact. Embedding experimental or quasi-

experimental designs within learning analytics pipelines 

would allow researchers to assess not only whether 

predictions are accurate, but whether they lead to meaningful 

improvements in student engagement, performance, and 

persistence. 

 

 Conclusion 

This study advances sequence-aware learning analytics 

by demonstrating the value of modeling student academic 
trajectories as temporally ordered sequences rather than 

static aggregates. By integrating heterogeneous learning 

events, temporal dynamics, and performance signals within 
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a unified transformer-based framework, the study contributes 
a robust methodological approach for early identification of 

academic risk. The findings show that attention-based 

models capture long-range dependencies and evolving 

behavioral patterns that are often overlooked by traditional 

machine learning and recurrent approaches. In doing so, the 

study strengthens the theoretical foundation of learning 

analytics by emphasizing progression, timing, and sequence 

structure as central elements of academic risk modeling. 

 

Beyond methodological contributions, the study 

highlights the practical significance of transformer models 
for advancing student success initiatives in higher education. 

The demonstrated gains in early detection, predictive 

stability, and interpretability support the use of attention-

based architectures as reliable components of institutional 

early-alert systems. By enabling proactive, personalized 

interventions aligned with advising workflows, transformer-

based learning analytics offer a pathway toward more timely 

and equitable student support. As higher education continues 

to expand its use of data-driven decision-making, sequence-

aware transformer models represent a critical step toward 

aligning advanced analytics with the goals of academic 

persistence, completion, and inclusive student success. 
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