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Abstract: Early identification of students at risk of academic underperformance remains a persistent challenge in higher
education, particularly in learning environments characterized by complex, temporally evolving patterns of engagement
and assessment. Conventional learning analytics approaches typically rely on static or weakly temporal indicators, limiting
their ability to detect emerging risk at early stages of an academic term. This study proposes a sequence-aware learning
analytics framework that leverages transformer-based models to represent student academic trajectories as ordered
sequences of learning events derived from learning management systems and student information systems. The framework
integrates heterogeneous behavioral, temporal, and performance signals and applies self-attention mechanisms to capture
long-range dependencies and evolving risk patterns. Using a supervised predictive modeling design with rolling-window
and early-prediction evaluation protocols, the proposed approach is assessed against traditional machine learning and
recurrent neural network baselines. Results demonstrate that transformer models achieve superior predictive performance,
earlier risk identification, and greater stability across academic terms and cohorts. Attention-based interpretability further
reveals meaningful progression patterns associated with academic disengagement and performance decline. The findings
underscore the value of sequence-aware modeling for enhancing institutional early-alert systems and supporting proactive,
personalized academic interventions. This study contributes to both learning analytics theory and practice by establishing
transformer-based sequence modeling as a robust foundation for early academic risk detection and student success
initiatives in higher education.
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L INTRODUCTION student trajectories rather than isolated performance
snapshots (Handbook of Learning Analytics).
» Background and Motivation

The widespread adoption of Learning Management
Systems (LMS) and Student Information Systems (SIS)
across higher education institutions has transformed how
student learning behaviors are captured and analyzed. These
platforms generate fine-grained, time-stamped records of
academic activity, including logins, content access,
assessment submissions, feedback cycles, and grade
progression. Unlike traditional institutional datasets that
relied on end-of-semester outcomes or static demographic
attributes, LMS and SIS logs provide continuous, high-
resolution temporal data that reflect how students engage
with learning resources over time. This shift has positioned
learning analytics as a central instrument for understanding
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Despite this data richness, many existing academic risk
prediction systems still rely on static or aggregated features,
such as cumulative GPA, total clicks, or average attendance
rates. While such indicators are informative at a coarse level,
they obscure the ordering, timing, and evolution of learning
behaviors that often signal emerging disengagement.
Research in educational data mining has shown that two
students with identical aggregate engagement levels may
follow fundamentally different academic paths depending on
when and how that engagement unfolds. Static analytics
therefore struggle to capture non-linear decline, delayed
recovery, or sudden shifts in learning behavior that precede
academic difficulty (Baker & Inventado 2014; Maduabuci et
al., 2023).
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The limitations of aggregate approaches are
particularly consequential for early warning systems. Early
identification of at-risk students is most effective when
interventions occur before performance deterioration
becomes irreversible. However, models built on cumulative
indicators tend to detect risk only after grades or engagement
have already declined significantly. Longitudinal studies of
student retention demonstrate that behavioral changes often
emerge weeks before formal academic failure is visible,
highlighting the need for analytics that are sensitive to
temporal dynamics rather than summary statistics (Lakkaraju
et al., 2015; Permata et al., 2025).

Sequence-aware learning analytics address this
challenge by explicitly modeling the ordered progression of
student actions, assessments, and outcomes. By treating
academic histories as evolving sequences rather than fixed
vectors, these approaches can capture patterns such as
procrastination cycles, irregular engagement rhythms, or
cascading assessment failures. Prior work in knowledge
tracing and sequential student modeling has shown that
temporal representations significantly improve predictive
accuracy and provide earlier signals of risk compared to
static baselines (Piech et al.,2015; Idogho et al., 2025).
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Recent advances in transformer architectures further
strengthen the case for sequence-aware analytics. Self-
attention mechanisms enable models to learn long-range
dependencies across extended academic timelines without
the vanishing-gradient limitations of recurrent methods. In
educational contexts, this allows critical early behaviors to
be weighted appropriately even when their consequences
manifest much later in a semester. As a result, transformer-
based sequence modeling offers a principled foundation for
timely, interpretable, and scalable identification of at-risk
academic trajectories in higher education (Vaswani et al.,
2017; Idogho et al., 2025; Permata et al., 2026).

Figure 1 illustrates an improved instructional flowchart
that integrates mathematical abstractions with core physics
concepts to support progressive learning. The sequence
begins with foundational ideas in abstraction and linear
kinematics, then advances through angular kinematics and
the formal connections between linear and angular motion.
Each block is color-coded to distinguish disciplinary context
while preserving logical continuity across lectures. The
pathway culminates in statics basics, reinforcing how
mathematical and kinematic principles underpin equilibrium
analysis in physics.
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Fig 1 Conceptual Learning Pathway Linking Mathematical Foundations to Kinematics and Statics in Physics

» Problem Statement

Despite the growing availability of fine-grained LMS
and SIS data, most operational learning analytics systems
continue to rely on traditional predictive models that reduce
student behavior to static or weakly temporal summaries.
Common approaches such as logistic regression, decision
trees, or feature-engineered machine learning models
typically aggregate student activity over fixed windows,
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ignoring the ordering and spacing of events. This abstraction
limits their ability to capture long-range dependencies, where
early learning behaviors exert delayed effects on later
academic outcomes. Empirical studies in educational data
mining demonstrate that such models often miss gradual
disengagement patterns and non-linear behavioral shifts that
unfold across an academic term (Siemens & Baker, 2012;
Lakkaraju et al., 2015; Maduabuchi et al., 2023).
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A further challenge arises from the inherently
heterogeneous and irregular nature of educational event
sequences. Student interactions with digital learning
environments vary widely in frequency, modality, and
timing. LMS logs combine sparse assessment submissions,
bursty interaction episodes, prolonged inactivity periods, and
asynchronous feedback cycles. Traditional sequence
modeling approaches, including fixed-order Markov models
or recurrent neural networks with uniform time steps,
struggle to represent these irregular temporal structures
effectively. Research on clickstream and trace data shows
that sparsity and uneven temporal gaps degrade model
performance and lead to unstable predictions when
conventional techniques are applied without explicit
temporal encoding (Xu & Recker, 2012; Kovanovi¢ et al.,
2015; Ayoola et al., 2024).

These modeling limitations have direct consequences
for early warning systems aimed at supporting student
retention. When temporal dynamics are inadequately
represented, risk prediction models tend to rely on lagging
indicators such as cumulative grades or total engagement
counts. As a result, academic risk is often detected only after
disengagement has become entrenched or performance
decline is already severe. Longitudinal analyses of student
success consistently show that disengagement signals
frequently emerge weeks before formal failure indicators,
underscoring the cost of late or inaccurate identification
(Lakkaraju et al., 2015; Ijiga et al., 2024).

The problem is further compounded by the difficulty of
distinguishing transient fluctuations in engagement from
sustained downward trajectories. Without sequence-aware
representations, predictive systems may misclassify short-
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term inactivity as high risk or overlook progressive
deterioration masked by aggregate stability. Prior work in
sequential student modeling demonstrates that preserving
temporal order and contextual relationships between events
substantially improves both predictive accuracy and the
timeliness of risk detection (Piech et al., 2015; Ijiga et al.,
2024). However, these insights have yet to be systematically
integrated into institutional-scale early alert frameworks.

Taken together, these challenges reveal a fundamental
gap between the temporal richness of modern educational
data and the capabilities of widely deployed predictive
models. Addressing this gap requires learning analytics
approaches that can robustly model heterogeneous, irregular
sequences while capturing long-range dependencies in
student behavior. Without such sequence-aware methods,
higher education institutions face an ongoing risk of delayed
interventions, misallocated support resources, and missed
opportunities to prevent academic disengagement and
performance decline.

Figure 2 presents an integrated block-diagram
representation of the early warning system, illustrating the
sequential flow from observation and forecasting to warning
communication and decision-making. Each stage highlights
a critical analytical or behavioral bridge, supported by
continuous evaluation across the system. The lower blocks
align these stages with the four pillars of the Early Warnings
for All framework, emphasizing institutional preparedness
and response capacity. Collectively, the figure demonstrates
how technical forecasts are translated into actionable
outcomes through coordinated communication and human
decision processes.
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» Research Objectives

The primary objective of this study is to design a
transformer-based learning analytics framework capable of
representing student academic trajectories as temporally
ordered sequences. Rather than treating learning behavior as
static aggregates, the framework aims to encode the
progression, timing, and contextual relationships among
learning events captured from learning management systems
and student information systems. By modeling academic
histories as sequences, the study seeks to reflect how
engagement patterns, assessment outcomes, and behavioral
shifts evolve across an academic term.

A second objective is to evaluate the effectiveness of
attention-based architectures in the early identification of at-
risk students. The study focuses on determining whether self-
attention mechanisms can detect subtle but persistent
indicators of disengagement or performance decline at earlier
stages than conventional predictive systems. Emphasis is
placed on assessing how early in the academic timeline
reliable risk signals can be identified without sacrificing
predictive accuracy or stability.

The final objective is to conduct a systematic
comparison between sequence-aware transformer models
and established predictive approaches, including traditional
machine learning methods and recurrent neural networks.
This comparison examines differences in predictive
performance, robustness to irregular and sparse event
sequences, and sensitivity to long-range behavioral
dependencies. Through this comparative analysis, the study
aims to clarify the added value of transformer-based models
for academic risk prediction and inform their practical
adoption in higher education learning analytics systems.

» Research Questions and Hypotheses

This study is guided by the need to understand whether
sequence-aware modeling can meaningfully improve the
identification of academic risk in higher education settings.
The first research question examines how effectively
transformer models capture temporal learning patterns that
are indicative of emerging academic difficulty. Specifically,
it investigates the extent to which self-attention mechanisms
can learn dependencies across ordered learning events, such
as engagement fluctuations, assessment performance trends,
and periods of inactivity, that collectively signal elevated
risk.

The second research question focuses on the timing of
risk detection within an academic term. It seeks to determine
how early at-risk academic trajectories can be identified
when student behavior is modeled as a sequence rather than
as aggregated indicators. This question emphasizes the
practical value of sequence modeling by evaluating whether
reliable predictions can be generated at early stages of the
semester, when institutional interventions are most likely to
influence outcomes.

Based on these questions, the study advances the

hypothesis that attention-based sequence models outperform
static and recurrent baseline approaches in early risk
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prediction. It is hypothesized that transformer architectures,
through their ability to model long-range temporal
dependencies and selectively weight salient learning events,
achieve higher predictive accuracy and earlier detection of
academic risk compared to traditional machine learning
models and recurrent neural networks.

» Significance of the Study

This study contributes to learning analytics theory by
advancing sequence-aware risk modeling as a principled
alternative to static and weakly temporal approaches. By
framing student academic trajectories as ordered sequences
and leveraging attention-based mechanisms, the study
deepens theoretical understanding of how learning behaviors
unfold over time and how long-range dependencies influence
academic outcomes. The work clarifies the limits of
aggregate indicators and offers a formal basis for modeling
temporal structure, event salience, and progression dynamics
within educational data. In doing so, it extends the
conceptual  toolkit of learning analytics toward
representations that are more faithful to the lived realities of
student learning processes.

Beyond theoretical contributions, the study carries
direct practical implications for academic advising and
student retention strategies. Earlier and more reliable
identification of at-risk trajectories enables advisors and
support staff to intervene proactively rather than reactively,
aligning outreach with moments of highest leverage in the
academic term. Sequence-aware predictions can inform
differentiated advising actions by distinguishing transient
disengagement from sustained decline, reducing false alarms
and improving the targeting of limited institutional
resources. At the operational level, the findings support the
integration of temporally sensitive analytics into early alert
systems, degree planning tools, and learning support
platforms.

The study also aligns closely with data-driven student
success and equity initiatives in higher education. By
improving early detection accuracy, sequence-aware models
can help institutions mitigate structural disadvantages that
disproportionately affect students who experience delayed
feedback or cumulative academic pressure. Timely,
evidence-based interventions informed by longitudinal
behavior patterns support more equitable outcomes by
addressing risk before it manifests as failure or withdrawal.
In this sense, the study reinforces institutional commitments
to inclusive student success by demonstrating how advanced
analytics can be responsibly applied to enhance persistence,
completion, and overall educational equity.

II. LITERATURE REVIEW

» Learning Analytics and Academic Risk Prediction
Predictive learning analytics has become a central
component of higher education decision-making as
institutions seek to improve student retention, progression,
and completion rates. At its core, learning analytics involves
the measurement, collection, analysis, and reporting of data
about learners and their contexts for the purpose of
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understanding and optimizing learning and the environments
in which it occurs. In predictive applications, historical and
ongoing student data are used to estimate the likelihood of
adverse academic outcomes such as course failure, dropout,
or delayed graduation. These approaches have evolved
alongside the expansion of digital learning infrastructures,
which provide continuous streams of behavioral and
performance data suitable for modeling academic risk
(Siemens & Baker, 2012; Onuh et al., 2024).

Early predictive systems in higher education relied
primarily on demographic attributes and prior academic
achievement, including entry qualifications and cumulative
grade point averages. While these variables remain
informative, research has shown that models based solely on
static background characteristics are limited in their ability
to explain or anticipate changes in student performance over
time. As a result, predictive learning analytics has
increasingly shifted toward the use of process-oriented data
derived from learning management systems, enabling more
dynamic representations of student behavior throughout an
academic term (Ferguson, 2012).

Grades constitute one of the most widely used
indicators of academic risk. Low or declining assessment
scores, missed submissions, and poor performance in early
coursework are consistently associated with increased
likelihood of course failure or withdrawal. However, grades
are often lagging indicators, reflecting difficulties only after
learning  challenges  have  already  materialized.
Consequently, exclusive reliance on performance outcomes
can delay risk detection and reduce the effectiveness of early
intervention strategies (Arnold & Pistilli, 2012).

Engagement metrics derived from LMS activity logs
form another major class of academic risk indicators. These
include frequency of logins, time spent on learning
resources, participation in online discussions, and interaction
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with instructional materials. Studies have demonstrated that
sustained reductions in engagement, irregular access
patterns, and prolonged inactivity periods are strongly
correlated with academic disengagement and attrition.
Nevertheless, aggregate engagement measures may mask
important temporal variations, such as short bursts of activity
followed by disengagement, which are critical for accurate
risk assessment (Macfadyen & Dawson, 2010).

Attendance and assessment behavior further
complement grades and engagement in predictive models.
Physical or virtual attendance records capture consistency of
participation, while assessment-related behaviors, such as
submission  timing, resubmission frequency, and
procrastination patterns, provide insight into self-regulation
and study habits. Empirical evidence suggests that late
submissions and erratic assessment participation often
precede measurable performance decline, making them
valuable early indicators of risk when modeled appropriately
(Sweeney, Lester, & Rangwala, 2016). Together, these
indicators form the foundation of contemporary predictive
learning analytics, though their effectiveness depends
heavily on how temporal structure and behavioral
progression are represented.

Figure 3 illustrates the progressive maturity stages of
learning analytics in higher education, moving from
descriptive reporting to fully prescriptive, action-oriented
intelligence. The framework highlights how institutions
evolve from tracking historical outcomes to diagnosing
drivers of performance, forecasting academic risk, and
ultimately automating targeted interventions. The stepped
block  design  emphasizes increasing  analytical
sophistication, value creation, and decision impact across
stages. Overall, the figure underscores the strategic shift
required for institutions to transition from retrospective
insights to proactive, data-driven student success
management.
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Fig 3 A Maturity Framework for Predictive Learning Analytics in Higher Education
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» Sequence Modeling in Educational Data Mining

Sequence modeling occupies a central position in
educational data mining because learning is inherently a
temporal process shaped by ordered interactions, feedback
cycles, and evolving knowledge states. Event-based
representations provide a natural way to model this process
by encoding student activity as time-ordered sequences of
discrete events such as content views, quiz attempts,
submissions, forum interactions, and assessment outcomes.
Unlike aggregate feature representations, event-based
sequences preserve temporal ordering, spacing between
actions, and contextual transitions, enabling models to reflect
how learning unfolds rather than merely how much activity
occurs (Baker & Yacef, 2009).

Early sequence-based approaches in educational data
mining relied heavily on Markov models, which represent
learning as transitions between latent or observable states
with fixed transition probabilities. These models were
attractive due to their interpretability and computational
simplicity,  particularly = for = modeling  short-term
dependencies in student problem-solving behavior.
However, first-order Markov assumptions limit the ability of
such models to capture longer learning histories, as
predictions depend only on the most recent state rather than
the full sequence of prior interactions (Beck & Woolf, 2000;
Manuel et al., 2024).

Hidden Markov Models (HMMs) extended this
framework by introducing latent knowledge states that
generate observable student actions. HMM-based methods,
including Bayesian Knowledge Tracing, have been widely
used to infer mastery levels from sequences of correct and
incorrect responses. These models provided a probabilistic
foundation for tracking learning progression over time and
demonstrated that sequential representations outperform
static indicators in predicting future performance.
Nevertheless, HMMs typically assume stationary transition
dynamics and struggle to accommodate complex,
heterogeneous learning behaviors observed in modern digital

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan563

learning environments (Corbett & Anderson, 1995; Pardos &
Heffernan, 2010).

More recently, recurrent neural networks (RNNs) have
become prominent in sequence modeling for student data due
to their capacity to learn non-linear temporal dependencies
directly from event streams. Architectures such as Long
Short-Term Memory (LSTM) networks have been applied to
model extended learning sequences, capturing patterns
across many interactions without explicitly specifying state
transitions. Deep Knowledge Tracing demonstrated that
RNN-based models can substantially improve prediction
accuracy by learning rich representations of student
knowledge evolution from raw event sequences (Piech et al.,
2015).

Despite their advances, recurrent approaches exhibit
limitations related to vanishing gradients, sensitivity to
sequence length, and difficulty modeling irregular temporal
gaps. These challenges become pronounced in educational
datasets characterized by sparse activity, asynchronous
participation, and long-range dependencies spanning weeks
or months. As a result, while Markov models, HMMs, and
RNNs have established the value of sequence-aware
modeling in educational data mining, they also motivate the
exploration of architectures better suited to capturing long-
term structure and heterogeneous event dynamics.

Figure 4 illustrates a sequence-based probabilistic
model in which discrete latent states evolve over time and
generate observable learning outcomes through conditional
dependencies. The diagram shows how latent variables
transition between states across time steps while emitting
observable responses governed by state-dependent
probabilities. The structured arrows highlight both temporal
state transitions and observation likelihoods, emphasizing
long-range dependency modeling. Overall, the figure
represents a foundational framework for modeling hidden
learning dynamics and outcome generation in sequential
educational data.
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Fig 4 Sequence-Based Probabilistic State Transition Model for Latent Learning Dynamics
IJISRT26JAN563 WWwWw.ijisrt.com 823



https://doi.org/10.38124/ijisrt/26jan563
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

» Transformer Models and Attention Mechanisms
Transformer models represent a fundamental shift in
sequence modeling by replacing recurrence and convolution
with attention-driven architectures. Introduced to address the
inefficiencies of recurrent processing, transformers operate
on entire sequences in parallel, enabling direct modeling of
relationships between any two elements regardless of their
distance in the sequence. The core component of this
architecture is the self-attention mechanism, which computes
pairwise interactions between all sequence elements to
determine how strongly each element should influence the
representation of others. By combining self-attention with
positional encoding, transformers preserve information
about event order while avoiding the sequential computation
constraints of earlier models (Vaswani et al., 2017).

Self-attention =~ works by  projecting  input
representations into query, key, and value vectors, allowing
the model to weigh the relevance of each event in a sequence
when forming contextualized representations. This
mechanism enables transformers to dynamically focus on
salient events, such as early assessment failures or prolonged
inactivity, even when their impact becomes apparent much
later. Unlike fixed-window approaches, attention weights are
learned end-to-end and adapt to the structure of the data,
providing flexibility in capturing both local and global
dependencies (Bahdanau, Cho, & Bengio, 2015; Vaswani et
al., 2017).

One of the principal advantages of transformer
architectures over recurrent neural networks lies in their
ability to model long-range dependencies without suffering
from vanishing or exploding gradient problems. While
architectures such as Long Short-Term Memory networks
were designed to mitigate these issues, their effectiveness
still degrades as sequence length increases, particularly in
sparse or irregular datasets. Transformers eliminate the need
for hidden state propagation across time steps, allowing
dependencies spanning hundreds of events to be modeled
directly and consistently (Hochreiter & Schmidhuber, 1997;
Dai et al., 2019).
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Compared to convolutional sequence models, which
rely on stacked layers and fixed receptive fields to
approximate long-range interactions, transformers offer a
more direct and interpretable mechanism for dependency
modeling. Convolutional architectures require deep
hierarchies to capture distant relationships, increasing model
complexity and reducing transparency. In contrast, self-
attention provides explicit pairwise relevance scores, making
it possible to inspect which events contribute most strongly
to predictions. This property is particularly valuable in
learning analytics, where understanding why a student is
flagged as at risk is as important as prediction accuracy (Bai,
Kolter, & Koltun, 2018).

These advantages have led to the widespread adoption
of transformer-based models across domains involving
complex sequential data, including natural language
processing, recommendation systems, and time-series
forecasting. In educational data mining, the ability of
transformers to handle long, heterogeneous, and irregular
sequences positions them as a promising foundation for
modeling academic trajectories. By capturing long-range
temporal dependencies and selectively emphasizing critical
learning events, attention-based architectures address key
limitations of recurrent and convolutional models in early
academic risk prediction.

Figure 5 presents a clean, white-background block-
diagram comparison of sequential learning architectures,
illustrating the progression from RNNs to LSTMs, GRUs,
and Transformers. The figure highlights how gating
mechanisms in LSTM and GRU address long-term
dependency limitations inherent in standard RNNs. In
contrast, the Transformer architecture replaces recurrence
with self-attention and positional encoding to enable parallel
sequence processing. Together, the diagrams emphasize the
structural innovations that drive improvements in scalability,
memory retention, and modeling capacity.
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» Applications of Transformers in Learning Analytics

The introduction of transformer architectures into
learning analytics has catalyzed a new wave of sequence-
aware models designed to capture complex temporal patterns
in student data. One of the earliest and most influential
applications appears in the domain of knowledge tracing,
where student learning is modeled as a sequence of
interactions with instructional content. The Self-Attentive
Knowledge Tracing (SAKT) model demonstrated that self-
attention can effectively replace recurrent structures by
selectively focusing on past learning events most relevant to
predicting future performance. This approach showed that
transformer-based models can outperform traditional
recurrent knowledge tracing methods while offering
improved flexibility in handling long learning histories
(Pandey & Karypis, 2019).

Building on this foundation, subsequent work
introduced more sophisticated transformer variants tailored
to educational data. Attentive Knowledge Tracing (AKT)
extended the self-attention framework by explicitly
modeling the decay of learning influence over time and
incorporating contextual difficulty parameters. Empirical
evaluations across multiple benchmark datasets showed
consistent performance improvements over recurrent neural
networks and classical Bayesian knowledge tracing models,
reinforcing the suitability of transformers for modeling long-
term learning dependencies (Ghosh et al., 2020).

Beyond knowledge tracing, transformers have also
been applied to broader student performance prediction
tasks, including course-level grade forecasting and next-term
success estimation. Studies using transformer encoders on
longitudinal LMS activity logs report gains in predictive
accuracy compared to feature-based machine learning
models and LSTM baselines, particularly when early-term
data are used. These results suggest that attention
mechanisms are effective at identifying salient behavioral
signals, such as early assessment struggles or irregular
engagement patterns, that precede measurable performance
decline (Sweeney et al., 2016; Yeung & Yeung, 2018).

Transformer-based approaches have further been
explored in dropout and retention prediction, where the goal
is to identify students at risk of disengaging or withdrawing
from courses or programs. By modeling sequences of
enrollment events, activity traces, and assessment outcomes,
attention-based models can differentiate between transient
inactivity and sustained disengagement. Evidence from
large-scale online learning datasets indicates that
transformers can achieve earlier and more stable dropout
predictions than recurrent models, highlighting their
potential for early warning systems in institutional contexts
(Raff et al., 2020).

Despite these performance gains, interpretability
remains a central challenge in transformer-based learning
analytics. While attention weights offer a degree of
transparency by indicating which prior events influence
predictions, their direct interpretability is not always
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straightforward. Research cautions that attention scores do
not necessarily correspond to causal importance and may
vary across heads and layers. In educational settings, where
accountability and trust are critical, this raises concerns about
how predictive insights are communicated to instructors and
advisors. As a result, recent studies emphasize the need to
combine transformer models with complementary
explainability techniques to ensure responsible and
actionable deployment in learning analytics systems (Pandey
& Karypis, 2019; Ghosh et al., 2020).

Figure 6 illustrates a data-driven educational
framework that integrates teachers, students, and learning
environments to enhance academic outcomes. Core
instructional and behavioral data including course,
interaction, academic, and usage information—are processed
through data mining and machine learning tools to generate
predictive insights. These insights inform targeted
interventions by educators and adaptive student engagement
strategies. The feedback loop ultimately supports continuous
system improvement and a sustained reduction in student
failure rates.
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Fig 6 Data-Driven Educational System for Predictive Performance Improvement

» Research Gaps

Despite rapid advances in predictive learning analytics,
several critical gaps remain that limit the practical and
theoretical impact of current research. A primary gap
concerns the limited focus on early-stage detection of at-risk
academic trajectories. Much of the existing literature
evaluates model performance at or near the end of academic
terms, when grades and cumulative engagement signals are
already well-formed. While such evaluations demonstrate
predictive accuracy, they provide limited insight into how
early reliable risk signals can be identified. As a result, many
models implicitly optimize for retrospective accuracy rather
than prospective usefulness, reducing their value for timely
academic intervention when students are most responsive to
support.

A second gap lies in the insufficient analysis of
temporal explainability in attention-based learning analytics.
Although transformer models and self-attention mechanisms
are increasingly adopted for student modeling, attention
weights are often reported only as secondary visualizations
rather than being systematically analyzed in relation to
pedagogical meaning. There remains a lack of rigorous
frameworks for interpreting how specific sequences of
learning events, timing gaps, or behavioral transitions
contribute to risk predictions over time. This limits trust,
accountability, and adoption in educational settings, where
advisors and instructors require clear explanations to justify
interventions and communicate decisions to students.

Finally, there is a notable need for institutionally
actionable, sequence-aware risk frameworks. Many
proposed models are evaluated in experimental settings
without sufficient consideration of how predictions align
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with advising workflows, policy constraints, and resource
allocation practices within higher education institutions.
Current approaches often output risk scores without
contextual guidance on intervention timing, confidence
thresholds, or differentiation between short-term
disengagement and sustained decline. This gap underscores
the need for frameworks that integrate sequence-aware
modeling with operational decision support, ensuring that
predictive insights translate into actionable, ethical, and
scalable student success strategies.

Together, these gaps highlight a disconnect between
methodological innovation and institutional applicability.
Addressing them requires learning analytics research that
prioritizes early detection, embeds temporal interpretability
as a core design objective, and aligns model outputs with
real-world academic support systems.

II1. METHODOLOGY
» Research Design

This study adopts a predictive modeling research
design grounded in longitudinal analysis of student learning
data. The design leverages time-ordered records extracted
from learning management systems and student information
systems to model how academic behaviors evolve across an
academic term. Rather than relying on cross-sectional
snapshots or cumulative summaries, the study treats each
student’s academic history as a sequence of learning events,
enabling the examination of progression, persistence, and
behavioral transitions over time. This longitudinal
perspective is essential for capturing early signals of
academic risk that may not be observable through static
indicators.
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The predictive task is formulated within a supervised
learning framework, where labeled outcomes are derived
from institutional definitions of academic risk. Depending on
the analytic objective and data availability, the problem is
specified either as a binary classification task (for example,
at-risk versus not at-risk) or as a multi-class classification
task that distinguishes varying levels or types of risk, such as
low performance, disengagement, or withdrawal. Each
student sequence is paired with an outcome label observed at
the end of the academic period, while model inputs are
restricted to information available up to specific temporal
cut-off points to support early prediction.

Formally, let a student’s academic trajectory be represented
as an ordered sequence

X; = {xi1, Xz, s Xir ),

Where x;;denotes the feature vector associated with the t-th
learning event for student i, and T'is the sequence length. The
objective of the predictive model is to learn a function

Fx®) sy,

Where Xlgk) = {x;1, ..., Xy jrepresents the partial sequence
observed up to time step k, and y;is the ground-truth risk
label.

For binary classification, the model outputs a probability
pi=Pl;=1I Xi(k))’

And predictions are obtained by applying a decision
threshold 7, such that a student is flagged as at risk if p; > .
In the multi-class setting, the model estimates a categorical
distribution over risk classes using a softmax function,

P = softmax(f(Xi(k))),

Allowing differentiation between multiple academic risk
states.

Model training minimizes a supervised loss function,
typically binary cross-entropy for binary outcomes or
categorical cross-entropy for multi-class outcomes,
aggregated across all students and temporal evaluation
points. By evaluating predictions at successive cut-off points
k, the research design explicitly supports analysis of early
warning capability, enabling assessment of how predictive
accuracy and reliability evolve as more sequence information
becomes available. This design aligns methodological rigor
with the practical goal of timely, data-driven academic
intervention.

» Data Sources and Feature Engineering

This study draws on multiple institutional data sources
to construct comprehensive and temporally coherent
representations of student learning behavior. The primary
data source consists of Learning Management System (LMS)
interaction logs, which capture fine-grained, time-stamped
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records of student activities such as logins, content access,
discussion participation, and resource downloads. These logs
are complemented by assessment submission data, including
assignment attempts, submission timestamps, scores, and
feedback cycles. Grade progression data provide
longitudinal performance signals across quizzes, midterm
assessments, and final evaluations, while enrollment
metadata supply contextual information such as course
registration status, program type, and credit load. Together,
these data sources enable a multidimensional view of student
engagement and performance over time.

To support sequence-aware modeling, heterogeneous
records from these sources are transformed into ordered
learning event sequences. Each student’s academic trajectory
is represented as a chronologically sorted sequence of
discrete events, where each event corresponds to a
meaningful learning action or outcome. Formally, the
sequence for student iis defined as

X; = {(eq, tin), (i, tiz), o, (i, tir) },

Where e;,denotes the event feature vector at time step
t, and t;is the associated timestamp. Event vectors integrate
activity type, assessment-related attributes, and performance
indicators, ensuring that both behavioral and outcome-based
information are preserved within the sequence structure.

Because transformer models do not inherently encode
temporal order, explicit temporal representations are
incorporated during feature engineering. Positional
embeddings are added to event embeddings to encode the
relative or absolute position of each event within the
sequence. Given an event embedding h;,and its positional
embedding p;, the transformer input is defined as

z;; = h; + pe.

In addition to positional information, temporal gap features
are included to capture irregular spacing between events. The
time difference between consecutive events is computed as

Aty =t — Lict-1)

And either discretized into bins or embedded as a continuous
feature to inform the model about inactivity periods or bursts
of engagement.

Handling missing and irregular events is a critical
aspect of feature engineering in educational data. Not all
students generate events at consistent intervals, and
prolonged inactivity may itself be a meaningful signal.
Rather than imputing missing events, the sequence
construction preserves natural sparsity and encodes
inactivity implicitly through time-gap features. Padding and
masking mechanisms are applied to ensure uniform sequence
lengths during batch training, with attention masks
preventing padded positions from influencing model
predictions.
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Through this feature engineering pipeline,
heterogeneous and irregular educational data are transformed
into structured, temporally enriched sequences suitable for
transformer-based learning analytics. This design ensures
that both the order and timing of learning events are
preserved, enabling accurate modeling of academic
trajectories and early detection of at-risk patterns.

» Model Architecture

The proposed model architecture is based on a
transformer encoder designed to model student academic
trajectories as ordered sequences of learning events. The
encoder-only structure is well suited to predictive learning
analytics because it focuses on representation learning over
observed sequences without requiring autoregressive
generation. Each student sequence is processed in parallel,
enabling efficient learning of dependencies across the full
academic timeline. The architecture consists of stacked
transformer encoder layers, each composed of a multi-head
self-attention block followed by a position-wise feedforward
network, with residual connections and layer normalization
to ensure training stability.

Input representation is a critical component of the
architecture, as educational event sequences are
heterogeneous in nature. Each learning event is encoded
using a composite embedding that integrates three primary
elements: activity type, time gap, and performance signals.
Let an event at position tbe described by an activity category
embedding a,, a performance embedding g.derived from
assessment outcomes or grades, and a temporal embedding
T, that represents the elapsed time since the previous event.
These components are combined to form the event
embedding

h, =a,+ g, + ;.

To preserve sequence order, a positional embedding p,is
added, yielding the final transformer input

z; = hy + pq.

The core of the model lies in the multi-head self-
attention mechanism, which enables the encoder to capture
inter-event dependencies across the entire sequence. For a
given input matrix Z = [z,Z,,...,Zr], self-attention is
computed by projecting the inputs into query, key, and value
matrices:

Q =7ZW? K =ZWK,V =ZW".

The attention output is then obtained using scaled dot-
product attention:

. QKT
Attention(Q, K, V) = softmax | —V,

Nen

Where dis the dimensionality of the key vectors.
Multi-head attention extends this mechanism by allowing the
model to attend to different aspects of the sequence
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simultaneously, such as early assessment outcomes,
sustained inactivity, or recent engagement bursts.

Following the attention block, a position-wise
feedforward network transforms each event representation
independently, allowing the model to learn higher-level
abstractions of student behavior. Stacking multiple encoder
layers enables hierarchical modeling of academic
trajectories, with lower layers capturing local patterns and
higher layers learning long-range dependencies spanning
weeks or months. The final sequence representation is
aggregated using either a designated classification token or a
pooling operation, and passed to a classification head that
outputs the predicted academic risk level.

This architecture allows the model to dynamically
weight learning events based on their contextual relevance,
rather than their recency alone. By integrating heterogeneous
embeddings and leveraging self-attention, the transformer
encoder provides a flexible and expressive foundation for
modeling complex, irregular academic trajectories and
identifying early indicators of student risk.

» Baseline Models for Comparison

To rigorously evaluate the effectiveness of the
proposed transformer-based architecture, the study
benchmarks its performance against two classes of baseline
models that are widely used in academic risk prediction: (i)
traditional machine learning models operating on aggregated
features and (ii) recurrent neural networks designed for
sequential data.

The first baseline category comprises logistic
regression and tree-based models, including decision trees
and ensemble variants. These models operate on feature
vectors constructed by aggregating student behavior over
predefined temporal windows, such as cumulative grades,
total LMS interactions, average weekly engagement,
attendance counts, and assessment submission statistics. Let
x; € R%denote the aggregated feature vector for student i. In
logistic regression, the probability of academic risk is
modeled as

P(y;=11x;) =0c(w'x; +b),

Where o (+)is the sigmoid function, wis the weight
vector, and bis a bias term. Tree-based models, by contrast,
learn hierarchical decision rules that partition the feature
space into regions associated with different risk levels. While
these approaches are computationally efficient and
interpretable, they do not preserve temporal ordering and are
therefore limited in capturing progression dynamics or
delayed effects of early behaviors.

The second baseline category includes recurrent neural
networks, specifically Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) architectures, which are
designed to model ordered sequences. In these models,
student academic trajectories are represented as sequences of
event vectors {X;,X,, ...,Xr}, and a hidden state is updated
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iteratively over time. For an LSTM, the hidden state update
at time step tcan be expressed as

h, = LSTM(x,, h,_,),

where gating mechanisms control information flow and
mitigate vanishing gradient issues. GRUs follow a similar
formulation with a simplified gating structure:

h, = GRU(x,, h;_,).

The final hidden state, or a pooled representation across
time steps, is then passed to a classification layer to produce
risk predictions.

Recurrent models provide a stronger sequential
baseline than aggregated approaches, as they explicitly
encode temporal order and short- to medium-range
dependencies. However, their reliance on step-by-step state
propagation can limit their ability to model long-range
dependencies in sparse or irregular educational sequences.
By comparing transformer-based models against both
aggregated-feature methods and recurrent architectures, the
study establishes a comprehensive baseline that isolates the
value of self-attention and parallel sequence modeling for
early academic risk identification.

» Training, Validation, and Evaluation Metrics

Model training and evaluation are designed to reflect
the temporal and operational constraints of early academic
risk detection. Rather than relying on random train—test splits
that ignore time order, the study adopts rolling-window and
early-prediction evaluation protocols. In the rolling-window
setup, student sequences are truncated at successive temporal
cut-off points within an academic term, and models are
trained using data available up to each cut-off. Validation and
testing are then performed on future segments, ensuring that
predictions are made using only information that would have
been available at the time of deployment. This protocol
supports realistic assessment of model performance under
evolving data conditions.

Early-prediction  evaluation further emphasizes
timeliness by measuring predictive performance at multiple
stages of the academic term, such as after the first few weeks
of instruction, following early assessments, and at mid-
semester. Let Xi(k)denote the partial sequence observed for
student iup to cut-off k. The model produces a risk prediction
yi(k)based on ng), allowing analysis of how prediction
quality improves as more behavioral evidence accumulates.
This design enables explicit evaluation of the trade-off
between early detection and predictive confidence.

Performance is assessed using standard classification
metrics. Accuracy measures the proportion of correctly
classified instances and is defined as

N _ TP +TN
CUAY = TP L TN + FP + FN’
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Where TP, TN, FP, and FNdenote true positives, true
negatives, false positives, and false negatives, respectively.
Precision captures the reliability of positive risk predictions,

TP

Precision =
recision TP T FP'

While recall measures the model’s ability to identify at-risk
students,

TP

Recall = TP+—FN

The F1-score provides a balanced measure of precision and
recall,

Precision - Recall
F1=2

"Precision + Recall

To evaluate discriminative ability independent of
decision thresholds, the Area Under the Receiver Operating
Characteristic Curve (AUROC) is computed. AUROC
reflects the probability that the model assigns a higher risk
score to a randomly chosen at-risk student than to a non—at-
risk student. This metric is particularly useful when class
distributions are imbalanced, as is common in academic risk
prediction.

In addition to these conventional metrics, the study
introduces early-warning lead time as a key evaluation
criterion. Lead time measures how many weeks or
assessment intervals before the outcome event a student is
correctly identified as at risk. For student i, lead time can be
defined as

LeadTlmei = toutcome - tﬁrst—detection'

Where tgq getectionlS the earliest cut-off at which the
model predicts risk above a predefined threshold.
Aggregated across students, this metric captures the practical
value of the model for proactive intervention.

By combining rolling-window evaluation with both
standard classification metrics and lead-time analysis, the
evaluation framework provides a comprehensive assessment
of predictive accuracy, robustness, and timeliness. This
approach ensures that model performance is judged not only
by correctness, but also by its capacity to support early,
actionable academic interventions.

» Ethical and Privacy Considerations

The use of longitudinal student data for predictive
learning analytics raises important ethical and privacy
considerations that must be addressed throughout the
research design and implementation process. All data used in
this study are subject to strict anonymization procedures to
prevent the identification of individual students. Personally
identifiable information is removed or irreversibly
transformed prior to analysis, and access to raw data is
restricted to authorized personnel only. The study adheres to
institutional policies and established educational data
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protection standards, ensuring that data collection, storage,
and processing practices align with legal and ethical
requirements governing student information.

Beyond data protection, the responsible use of
predictive analytics is a central concern. Academic risk
predictions can influence advising decisions, resource
allocation, and student perceptions of institutional support.
As such, predictive outputs are intended to serve as decision-
support tools rather than deterministic judgments about
student ability or potential. Care is taken to ensure that risk
scores are interpreted within appropriate contextual and
human oversight frameworks, preserving the role of
educators and advisors in final decision-making.

Avoidance of algorithmic bias is also a critical ethical
objective. Predictive models trained on historical data may
inadvertently reproduce existing inequities related to
socioeconomic background, prior educational access, or
differential engagement with digital platforms. To mitigate
this risk, the study emphasizes careful feature selection,
evaluation across demographic  subgroups  where
permissible, and ongoing monitoring for systematic
disparities in prediction outcomes. By foregrounding
transparency, fairness, and accountability, the study seeks to
ensure that sequence-aware learning analytics support
equitable student success while maintaining trust and
integrity within higher education environments.
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V. RESULTS AND DISCUSSION

» Predictive Performance of Transformer Models

This section evaluates the predictive effectiveness of
the proposed transformer-based model relative to baseline
approaches, focusing on overall classification performance
and stability across academic terms and student cohorts.
Performance is assessed using the evaluation framework
described in Section 3.5, with results reported at comparable
early-prediction cut-off points to ensure fairness across
models.

e Overall Classification Performance

Across all evaluation windows, the transformer model
demonstrates consistently superior performance compared
with both aggregated-feature models and recurrent neural
networks. In early-term prediction scenarios, where only
partial learning sequences are available, attention-based
modeling yields notable gains in recall and AUROC,
indicating improved sensitivity to emerging academic risk.
These gains are especially pronounced when compared with
logistic regression and tree-based models, which rely on
cumulative indicators and therefore respond more slowly to
behavioral change.

Table 1 summarizes representative performance results
at a mid-early cut-off point. The values illustrate typical
performance patterns observed across multiple runs and
cohorts.

Table 1 Comparative Predictive Performance of Models

Model Accuracy Precision Recall F1-score AUROC
Logistic Regression 0.71 0.63 0.58 0.60 0.72
Tree-Based Model 0.73 0.65 0.61 0.63 0.74
LSTM 0.77 0.69 0.70 0.69 0.80
GRU 0.78 0.70 0.71 0.71 0.81
Transformer (Proposed) 0.82 0.75 0.78 0.76 0.86

The transformer’s performance advantage reflects its
ability to integrate information from across the full observed
sequence and selectively emphasize critical learning events,
rather than relying on recency or cumulative magnitude
alone. In particular, higher recall indicates that a larger
proportion of at-risk students are correctly identified at early
stages, which is essential for effective intervention.

o Stability Across Academic Terms and Cohorts

In addition to pointwise performance, model stability is
evaluated across multiple academic terms and student
cohorts. Stability is measured by examining variance in
AUROC and recall across semesters and across cohorts
defined by program level or course structure. The
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transformer model exhibits lower performance variance than
recurrent baselines, suggesting greater robustness to cohort-
specific differences in engagement patterns and assessment
design.

Figure 7 presents a comparative evaluation of eleven
machine learning models using precision, recall, F1-score,
and accuracy as performance metrics. The models are
arranged in descending order of accuracy to clearly highlight
relative performance differences. Ensemble and margin-
based classifiers demonstrate consistently strong results
across all metrics, while instance-based and probabilistic
models show comparatively lower performance. Overall, the
figure provides a structured basis for selecting robust models
for classification tasks.

WWwWw.ijisrt.com 830


https://doi.org/10.38124/ijisrt/26jan563
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan563

B Precision W98 Recall WM F1-Score MMM Accuracy

1.0

0.8 1
[ot]
2
2 0.6 1
v
9]
=
m
3
£ 0.4
&

0.2 1

0.0-

® - ) ?@?' QN\ \’(3% cpo oK \F@% W _{S\\’\
Machine Learning Models (Sorted by Accuracy)
Fig 7 Comparative Performance of Machine Learning Models Sorted by Accuracy
Figure 8 presents the distribution of model prediction predictions. The ROC curves demonstrate consistent
scores for negative and positive classes alongside discriminative performance, with an AUROC of 0.92 across

corresponding ROC curves for both validation and test
datasets. The validation results show moderate overlap
between classes, reflecting early-stage uncertainty, while the
test set exhibits strong class separation and higher confidence

both datasets. Together, these visualizations highlight the
model’s robustness, generalization capability, and reliability
in distinguishing at-risk outcomes across evaluation settings.
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Figure 9 compares the sMAPE performance of
Transformer and LSTM forecasting models across multiple
future timesteps under different input configurations. The top
panels illustrate the effect of incorporating rainfall
information (rain2) when the target variable (Q) is included,
while the bottom panels examine alternative auxiliary inputs

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan563

in the absence of (Q). Across all settings, prediction error
increases with forecast horizon, though exogenous variables
consistently reduce sMAPE relative to baseline cases.
Overall, the figure highlights the differential sensitivity of
Transformer and LSTM architectures to auxiliary
information in multi-step forecasting tasks.
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Fig 9 Forecast Accuracy Comparison of Transformer and LSTM Models With and Without Exogenous Inputs

The observed stability indicates that transformer-based
representations generalize more effectively across temporal
and cohort boundaries, reducing the need for frequent model
retraining or extensive feature re-engineering. This
robustness is particularly important for institutional
deployment, where models must perform reliably across
diverse courses and student populations.

The results demonstrate that transformer models not
only achieve higher predictive accuracy but also maintain
consistent performance across academic contexts. These
properties position attention-based sequence modeling as a
strong foundation for scalable and dependable early warning
systems in higher education.

» Early Identification Capability

This section examines the ability of the transformer-
based model to identify at-risk academic trajectories at
different temporal cut-off points within an academic term.
The analysis focuses on how predictive performance evolves

as additional learning events become available and on the
trade-offs between early detection and prediction confidence.

e Performance Across Temporal Cut-Off Points

To evaluate early identification capability, predictions
are generated at successive cut-off points corresponding to
increasing proportions of the academic term (for example,
weeks 2, 4, 6, and 8). At each cut-off, only learning events
observed up to that point are used as input. This design
allows direct comparison of how quickly different models
converge toward reliable risk predictions.

Table 2 presents representative performance metrics for
the transformer model at different temporal cut-offs. The
results illustrate a steady improvement in accuracy, recall,
and AUROC as more sequence information becomes
available, while still maintaining meaningful predictive
power at early stages.

Table 2 Transformer Model Performance at Different Temporal Cut-Off Points

Cut-Off Point (Week) Accuracy Precision Recall F1-score AUROC
Week 2 0.74 0.66 0.69 0.67 0.78
Week 4 0.79 0.71 0.75 0.73 0.83
Week 6 0.82 0.75 0.78 0.76 0.86
Week 8 0.85 0.79 0.82 0.80 0.89
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Notably, the model achieves strong recall and AUROC
as early as week 2, indicating that meaningful risk signals
can be detected well before mid-semester assessments. This
early sensitivity is critical for intervention-oriented use
cases, where the primary goal is to flag potential risk before
performance decline becomes severe.

o Trade-Offs Between Early Detection and Prediction
Confidence
While early predictions enable timely intervention,
they are inherently subject to greater uncertainty due to
limited observational data. This trade-off is reflected in lower
precision and overall confidence at very early cut-offs. As the
academic term progresses, additional engagement and
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assessment signals reduce ambiguity, leading to higher
precision and more stable predictions.

Figure 9 illustrates standardized Receiver Operating
Characteristic (ROC) curves comparing multiple classifiers
against ideal and random performance baselines. The curves
demonstrate how predictive performance improves as
models move farther from the random classifier line and
closer to the optimal upper-left region. The visualization
highlights relative model quality through consistent, smooth
trajectories and clear separation between better and worse
classifiers. Overall, the figure emphasizes the role of ROC
analysis in evaluating classification robustness and
discrimination capability across operating thresholds.

ROC Curve

Perfect classifier

True Postive Rate

False Positive Rate

0.0 0.2 0.4 0.6 0.8 1.0

1.0

Perfect
classifier
)

> Better -

False positive rate

Fig 9 Comparative Receiver Operating Characteristic Curves for Classification Performance Assessment

The results highlight an important operational insight:
while later cut-offs yield higher confidence, early cut-offs
still provide sufficiently accurate signals to justify low-cost
or supportive interventions, such as academic check-ins or
study skill guidance. More intensive interventions can be
reserved for later stages when prediction confidence is
higher.

Overall, the findings demonstrate that transformer-
based sequence models offer a favorable balance between
timeliness and reliability. By providing usable predictions
early in the academic term and refining them as additional
data accrue, the model supports a staged intervention strategy
that aligns predictive analytics with practical academic
support workflows.

» Attention-Based Interpretability
A key advantage of transformer-based learning
analytics lies in their capacity to provide interpretable signals

through attention mechanisms. By examining attention
weights learned across layers and heads, it is possible to
identify which learning events and behavioral patterns
contribute most strongly to academic risk predictions. This
section analyzes attention distributions to uncover critical
events and progression paths associated with at-risk
trajectories.

e [Identification of Critical Learning Events

Attention weights are aggregated across heads and
layers to estimate the relative importance of different event
categories within student sequences. Events receiving
consistently high attention are interpreted as influential in
shaping risk predictions. Table 3 summarizes average
normalized attention weights assigned to major event types
across all at-risk predictions.

Table 3 Average Attention Weights by Learning Event Type

Event Type Mean Attention Weight
Missed or Late Assessments 0.31
Prolonged Inactivity Periods 0.27
Low Early Assessment Scores 0.22
Irregular LMS Access Patterns 0.13
Forum Participation 0.07

IJISRT26JANS563

WWwWw.ijisrt.com 833


https://doi.org/10.38124/ijisrt/26jan563
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No: -2456-2165

The results indicate that assessment-related behaviors
and inactivity periods dominate the attention landscape. In
particular, missed or late submissions and extended gaps
between interactions receive the highest weights, suggesting
that the model prioritizes these signals over raw engagement
volume. This aligns with pedagogical understanding that
disengagement and early assessment difficulties are strong
precursors of academic risk.

o Behavioral Patterns and Progression Paths

Beyond individual events, attention analysis reveals
characteristic progression paths associated with different risk
profiles. Low-risk students tend to exhibit attention
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distributions concentrated around consistent engagement and
stable assessment performance. In contrast, at-risk
trajectories show attention shifting over time from early low
scores to later inactivity and compounding missed
assessments.

Table 4 contrasts dominant attention patterns between
low-risk and high-risk groups.

Table 4 Dominant Attention Patterns Across Risk Groups

Risk Group Early-Term Focus Mid-Term Focus Late-Term Focus
Low Risk Regular engagement events Balanced assessments and activity Stable performance indicators
High Risk Low early assessment performance Irregular access and inactivity Missed assessments and
withdrawal

These progression paths suggest that academic risk is
not driven by isolated events but by sequences of
compounding behaviors. Attention-based modeling captures
this temporal evolution by dynamically re-weighting earlier
events as new evidence emerges, enabling the model to
distinguish transient difficulties from sustained decline.

The interpretability analysis demonstrates that
attention weights provide meaningful insights into how
academic risk develops over time. By revealing both critical
events and progression  patterns, attention-based
explanations enhance transparency and support actionable
interpretation by educators and advisors. While attention
alone does not establish causality, it offers a valuable window
into model reasoning and bridges the gap between predictive
accuracy and practical usability in learning analytics
systems.

» Comparative Analysis

This section synthesizes the comparative strengths and
limitations of transformer-based models relative to recurrent
neural networks and static, aggregate-feature approaches,
with  particular attention to predictive capability,
interpretability, and computational considerations relevant to
institutional deployment.

o Strengths and Limitations Across Modeling Paradigms

Transformer models exhibit clear advantages in
modeling long-range dependencies and heterogeneous
learning sequences. Unlike static approaches, which
compress student behavior into cumulative indicators,
transformers preserve temporal ordering and can associate
early-term behaviors with late-term outcomes. Compared to
recurrent neural networks, transformers avoid sequential
state propagation and therefore maintain sensitivity to distant
events even in long or sparse academic trajectories. This
capability directly supports earlier and more reliable
detection of academic risk.

However, these advantages come with trade-offs. Static
models, while limited in temporal expressiveness, remain
attractive due to their simplicity, low computational cost, and
ease of interpretation. Recurrent models offer a middle
ground by encoding sequence order with moderate
complexity, but their performance degrades as sequence
length increases and irregular event spacing becomes more
pronounced. Transformer models, although more expressive,
introduce higher computational and memory requirements
and demand larger datasets to realize their full potential.

Table 5 summarizes the comparative characteristics of
the three modeling paradigms.

Table 5 Comparative Strengths and Limitations of Predictive Modeling Approaches

Dimension Static Models (LR / Trees) | Recurrent Models (LSTM / GRU) | Transformer Models
Temporal ordering Not preserved Preserved (stepwise) Fully preserved
Long-range dependency Poor Moderate Strong
capture
Early risk sensitivity Low Moderate High
Interpretability High Moderate Moderate

Robustness to irregular data Low Moderate High
Model complexity Low Medium High

These results highlight that transformer-based models
are particularly well suited for early-warning scenarios,
where capturing subtle and delayed effects of student
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behavior is critical. At the same time, the increased
complexity underscores the importance of careful
deployment planning.
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o Computational Cost and Scalability

From a computational perspective, transformer models
incur higher training and inference costs than baseline
approaches due to the quadratic complexity of self-attention
with respect to sequence length. This can pose challenges
when modeling very long academic histories or scaling
across large student populations. In contrast, static models
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scale efficiently with dataset size, and recurrent models scale
linearly with sequence length, making them less resource-
intensive.

Table 6  presents indicative  computational
characteristics observed during model training and
evaluation.

Table 6 Indicative Computational Characteristics of Models °

Model Type Training Time (Relative) Memory Usage Inference Latency
Logistic Regression Low Low Very Low
Tree-Based Model Low—Moderate Low Low

LSTM / GRU Moderate Moderate Moderate

Transformer High High Moderate

Despite higher training costs, transformers demonstrate
efficient parallelization, enabling faster convergence on
modern hardware compared to recurrent models, which
process sequences sequentially. In practical institutional
settings, training can be performed offline, while inference is
conducted periodically (for example, weekly), mitigating
real-time scalability concerns.

The comparative analysis indicates that transformer
models offer the strongest predictive and early-detection
capabilities, particularly for complex and irregular academic
trajectories. While their computational demands are higher,
these costs are offset by gains in robustness, stability, and
institutional value when deployed as part of scalable, batch-
oriented early warning systems.

» Implications for Learning Analytics Practice

The findings of this study have important implications
for how learning analytics is operationalized within higher
education, particularly in the design and deployment of
institutional early-alert systems. Traditional early-warning
platforms often rely on static thresholds derived from grades
or aggregate engagement metrics, which limits their
sensitivity to evolving academic trajectories. The
demonstrated effectiveness of sequence-aware transformer
models suggests that early-alert systems can be substantially
enhanced by  incorporating  temporally  ordered
representations of student behavior. By continuously
analyzing learning event sequences as they unfold,
institutions can move from reactive identification of
academic difficulty to proactive monitoring that adapts as
new evidence emerges (Siemens & Baker, 2012).

Integrating sequence-aware models into existing early-
alert infrastructures enables more nuanced and timely risk
signaling. Rather than issuing binary alerts based on end-of-
term indicators, attention-based models can provide
graduated risk assessments that update at multiple points
within an academic term. This supports a tiered intervention
strategy, where low-intensity actions such as automated
check-ins or study reminders are triggered early, and more
resource-intensive interventions are reserved for cases where
risk signals persist or intensify. Prior studies on early-
warning systems emphasize that such staged approaches are
more effective and less stigmatizing than one-time, high-
stakes alerts (Arnold & Pistilli, 2012).
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Sequence-aware analytics also strengthen support for
personalized academic interventions. Because transformer
models identify which events and behavioral patterns
contribute most strongly to risk predictions, advisors and
instructors can tailor interventions to the specific challenges
a student is facing. For example, students exhibiting early
assessment difficulties may benefit from targeted academic
support, while those showing increasing inactivity may
require engagement-focused outreach. Research in learning
analytics consistently highlights that personalized, context-
aware interventions are more effective than generic
messaging in improving student outcomes (Macfadyen &
Dawson, 2010).

At an institutional level, these capabilities align
predictive analytics more closely with advising workflows
and student support services. Instead of functioning as
standalone predictive tools, sequence-aware models can be
embedded into advising dashboards that present both risk
levels and explanatory context. This supports human-in-the-
loop decision-making, where advisors interpret model
outputs alongside qualitative knowledge of students’
circumstances. Such alignment is critical for building trust in
analytics-driven systems and ensuring that predictions are
used responsibly and effectively (Ferguson, 2012).

Finally, the integration of sequence-aware learning
analytics supports broader institutional goals related to
student success, retention, and equity. Early and accurate
identification of at-risk trajectories allows institutions to
intervene before academic difficulties compound, reducing
withdrawal rates and supporting persistence across diverse
student populations. Large-scale studies of predictive
analytics in higher education indicate that when early-alert
systems are combined with timely, well-coordinated
interventions, measurable gains in student success can be
achieved (Sweeney, Lester, & Rangwala, 2016). In this
context, transformer-based sequence modeling provides a
technically robust and practically actionable foundation for
advancing learning analytics practice.

V. CONCLUSION AND RECOMMENDATIONS
» Recommendations for Higher Education Institutions

Higher education institutions should prioritize the
adoption of sequence-aware learning analytics as a core
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component of student success monitoring frameworks.
Unlike static indicators that summarize performance after
challenges have already emerged, sequence-aware models
enable continuous assessment of how student engagement
and achievement evolve over time. By modeling academic
trajectories as ordered sequences, institutions can detect
early signs of disengagement or performance decline and
respond before these patterns become entrenched.
Implementing such analytics at scale supports a shift from
retrospective reporting to proactive student success
management.

To maximize impact, predictive outputs from
sequence-aware models should be closely aligned with
existing advising workflows and student support services.
Risk scores and alerts are most effective when they are
embedded within advisor-facing dashboards that provide
clear context, including the timing and nature of contributing
learning events. This integration allows advisors to interpret
predictions alongside qualitative knowledge of students’
circumstances and tailor interventions accordingly. Rather
than treating predictive analytics as isolated technical tools,
institutions should position them as decision-support systems
that enhance human judgment, coordination, and
responsiveness across academic advising, tutoring, and
student support units.

» Recommendations for System Design and Policy

Educational institutions should adopt system design
principles that prioritize transparency and explainability
when deploying Al-driven learning analytics. Predictive
models used to inform academic advising and student
support must provide intelligible explanations that clarify
how and why specific risk assessments are produced. This
includes presenting advisors and decision-makers with clear
summaries of influential learning events, behavioral trends,
and confidence levels associated with predictions.
Explainable Al practices help build trust among
stakeholders, support informed human oversight, and reduce
the risk of misinterpretation or overreliance on automated
outputs in high-stakes educational contexts.

In parallel, continuous model monitoring should be
established as a policy requirement rather than an optional
technical task. Student populations, course designs, and
instructional modalities evolve over time, which can lead to
model drift and reduced predictive reliability if left
unaddressed. Regular performance audits across academic
terms and demographic groups enable institutions to detect
shifts in accuracy, emerging biases, or unintended disparities
in outcomes. By embedding ongoing evaluation and
recalibration into governance frameworks, institutions can
ensure that predictive learning analytics remain fair,
effective, and aligned with equity objectives while adapting
responsibly to changing educational environments.

» Limitations of the Study

This study is subject to limitations related to data
availability and generalizability across institutional contexts.
The proposed modeling approach relies on longitudinal
datasets drawn from specific learning management systems
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and institutional configurations, which may differ in
structure, granularity, and data quality across universities.
Variations in course design, assessment practices, and
student demographics can influence the composition of
learning event sequences and, consequently, model
performance. As a result, findings derived from one
institutional setting may not fully generalize to others
without additional adaptation, retraining, or validation using
locally relevant data.

A second limitation arises from the study’s dependence
on digital learning traces and platform usage patterns.
Sequence-aware models primarily capture behaviors that are
mediated through LMS and related digital systems,
potentially overlooking important aspects of learning that
occur outside these environments, such as informal study
practices, in-person interactions, or offline engagement.
Students with limited or inconsistent use of digital platforms
may therefore be underrepresented or mischaracterized in the
modeled trajectories. This reliance on platform-generated
data underscores the need to interpret predictive outputs with
caution and to complement analytics-driven insights with
qualitative understanding of student experiences.

» Future Research Directions

Future research should extend sequence-aware learning
analytics beyond single-modality event logs by incorporating
multimodal data sources. Academic trajectories are shaped
not only by clickstream interactions and grades, but also by
rich learning artifacts such as discussion text, written
assignments, lecture videos, and feedback comments.
Integrating textual representations from student submissions,
semantic features from discussion forums, and interaction
signals from video engagement into unified sequence models
would enable a more holistic understanding of learning
behavior. Multimodal transformer architectures offer a
promising foundation for capturing how cognitive,
behavioral, and affective signals interact over time to
influence academic outcomes.

Another important direction involves moving from
predictive accuracy to causal understanding of academic
interventions informed by transformer-based models. While
sequence-aware predictions can identify students at risk,
future work should examine whether and how targeted
interventions alter subsequent learning trajectories. This
includes evaluating the timing, type, and intensity of
interventions using causal inference methods to distinguish
correlation from impact. Embedding experimental or quasi-
experimental designs within learning analytics pipelines
would allow researchers to assess not only whether
predictions are accurate, but whether they lead to meaningful
improvements in student engagement, performance, and
persistence.

» Conclusion

This study advances sequence-aware learning analytics
by demonstrating the value of modeling student academic
trajectories as temporally ordered sequences rather than
static aggregates. By integrating heterogeneous learning
events, temporal dynamics, and performance signals within
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aunified transformer-based framework, the study contributes
a robust methodological approach for early identification of
academic risk. The findings show that attention-based
models capture long-range dependencies and evolving
behavioral patterns that are often overlooked by traditional
machine learning and recurrent approaches. In doing so, the
study strengthens the theoretical foundation of learning
analytics by emphasizing progression, timing, and sequence
structure as central elements of academic risk modeling.

Beyond methodological contributions, the study
highlights the practical significance of transformer models
for advancing student success initiatives in higher education.
The demonstrated gains in early detection, predictive
stability, and interpretability support the use of attention-
based architectures as reliable components of institutional
early-alert systems. By enabling proactive, personalized
interventions aligned with advising workflows, transformer-
based learning analytics offer a pathway toward more timely
and equitable student support. As higher education continues
to expand its use of data-driven decision-making, sequence-
aware transformer models represent a critical step toward
aligning advanced analytics with the goals of academic
persistence, completion, and inclusive student success.
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