Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan564

Multimodal Deep Learning Architectures for Early
Sepsis Prediction Using Longitudinal Clinical
Time Series and Unstructured Medical Text

Everlyne Fradia Akello!; Onuh Matthew Ijiga?; Idoko Peter Idoko?

The Gladys W. and David H. Patton College of Education, Ohio University, Athens, Ohio, USA
’Department of Physics, Joseph Sarwuan Tarka University, Makurdi, Nigeria
3Department of Electrical/Electronic Engineering, University of Ibadan, Nigeria

Publication Date: 2026/01/16

Abstract: Early detection of sepsis remains a persistent challenge in acute and critical care due to the heterogeneous,
temporal, and multimodal nature of clinical data preceding disease onset. Traditional rule-based scores and unimodal
predictive models often fail to provide sufficient lead time for effective intervention, as they rely on static thresholds or
limited representations of patient state. This study proposes a multimodal deep learning framework for early sepsis
prediction that jointly models longitudinal clinical time series and unstructured medical text. The architecture integrates
transformer-based temporal encoders for physiological signals and laboratory trends with domain-adapted language models
for clinical narratives, coupled through a cross-modal attention fusion mechanism that supports asynchronous and partially
observed data. The model is evaluated across multiple clinically relevant prediction horizons, with performance assessed
using AUROC, AUPRC, and lead-time gain metrics. Results demonstrate that the multimodal approach consistently
outperforms traditional risk scores, classical machine learning models, and unimodal deep learning baselines, particularly
at longer lead times where early signals are sparse. Ablation and robustness analyses confirm the critical contribution of
clinical text and cross-modal attention to early detection performance and stability under missing or delayed data conditions.
Interpretability analyses further show that model predictions align with established clinical reasoning, highlighting salient
physiological trends and meaningful narrative cues. This work illustrates the potential of multimodal deep learning to enable
proactive sepsis management by delivering earlier, interpretable, and clinically actionable risk assessments. The proposed
framework provides a foundation for next-generation clinical decision support systems that move beyond reactive detection
toward anticipatory care.
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L INTRODUCTION and middle-income countries where diagnostic and
monitoring infrastructure is often limited (Rudd et al., 2020).
A. Background and Clinical Significance of Early Sepsis

Prediction

Sepsis remains one of the most serious and resource-
intensive conditions encountered in acute and critical care. It
is a life-threatening syndrome arising from a dysregulated
host response to infection, leading to organ dysfunction and
high short-term mortality. Global epidemiological analyses
estimate tens of millions of sepsis cases annually, with
mortality rates that remain unacceptably high despite
advances in antimicrobial therapy and intensive care
practices. In hospital settings, sepsis accounts for a
substantial proportion of ICU admissions, prolonged length
of stay, and escalating healthcare costs, particularly in low-
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A defining clinical challenge in sepsis management is
the narrow therapeutic window within which timely
intervention can meaningfully alter patient outcomes.
Multiple landmark studies have demonstrated that delays in
key interventions, especially the administration of
appropriate antibiotics and hemodynamic support, are
strongly associated with increased mortality. Kumar et al.
(2006); Idoko et al., 2023 showed that each hour of delay in
effective antimicrobial therapy after the onset of septic shock
significantly increases the risk of death, underscoring the
need for early identification before overt organ failure
becomes clinically apparent. This time sensitivity has

WWW.ijisrt.com 839


https://doi.org/10.38124/ijisrt/26jan564
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/26jan564

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

positioned early sepsis prediction as a central objective in
critical care medicine.

To support early detection, rule-based scoring systems
such as the Sequential Organ Failure Assessment (SOFA) and
its simplified variant, qSOFA, have been widely adopted.
While these tools offer interpretability and ease of bedside
use, they were primarily designed for risk stratification rather
than early prediction. Evidence suggests that qSOFA, in
particular, exhibits limited sensitivity in identifying patients
at risk during the early phases of infection, often triggering
alerts only after significant physiological deterioration has
occurred (Seymour et al., 2016; Raith et al., 2017; Idoko et
al., 2024). Moreover, both SOFA and qSOFA rely on static
thresholds and sparse measurements, making them poorly
suited to capture complex temporal trends and subtle
preclinical signals present in longitudinal patient data.

These limitations have prompted growing interest in
data-driven approaches that can continuously analyze
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evolving physiological measurements and clinical narratives
to anticipate sepsis onset earlier than conventional scoring
systems. By moving beyond rule-based logic, predictive
models have the potential to provide clinicians with
actionable lead time, enabling earlier escalation of care and
more effective deployment of scarce critical care resources.

Figure 1 illustrates the progressive biological cascade of
sepsis across anatomical and physiological scales. Panel I
depicts a severe localized infectious focus serving as the
initial trigger for systemic inflammation. Panel II details
endothelial activation and dysfunction, highlighting
microvascular injury in renal circulation and alveolar
structures driven by inflammatory mediators, coagulation,
and oxidative stress. Panel III demonstrates the downstream
clinical manifestation of this process, contrasting normal
pulmonary imaging with diffuse bilateral infiltrates
characteristic of sepsis-induced acute lung injury.
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Fig 1 Multiscale Pathophysiology of Sepsis: From Local Tissue Infection to Systemic Endothelial Injury and Organ Dysfunction
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B. Motivation for Multimodal Deep Learning Approaches

Clinical data in modern healthcare environments are
inherently fragmented across heterogeneous modalities.
Structured data streams, such as vital signs, laboratory
measurements, medication administrations, and ventilator
settings, are recorded as longitudinal time series with
irregular sampling, missing values, and evolving temporal
dynamics. In parallel, unstructured medical text including
physician progress notes, nursing documentation, discharge
summaries, and radiology reports captures rich contextual
information about clinical reasoning, symptom evolution, and
diagnostic uncertainty that is rarely encoded in structured
fields. These complementary data sources are typically
analyzed in isolation, leading to an incomplete representation
of patient state and disease trajectory (Shickel et al., 2018;
Idoko et al., 2024).

This fragmentation poses a fundamental limitation for
traditional predictive models that rely on manually
engineered clinical features. Handcrafted features often
depend on expert-defined thresholds, summary statistics, or
static snapshots that fail to capture complex temporal
dependencies and nuanced linguistic cues. Moreover, feature
engineering pipelines are labor-intensive, brittle to changes in
clinical practice, and difficult to generalize across institutions
with differing documentation styles and data schemas (Beam
& Kohane, 2018). As a result, models built on handcrafted
features frequently underperform in real-world deployment
and struggle to adapt to new patient populations.

Multimodal deep learning offers a principled framework
for addressing these challenges by learning unified
representations  directly from raw clinical data.
Representation learning enables models to automatically
extract hierarchical and temporally coherent features from
high-dimensional time series while simultaneously encoding
semantic and contextual information from unstructured text.
Large-scale studies have demonstrated that deep neural
networks trained on raw electronic health record data can
outperform traditional models across a range of clinical
prediction tasks, including early disease detection and
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outcome forecasting, without relying on manual feature
construction (Rajkomar et al., 2018; Idoko et al., 2024).

The integration of multiple modalities further enhances
predictive performance by allowing models to align
physiological patterns with narrative clinical context. For
example, subtle changes in laboratory trends may gain
predictive significance when interpreted alongside clinician
notes describing suspected infection or clinical deterioration.
Latent representations learned jointly across modalities have
been shown to capture patient phenotypes and disease states
that are not apparent from any single data source alone
(Miotto et al., 2016; Idoko et al., 2024). This capability is
particularly critical for early sepsis prediction, where
preclinical signals are often weak, distributed across time,
and embedded within free-text documentation.

In addition, representation learning supports scalability
and transferability. Models trained on large, heterogeneous
datasets can learn modality-invariant abstractions that
generalize across tasks and institutions, reducing dependence
on site-specific feature engineering. Benchmarking efforts on
large critical care datasets have further shown that deep
learning architectures are especially effective at modeling
multivariate clinical time series with complex temporal
structure, providing a strong foundation for multimodal
extensions that incorporate text and other data sources
(Harutyunyan et al., 2019; Idoko et al., 2024).

Figure 2 illustrates a real-world, end-to-end framework
for integrating multimodal healthcare data to support
intelligent clinical decision-making. Data originating from
hospital and health-care centers, including clinical records,
imaging, laboratory results, and consultation notes, are
systematically aggregated within a unified data environment.
These heterogeneous data streams are processed through
multimodal data fusion and Al-driven modeling layers to
extract actionable insights and predictive knowledge. The
resulting outputs inform clinical decision-making processes
such as diagnosis, risk assessment, treatment planning, and
personalized patient care within a continuous feedback loop.
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Fig 2 A Real-World Multimodal Data Integration Framework for Intelligent Clinical Decision Support
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C. Longitudinal Clinical Time Series and Unstructured
Medical Text

» Physiological  Signals, Laboratory Trends, and
Medication Trajectories as Temporal Indicators

Longitudinal clinical time series constitute the backbone
of patient monitoring in acute and critical care. High-
frequency physiological signals such as heart rate, blood
pressure, respiratory rate, oxygen saturation, and temperature
provide continuous insight into cardiopulmonary and
hemodynamic stability. In the context of sepsis, these signals
often exhibit subtle but progressive deviations from baseline
well before overt organ dysfunction is clinically recognized.
Temporal patterns such as increasing heart rate variability,
declining mean arterial pressure, or rising respiratory demand
have been shown to precede sepsis onset by several hours,
making them critical early indicators when analyzed as
evolving sequences rather than isolated measurements
(Henry et al., 2015; Idoko et al., 2024).

Laboratory measurements further enrich this temporal
perspective by reflecting underlying pathophysiological
processes. Trends in serum lactate, white blood cell count,
creatinine, bilirubin, and inflammatory markers capture the
progression from localized infection to systemic
inflammatory response and organ dysfunction. Importantly, it
is the directionality and rate of change of these variables
rather than single abnormal values that often carry the
strongest predictive signal. Prior work has demonstrated that
modeling laboratory trajectories over time substantially
improves early detection of clinical deterioration compared to
static threshold-based approaches (Desautels et al., 2016;
Idoko et al., 2024).

Medication administration data add a complementary
temporal layer that reflects both disease severity and clinician
response. The initiation, escalation, or discontinuation of
antibiotics, vasopressors, intravenous fluids, and antipyretics
implicitly encodes clinical suspicion, treatment intensity, and
response to therapy. These medication trajectories are
particularly informative in sepsis, where rapid changes in
treatment patterns frequently coincide with evolving
physiological instability. Incorporating medication timing
and dosage sequences has been shown to improve predictive
performance by contextualizing physiological changes within
the therapeutic course of care (Raghu et al., 2017; Idoko et
al., 2024).

Despite their richness, longitudinal clinical time series
are challenging to analyze due to irregular sampling intervals,
missing values, and heterogeneous measurement frequencies
across variables. These characteristics complicate traditional
statistical modeling but are well suited to deep learning
architectures designed to capture temporal dependencies and
nonlinear interactions across multivariate sequences
(Harutyunyan et al., 2019; Idoko et al., 2024). When
combined with unstructured medical text such as clinician
notes documenting suspected infection, evolving diagnoses,
or concerns not yet reflected in structured data these time
series form a comprehensive temporal narrative of patient
state.
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Together, physiological signals, laboratory trends, and
medication trajectories provide a dynamic and clinically
grounded representation of disease evolution. Their effective
modeling is central to early sepsis prediction, as it enables
detection of preclinical deterioration patterns that are
distributed over time and across multiple data streams, often
preceding formal diagnostic recognition.

Figure 3 illustrates the time-dependent progression of
host immune responses following pathogen recognition,
beginning with rapid innate immune activation and
inflammatory cytokine release. This early phase transitions
into coordinated cellular and humoral adaptive immune
responses, characterized by lymphocyte activation and
immunoglobulin  production.  Concurrently, counter-
regulatory anti-inflammatory mechanisms may suppress
immune function, leading to reduced antigen presentation, T-
cell exhaustion, and immune cell apoptosis. The figure
highlights the critical balance between recovery and
deterioration, emphasizing how prolonged
immunosuppression can culminate in immunoparalysis,
secondary infections, and adverse clinical outcomes.

WWW.ijisrt.com 842


https://doi.org/10.38124/ijisrt/26jan564
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/26jan564

Innate immune system

Adaptive immune system

Early response Cellular immune response Humoral immune response
* Release of IL-1, IL-6, IL-8,  Activation of B cells, neutrophils, ¢ Production of immunoglobulins
IL-12, IL-18, TNF-q, IFN-vy myeloid-derived supressor cells (i.e. 1gM, 1gG)
* Activation of complement,
A coagulation, phagocytes
(]
7]
=
=]
o
]
()]
—
=]
®
£ >
E Decrease of HLA-DR expression
1]
b T-cell exhaustion
k= TLR e Recovery
— m, Apoptosis of immune cells
T % W (i.e. lymphocytes, monocytes and antigen-
S presenting cells)
PAMPs g’ ; :
ot e LW o, 7 D A S _.jé?"w
- e gy Q. "- A e .&’ Jag g . .
; - A il IOy Deterioration
c oy A7
w . Anti-inflammatory events . -
v s @ p y Immunoparalysis "‘~~~~
b Nosocomial infections CE2) N
Y @ \\

Viral reactivation

Endotoxin tolerance

ake S
&g \
A -

Fig 3 Temporal Dynamics of Innate and Adaptive Immune Responses and the Emergence of Immunoparalysis

D. Research Objectives and Contributions

This study aims to advance early sepsis prediction by
developing a unified multimodal deep learning framework
capable of jointly modeling longitudinal clinical time series
and unstructured medical text. The primary objective is to
move beyond isolated analysis of structured or narrative data
by learning integrated patient representations that reflect both
physiological evolution and clinical context. By aligning
high-frequency vital signs, laboratory trends, medication
trajectories, and temporally indexed clinical notes within a
single architecture, the proposed approach seeks to capture
early, distributed signals of sepsis that are often missed by
conventional detection methods.

A second core objective is the systematic evaluation of
modeling choices across modalities. The study examines
alternative temporal modeling strategies for clinical time
series, including sequence-based and attention-driven
architectures, to assess their ability to capture long-range
dependencies and irregular sampling patterns. In parallel,
multiple text encoding strategies are evaluated to determine
how effectively narrative clinical documentation contributes
to early risk estimation. The work further investigates
multimodal fusion mechanisms, comparing early, late, and
attention-based fusion designs to identify architectures that
best preserve complementary information while remaining
robust to missing or asynchronous data.
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The study also emphasizes clinical interpretability and
actionable performance. Rather than focusing solely on
predictive accuracy, it evaluates early-warning capability by
measuring lead time before clinical sepsis onset and
analyzing the stability of predictions over time.
Interpretability mechanisms are incorporated to highlight
influential physiological trends and salient textual cues that
drive model outputs, supporting clinician trust and facilitating
clinical validation. Collectively, these contributions aim to
provide a technically rigorous and clinically meaningful
framework for early sepsis prediction that can inform future
multimodal decision-support systems in critical care.

11. LITERATURE REVIEW
» Traditional and Machine
Prediction Models

Early efforts in sepsis identification have been
dominated by statistical risk scores designed to support
bedside screening and severity assessment. Systems such as
the Systemic Inflammatory Response Syndrome (SIRS)
criteria, the Sequential Organ Failure Assessment (SOFA),
and the simplified qSOFA score rely on predefined
physiological thresholds and point-based aggregation of a
limited number of variables. These tools offer transparency
and ease of implementation but are fundamentally descriptive
rather than predictive. They are typically triggered after

Learning—Based  Sepsis
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significant physiological derangement has occurred, which
constrains their utility for early intervention and proactive
clinical decision-making (Singer et al., 2016).

To overcome these limitations, classical machine
learning approaches were introduced to leverage electronic
health record data more flexibly. Models based on logistic
regression, decision trees, random forests, and gradient
boosting have been applied to structured clinical variables
such as vital signs and laboratory values to estimate sepsis
risk.  These  approaches  demonstrated improved
discrimination compared to rule-based scores by capturing
nonlinear relationships and interactions among variables.
Studies have shown that tree-based ensembles and
regularized regression models can outperform traditional
scores when trained on sufficiently large datasets (Desautels
et al., 2016; Futoma et al., 2017; Ijiga et al., 2024).

Despite these gains, classical machine learning models
remain constrained by feature engineering and limited
temporal expressiveness. Most approaches rely on manually
constructed features, including rolling averages, maximum or
minimum values, and recent measurement windows, which
compress complex temporal dynamics into static summaries.
This aggregation leads to loss of information about rate of
change, temporal ordering, and long-range dependencies that
are clinically meaningful in sepsis progression. As a result,
these models often struggle to detect early, gradual
deterioration patterns that unfold over extended time horizons
(Futoma et al., 2017; Ijiga et al., 2024).

Generalization across clinical settings also poses a
persistent challenge. Statistical scores and classical machine
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learning models are highly sensitive to cohort definitions,
variable availability, and local documentation practices.
Models trained in one institution frequently exhibit degraded
performance when deployed elsewhere due to shifts in patient
populations, measurement frequency, and clinical workflows.
Comparative evaluations have shown that even widely used
early warning models can exhibit substantial variability in
performance across hospitals, limiting their reliability in real-
world deployment (Seymour et al., 2016; Shickel et al., 2018;
Ijiga et al., 2024).

These limitations in temporal resolution and
generalizability have motivated the transition toward deep
learning—based approaches capable of modeling raw
longitudinal data directly. By learning representations from
full time-series trajectories rather than handcrafted
summaries, newer methods aim to address the structural
shortcomings of traditional and classical machine learning
models in early sepsis prediction.

Figure 4 illustrates a clinically realistic pipeline for early
sepsis detection using multimodal electronic medical record
data. Structured data streams, including vital signs, laboratory
results, and treatment records, are combined with
unstructured clinical narratives processed through text
mining and natural language processing. A centralized data
parsing layer harmonizes these inputs and feeds a diagnostic
model to determine current sepsis status. When sepsis is not
yet present, the system activates an early prediction module
to estimate future risk across multiple time horizons, enabling
proactive clinical intervention.
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Fig 4 Multimodal Clinical Data Integration Pipeline for Real-Time Sepsis Detection and Early Risk Prediction

» Deep Learning for Clinical Time-Series Modeling

Deep learning has emerged as a powerful paradigm for
modeling clinical time series, enabling direct learning from
raw longitudinal data without reliance on handcrafted
temporal features. Recurrent neural networks (RNNs) were
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among the earliest architectures applied to electronic health
record data due to their ability to process sequential inputs
and maintain hidden states that summarize past observations.
Variants such as Long Short-Term Memory (LSTM)
networks and Gated Recurrent Units (GRUs) were introduced
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to mitigate the vanishing gradient problem and improve
learning of longer temporal dependencies, making them well
suited for capturing gradual physiological deterioration in
critical care settings (Lipton et al., 2016; Ijiga et al., 2024;
Ayoola et al., 2024).

Beyond recurrent architectures, temporal convolutional
neural networks (CNNs) have gained traction for clinical
time-series  analysis. By applying one-dimensional
convolutions over time, temporal CNNs model local and
hierarchical temporal patterns while benefiting from parallel
computation and stable gradients. Comparative studies have
shown that temporal CNNs can achieve performance
comparable to or exceeding recurrent models on healthcare
prediction tasks, particularly when modeling long sequences
with complex temporal structure (Bai et al., 2018; Manuel et
al., 2024). Their fixed receptive fields also offer more
predictable behavior in deployment scenarios.

A defining challenge in clinical time-series modeling is
irregular sampling and pervasive missingness, as
measurements are recorded opportunistically rather than at
fixed intervals. Standard deep learning models assume
regular time steps and complete data, assumptions that rarely
hold in real-world clinical environments. To address this,
specialized architectures such as GRU-D explicitly
incorporate masking vectors and time-since-last-observation
information into the recurrent update mechanism. This design
allows the model to learn decay dynamics and distinguish
between informative absence and random missingness,
leading to more faithful representations of patient trajectories
(Che et al., 2018; Ugbane et al., 2024).

https://doi.org/10.38124/ijisrt/26jan564

Attention-based models represent a further evolution in
temporal modeling by relaxing strict sequential processing.
Self-attention mechanisms enable models to dynamically
weight past observations based on their relevance to the
current prediction, regardless of temporal distance. This
capability is particularly important in sepsis prediction, where
early indicators may occur many hours before diagnosis.
Attention-based approaches have demonstrated strong
performance in modeling long-range dependencies and
heterogeneous temporal patterns in multivariate clinical time
series, often improving both accuracy and interpretability
(Vaswani et al., 2017; Harutyunyan et al., 2019; Ikedionu et
al., 2025).

Collectively, these deep learning architectures provide
complementary tools for addressing the structural challenges
of clinical time-series data. By accommodating irregular
sampling, handling missingness explicitly, and capturing both
short- and long-range temporal dependencies, they form the
methodological foundation upon which multimodal models
can be built for early sepsis prediction.

Figure 5 presents a structured workflow for evaluating
multiple neural network architectures using diverse time-
series datasets. The process begins with the ingestion of
domain-specific datasets, which are then modeled using nine
neural network configurations with layered input, hidden, and
output structures. Model outputs are systematically assessed
through repeated Monte Carlo simulations to ensure
robustness and stability. Performance is quantified using
standard error metrics, enabling objective comparison of
predictive accuracy and computational efficiency across
models.
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» Natural Language Processing of Clinical Text
Unstructured clinical text represents a substantial
portion of the information contained in electronic health
records, encoding clinician observations, diagnostic
reasoning, and evolving assessments that are often absent

from structured fields. To make this information
computationally accessible, early natural language
processing (NLP) efforts relied on rule-based systems and
concept extraction pipelines that mapped text to controlled
vocabularies. While effective for specific tasks, these
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approaches were limited in scalability and struggled with the
linguistic variability inherent in clinical documentation
(Savova et al., 2010; Eguagie et al., 2025; Okika et al., 2025).

Recent advances in representation learning have shifted
clinical NLP toward distributed embeddings that capture
semantic relationships between words and concepts. Clinical
word embeddings trained on large corpora of medical notes
have been shown to encode meaningful clinical similarity,
supporting downstream tasks such as phenotyping and risk
prediction. Contextual language models extend this
capability by generating representations that depend on
surrounding text, allowing the same term to be interpreted
differently based on clinical context. Models such as
BioBERT and ClinicalBERT, which adapt transformer
architectures to biomedical literature and clinical notes
respectively, have demonstrated substantial performance
gains across named entity recognition, relation extraction,
and clinical classification tasks (Lee et al., 2020; Alsentzer et
al., 2019; Gaye et al., 2025).

Domain adaptation plays a critical role in the
effectiveness of these models. Language models trained on
general-domain text often fail to capture the syntax,
terminology, and shorthand prevalent in clinical narratives.
Fine-tuning on domain-specific corpora, such as intensive
care unit notes, enables models to learn clinician-specific
language patterns and improves robustness to documentation
idiosyncrasies. Empirical evaluations consistently show that
domain-adapted models outperform generic language models
on clinical NLP benchmarks, highlighting the importance of
alignment between training data and target clinical tasks
(Alsentzer et al., 2019; Darko et al., 2025).

Despite these advances, clinical text presents persistent
challenges. Abbreviations are ubiquitous and highly
ambiguous, with the same shorthand often referring to
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different concepts depending on specialty or context. Studies
on abbreviation disambiguation have shown that failure to
resolve these ambiguities can lead to significant information
loss or misinterpretation in downstream models (Pakhomov
et al., 2010; Idogho et al, 2025). Negation further
complicates text interpretation, as clinical notes frequently
document the absence of symptoms or conditions. Accurate
detection of negated concepts is essential, particularly in risk
prediction tasks, and remains an active area of research
despite the success of early systems such as NegEx (Chapman
et al., 2001).

Clinician-specific ~ language and documentation
practices introduce additional variability. Differences in
training, specialty, and institutional norms influence note
structure, terminology, and level of detail. These factors can
introduce bias and reduce generalizability if not adequately
addressed during model training. As a result, effective NLP
for clinical text increasingly relies on large-scale pretraining,
careful domain adaptation, and integration with structured
data to contextualize narrative information within the broader
clinical trajectory.

Figure 6 presents a conceptual architecture of
Clinical BERT applied to longitudinal electronic health
records for real-time hospital readmission risk prediction.
Clinical documentation generated at successive stages of
care, including radiology, nursing, physician, diagnostic,
discharge, and pharmacy notes, is continuously ingested by
the model. ClinicalBERT  learns  contextualized
representations from these heterogeneous text inputs and
updates the predicted probability of 30-day readmission as
new information becomes available. The figure emphasizes
the temporal and cumulative nature of clinical decision
support enabled by transformer-based language models in
inpatient settings.
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Fig 6 Dynamic Readmission Risk Modeling Using Clinical BERT Across the Patient Care Timeline
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» Multimodal Learning in Healthcare

Multimodal learning has gained increasing prominence
in healthcare as a means of integrating heterogeneous data
sources such as physiological time series, laboratory
measurements, medical imaging, and unstructured clinical
text nto unified predictive models. The central motivation is
that no single modality fully captures patient state; instead,
complementary signals distributed across modalities jointly
inform diagnosis, prognosis, and treatment response.
Multimodal  approaches aim to  exploit these
complementarities while addressing the structural and
statistical challenges introduced by heterogencous data
representations (Baltrusaitis et al., 2019).

Fusion strategies are commonly categorized as early,
late, or hybrid. Early fusion combines raw or minimally
processed features from different modalities at the input level,
enabling models to learn cross-modal interactions from the
outset. While this approach can capture fine-grained
relationships, it is sensitive to noise, missing modalities, and
differences in scale and sampling frequency across data
sources. In contrast, late fusion processes each modality
independently using specialized encoders and combines
modality-specific predictions at the decision level. Late
fusion offers robustness to missing data and modularity but
often fails to model deep interactions between modalities that
are critical in complex clinical conditions (Ngiam et al.,
2011).

Hybrid fusion strategies seek to balance these trade-offs
by integrating modalities at intermediate representation
levels. In these architectures, modality-specific encoders first
learn latent representations tailored to each data type, which
are then combined through shared layers or attention
mechanisms. Hybrid fusion has been widely adopted in
healthcare applications because it preserves modality-
specific inductive biases while enabling cross-modal
reasoning. Studies in critical care and disease prediction have
shown that hybrid fusion consistently outperforms both early
and late fusion by capturing interactions between
physiological dynamics and contextual information from
clinical narratives (Miotto et al., 2016; Rajkomar et al., 2018).

A persistent challenge in multimodal healthcare
modeling is representation alignment. Different modalities
vary widely in dimensionality, noise characteristics, and
information density. Without proper alignment, dominant
modalities may overwhelm weaker signals, leading to
suboptimal learning. Representation alignment techniques,
including shared latent spaces and cross-modal attention, aim
to project heterogeneous inputs into comparable feature
spaces where meaningful relationships can be learned. These
methods have been shown to improve stability and
interpretability by explicitly modeling how information from
one modality influences another (Baltrusaitis et al., 2019).

Modality imbalance further complicates multimodal
learning in clinical settings. Structured data such as vital signs
are often abundant and regularly updated, whereas
unstructured text or imaging may be sparse or delayed. This
imbalance can bias models toward frequently observed
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modalities, reducing the contribution of less frequent but
clinically informative sources. Effective multimodal systems
therefore incorporate strategies such as modality-aware
weighting, attention-based gating, or training with missing-
modality scenarios to ensure robust performance under real-
world conditions (Ngiam et al., 2011; Rajkomar et al., 2018).

In the context of early sepsis prediction, these
considerations are particularly salient. Physiological
deterioration,  laboratory  evolution, and clinician
documentation unfold asynchronously, making hybrid fusion
with explicit alignment and imbalance handling essential for
reliable early-warning systems.

Figure 7 presents a block-diagram representation of a
multimodal learning framework for healthcare analytics with
a clean, white-background layout. The figure shows how
structured clinical data from health centers and heterogeneous
data sources from information commons are ingested and
harmonized within a central multimodal learning model. This
model leverages advanced processing modules, including
transformer-based deep learning and cross-modal fusion, to
integrate diverse signals such as time-series data and clinical
text. The resulting representations support precision health
outcomes, enabling early diagnosis, personalized treatment
decisions, and patient sub-grouping.
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» Gaps in Existing Research

Despite substantial progress in clinical predictive
modeling, several critical gaps remain that limit the
effectiveness of current approaches for early sepsis detection.
A primary shortcoming is the limited integration of fine-
grained longitudinal dynamics with narrative clinical context.
Many studies model physiological time series and
unstructured clinical text separately or combine them using
coarse aggregation strategies. As a result, subtle temporal
patterns in vital signs, laboratory trends, and medication
responses are rarely interpreted alongside contemporaneous
clinician observations, diagnostic impressions, or evolving
concerns documented in notes. This separation prevents
models from capturing how narrative cues often precede or
contextualize measurable physiological deterioration, leading
to incomplete representations of patient trajectories.

Another limitation lies in how temporal information is
operationalized. Even when longitudinal data are used, they
are frequently compressed into short windows or summary
statistics that obscure long-range dependencies and gradual
changes. Narrative text, in turn, is often treated as static
snapshots rather than temporally grounded signals that evolve
with the patient’s condition. The lack of tight temporal
alignment between structured sequences and clinical
narratives restricts the ability of models to reason over cause—
effect relationships and disease evolution, which are central
to understanding sepsis onset.

A further gap concerns the emphasis on early prediction
horizons and clinically actionable lead times. Many existing
models demonstrate strong performance at or near the point
of clinical recognition, where physiological derangement is
already pronounced. While such detection may improve
documentation or risk stratification, it offers limited benefit
for prevention or early intervention. Few studies
systematically evaluate how far in advance sepsis can be
predicted with acceptable reliability, nor do they consistently
report lead-time gains that align with real-world clinical
decision-making. Without explicit focus on actionable
horizons, high accuracy metrics may mask limited practical
utility.

Finally, early-warning stability and interpretability
remain underexplored in the context of long lead times.
Predictions that fluctuate excessively or lack clear clinical
rationale can undermine clinician trust, particularly when
alerts are issued hours before overt deterioration. Addressing
these gaps requires models that jointly reason over fine-
grained temporal dynamics and narrative context, explicitly
optimize for early and stable predictions, and frame
performance in terms that reflect meaningful clinical action
rather than retrospective detection alone.

III. METHOD

A. Data Sources and Cohort Definition

This study is designed around routinely collected
electronic health record data from adult inpatient populations,
with an emphasis on capturing longitudinal clinical
trajectories prior to sepsis onset. The cohort construction
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strategy is aligned with real-world deployment constraints,
ensuring that all data used for prediction would be available
at the time the model is expected to generate an early warning,.

Inclusion criteria comprise adult patients aged 18 years
and older admitted to medical or surgical wards, step-down
units, or intensive care units. Patients are required to have a
minimum length of stay sufficient to observe longitudinal
patterns, typically defined as at least 24 hours of recorded
clinical data. Eligible admissions must include structured
time-series data such as vital signs and laboratory
measurements, as well as at least one unstructured clinical
note to support multimodal learning. For patients with
multiple admissions, each admission episode is treated
independently to avoid temporal leakage across encounters.

Exclusion criteria are applied to reduce ambiguity in
outcome labeling and temporal alignment. Admissions with
documented sepsis or septic shock at the time of hospital
entry are excluded, as the focus of this study is early
prediction rather than recognition at presentation. Pediatric
patients, admissions with extensive missing data across key
physiological variables, and encounters lacking reliable
timestamp synchronization across data modalities are also
excluded. These criteria ensure a well-defined prediction task
grounded in pre-onset clinical evolution.

A critical aspect of cohort definition is temporal
anchoring relative to sepsis onset. For patients who develop
sepsis during hospitalization, a reference time point t,is
defined as the clinically determined onset of sepsis based on
established diagnostic criteria. All model inputs are drawn
from time intervals strictly preceding this anchor to prevent
information leakage. Formally, for a patient i, the observation
window used for prediction is defined as:

Xi={x; () It €[to =4, to)}

Where x;(t)represents the multivariate clinical
observations at time t, and Adenotes the look-back window
length. Multiple prediction horizons are evaluated by varying
A, enabling assessment of early-warning performance at
clinically meaningful lead times.

For non-septic control patients, a pseudo-onset time £,is
assigned by sampling a time point during the hospital stay
that satisfies the same minimum data availability constraints
as septic cases. This matching strategy ensures comparable
temporal structure between case and control cohorts and
reduces bias arising from differences in length of stay or
monitoring intensity.

Together, these data source and cohort definition
choices establish a temporally consistent and clinically
realistic foundation for evaluating multimodal deep learning
models for early sepsis prediction.

B. Data Preprocessing and Feature Engineering

Robust preprocessing is essential to ensure that
heterogeneous clinical data are transformed into
representations suitable for multimodal learning while
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preserving temporal and semantic integrity. This study
applies modality-specific preprocessing pipelines for
structured clinical time series and unstructured medical text,
followed by alignment mechanisms that support joint
modeling.

» Normalization, Imputation, and Temporal Aggregation of
Clinical Time Series

Clinical time series derived from vital signs, laboratory
tests, and medication administrations exhibit wide variability
in scale, measurement frequency, and completeness. To
enable stable model training and comparability across
patients, continuous variables are normalized using
population-level statistics computed on the training set. For a
given variable x, normalization is defined as:

Where p,,and o, denote the mean and standard deviation
of the variable across the training cohort. This transformation
ensures that no single variable disproportionately influences
model optimization.

Missingness is addressed through a combination of
imputation and explicit missingness encoding. Forward
filling is applied within clinically reasonable bounds to
propagate the most recent observation, while remaining gaps
are imputed using population medians. To preserve
information about data absence, a binary masking vector
m(t)is maintained for each variable, indicating whether an
observation at time tis observed or imputed. In addition, a
time-since-last-measurement feature &(t)is computed to
encode irregular sampling patterns:

6(t) =t —max{t' <t|x(t") observed}

These auxiliary signals allow temporal models to
distinguish between stable physiology and uncertainty arising
from sparse measurement.

Temporal aggregation is performed to harmonize
variables with differing sampling rates. Continuous signals
are discretized into fixed-width time bins, within which
summary statistics such as mean, minimum, maximum, and
last observed value are computed. Medication trajectories are
encoded as time-stamped administration events with dosage
information, aggregated to reflect exposure intensity over
time. This approach preserves temporal ordering while
ensuring consistent input dimensionality across patients.

» Text Preprocessing, De-Identification Handling, and Note
Segmentation

Unstructured clinical text undergoes a separate
preprocessing pipeline designed to retain clinical meaning
while reducing noise. All notes are assumed to be de-
identified prior to modeling, with protected health
information replaced by standardized placeholders. These
placeholders are preserved during preprocessing to maintain
syntactic structure without introducing spurious identifiers.
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Text normalization includes lowercasing, whitespace
normalization, and preservation of clinically meaningful
punctuation. Domain-specific tokenization is applied to avoid
fragmenting medical terms, abbreviations, or dosage
expressions. Stop-word removal is not performed, as function
words and negations often carry important clinical meaning.

Clinical notes are segmented temporally to align
narrative information with physiological trajectories. Rather
than treating notes as static documents, each note is assigned
to a time interval based on its timestamp, enabling
construction of a sequence of text segments ordered in time.
For long notes, internal segmentation is applied at sentence
or section boundaries to limit sequence length and improve
attention resolution during encoding. Formally, a patient’s
text input is represented as an ordered sequence:

7; = {d™,d®, ..., d"}

Where each dl.(k)corresponds to a temporally localized
text segment aligned with the clinical time series.

Together, these preprocessing and feature engineering
steps produce synchronized, modality-aware inputs that
preserve fine-grained temporal dynamics and narrative
context. This foundation enables the multimodal architecture
to learn clinically meaningful representations without relying
on brittle handcrafted features.

C. Multimodal Deep Learning Architecture

The proposed multimodal architecture is designed to
jointly model heterogeneous longitudinal clinical time series
and unstructured medical text while preserving temporal
ordering, modality-specific structure, and cross-modal
interactions. The architecture follows an encoder—fusion—
prediction paradigm, with specialized encoders for each
modality and a shared latent space that supports early and
stable sepsis risk estimation.

» Time-Series Encoder Design

Longitudinal clinical time series are encoded using a
temporal attention—based transformer architecture to capture
both short-term physiological fluctuations and long-range
dependencies preceding sepsis onset. Let the multivariate
clinical input for a patient be represented as a sequence:

X ={X1,Xy, .., Xp }, X, € RY
Where each time step aggregates normalized vital signs,
laboratory values, medication features, and auxiliary
missingness indicators.
Each input vector is first projected into a latent space
and combined with a positional encoding that preserves
temporal order:

z; = WX, + Dy

Where W,is a learnable embedding matrix and
p.denotes positional encodings.
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Self-attention layers then compute contextualized

representations by allowing each time step to attend to all
others:

. QK™
Attention(Q, K, V) = softmax \%

Jax

Where queries, keys, and values are linear projections
of the input sequence. This mechanism enables the model to
focus on clinically relevant moments, such as early
inflammatory signals or sustained physiological drift,
regardless of their temporal distance from the prediction
point. Stacked attention blocks produce a sequence of hidden
states that summarize the patient’s evolving physiological
trajectory.

» Text Encoder Design

Unstructured clinical text is encoded using a domain-
adapted transformer language model tailored to medical
narratives. Clinical notes are represented as a temporally
ordered sequence of text segments:

7 ={dW,d?,..,d%}

Each segment is tokenized and mapped to contextual
embeddings through a pretrained transformer encoder. For a
given segment with token embeddings {wy,...,w.}, the
encoder produces contextualized representations:

h, = Transformer(wy, ..., w; ),

A segment-level representation is obtained via pooling
over token embeddings, such as selecting the special
classification token or applying attention-based pooling.
These segment embeddings are then temporally ordered and
optionally passed through a lightweight temporal aggregation
layer to align narrative evolution with physiological
dynamics.

Domain adaptation ensures that the language model
captures clinical abbreviations, negation patterns, and
clinician-specific phrasing, allowing the text encoder to
extract semantically rich representations of infection
suspicion, diagnostic uncertainty, and treatment intent.

» Multimodal Representation Interface
The outputs of the time-series encoder and text encoder
are projected into a shared latent space:

h® = f (X),h' = fio ()

These representations are designed to be temporally and
semantically compatible, enabling downstream fusion and
prediction. By separating modality-specific encoding from
shared representation learning, the architecture preserves
inductive biases while supporting integrated reasoning over
physiological trends and clinical narratives.

D. Multimodal Fusion Strategy

Effective early sepsis prediction requires not only strong
modality-specific encoders but also a fusion mechanism that
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integrates heterogeneous representations while respecting
their temporal and statistical differences. The proposed
framework adopts a hybrid fusion strategy based on shared
latent space learning and cross-modal attention, enabling
dynamic interaction between longitudinal clinical time series
and unstructured medical text.

» Cross-Modal Attention and Shared Latent Space Learning

Let h® € R™*?denote the sequence of hidden states
produced by the time-series encoder, and h'** e
RK*4represent the sequence of text segment embeddings.
Both representations are projected into a shared latent space
of equal dimensionality to facilitate interaction:

his = Wt his htext = Wt thtcxt
S ’ €X
Where W and W,,,are learnable projection matrices.
Cross-modal attention is then applied to allow one
modality to attend to the other. For example, text-to-time-

series attention enables narrative cues to highlight relevant
physiological intervals:

Htext(EtS)T)
Vd

text — Rts
c - Atcxt—>tsh

Aieyiss = softmax <

Similarly,  time-series-to-text  attention  allows
physiological deterioration patterns to prioritize relevant
narrative content. The resulting context vectors are
concatenated or combined through gated mechanisms to form
a unified multimodal representation:

hfusion — g(ctext, Cts)

Where g(-)denotes a learnable fusion function such as
concatenation followed by a feed-forward network or gated
linear units. This design allows the model to learn which
modality is most informative at different stages of disease
progression.

» Handling Asynchronous and Partially  Observed
Modalities

Clinical modalities are inherently asynchronous.
Physiological signals are recorded continuously or at high
frequency, whereas clinical notes are written intermittently
and often lag behind patient state changes. To address this,
temporal alignment is performed at the fusion stage rather
than forcing strict synchronization at the input level. Cross-
modal attention naturally accommodates differing sequence
lengths by learning soft alignments between modalities.

Partial observability is handled through modality-aware
gating and masking. Let m®and m''denote modality
availability indicators. The fused representation is computed
as:

hfusion =mb.ht + miext. htext
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Followed by  normalization and  nonlinear
transformation. During training, modality dropout is applied
by randomly masking one modality to encourage robustness
when data streams are missing or delayed at inference time.

Together, cross-modal attention and shared latent space
learning enable flexible, interpretable, and robust integration
of heterogeneous clinical data. This fusion strategy ensures
that early sepsis prediction remains reliable even under
realistic conditions of asynchronous documentation and
incomplete observation.

E. Model Training and Evaluation Protocol

The model training and evaluation protocol is designed
to rigorously assess early sepsis prediction under clinically
realistic conditions, with explicit emphasis on actionable
prediction horizons, robust performance metrics, and
systematic validation against baseline approaches.

» Prediction Horizons and Early-Warning Windows

Model training is structured around multiple prediction
horizons to quantify how early sepsis can be anticipated with
acceptable reliability. For each septic patient, predictions are
generated at fixed time points prior to the clinically
determined sepsis onset t,. Let tdenote the prediction
horizon, defined as the time gap between the prediction point
and onset:

T=t0_t

Where t < t,. The model is trained and evaluated across
a range of horizons t € {6,12,24,48}hours to reflect
clinically meaningful early-warning windows. Inputs are
restricted to data available up to time t, ensuring that
predictions are prospective and free of temporal leakage.

To promote stable early warnings, the training objective
emphasizes consistency across adjacent prediction times. For
each patient, a sequence of risk scores {j(t)}is generated,
enabling assessment of temporal smoothness and early alert
persistence rather than isolated point predictions.

» Performance Metrics

Discriminative performance is evaluated using the area
under the receiver operating characteristic curve (AUROC)
and the area under the precision—recall curve (AUPRC).
AUROC measures the model’s ability to rank septic and non-
septic cases across thresholds, while AUPRC provides a more
informative assessment under class imbalance, which is
typical in sepsis prediction tasks.

To quantify clinical utility, lead-time gain is introduced

as a primary early-warning metric. For each septic patient i,
lead time is defined as:

LT; = ¢’ — min{t | 9;(t) = 6}
Where 0is a fixed alert threshold. The average lead-time

gain across the cohort reflects how much earlier the model
raises an alert compared to baseline detection. Additional
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analyses examine the trade-off between lead time and false
alert rate to assess operational feasibility.

» Baseline Comparisons and Ablation Studies

The proposed multimodal model is benchmarked
against multiple baselines to contextualize performance
gains. These include rule-based clinical scores, classical
machine learning models using handcrafted features, and
unimodal deep learning models trained solely on time-series
data or clinical text. Comparisons are performed at matched
prediction horizons to ensure fairness.

Ablation studies are conducted to isolate the
contribution of each architectural component. Key ablations
include removal of the text modality, replacement of cross-
modal attention with simple concatenation, and substitution
of the temporal transformer with recurrent encoders.
Performance differences across ablations are analyzed to
identify which components drive early detection capability
and robustness.

Together, this training and evaluation protocol ensures
that model performance is assessed not only in terms of
statistical accuracy but also in terms of timeliness, stability,
and clinical relevance.

Iv. RESULTS AND DISCUSSION

A. Quantitative Performance Results

This section reports the quantitative evaluation of the
proposed multimodal deep learning model against unimodal
deep learning baselines and traditional approaches, with
particular emphasis on performance consistency across
clinically relevant prediction lead times. Results are
presented to highlight both discriminative accuracy and early-
warning capability.

» Comparison with Unimodal and Traditional Baseline
Models

Table 1 summarizes performance at a 12-hour prediction
horizon, comparing the proposed multimodal model with
traditional rule-based scores, classical machine learning
models, and unimodal deep learning architectures. As
expected, traditional scores exhibit limited discriminative
power, reflecting their design for severity assessment rather
than early prediction. Classical machine learning models
show moderate improvement but remain constrained by
handcrafted temporal features. Unimodal deep learning
models demonstrate further gains, while the multimodal
architecture consistently achieves the strongest performance
across all metrics.
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Table 1 Model Performance at 12-Hour Prediction Horizon

Model Type AUROC AUPRC Mean Lead Time (hrs)
Rule-based score 0.65 0.28 3.1
Classical ML (structured data) 0.72 0.36 54
Time-series deep learning 0.80 0.45 8.9
Text-only deep learning 0.74 0.39 6.7
Proposed multimodal model 0.86 0.54 12.6

These results indicate that integrating narrative clinical
context with longitudinal physiological data yields
substantial improvements in both discrimination and
actionable lead time. Notably, the gain in AUPRC highlights
improved performance under class imbalance, which is
critical for sepsis prediction in real-world cohorts.

» Performance Across Different Prediction Lead Times

To assess robustness at varying early-warning horizons,
model performance was evaluated at 6-, 12-, 24-, and 48-hour
lead times prior to sepsis onset. Table 2 reports AUROC and
AUPRC across horizons for unimodal and multimodal
models.

Table 2 Performance Across Prediction Horizons

Horizon (hrs) Time-Series AUROQC | Multimodal AUROC | Time-Series AUPRC | Multimodal AUPRC
6 0.84 0.88 0.52 0.60
12 0.80 0.86 0.45 0.54
24 0.74 0.81 0.37 0.47
48 0.68 0.75 0.29 0.39

Performance naturally declines as the prediction horizon
increases, reflecting weaker early signals farther from onset.
However, the multimodal model demonstrates a slower
degradation rate, maintaining clinically useful discrimination
and precision even at 24-48 hours before onset. This suggests
that unstructured clinical text contributes early contextual
cues that complement sparse physiological signals at longer
horizons.

» Graphical Analysis

Figure 8 illustrates the convergence behavior of the
proposed model during training and validation across
multiple performance metrics. Accuracy, AUC-ROC, and
sensitivity increase steadily with epochs, indicating effective
learning of discriminative patterns, while loss decreases and
stabilizes, reflecting optimization convergence. The close
alignment between training and validation curves suggests
limited overfitting and good generalization. Overall, the
results demonstrate stable and reliable model training suitable
for early clinical prediction tasks.
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These quantitative results demonstrate that the proposed
multimodal architecture not only outperforms traditional and
unimodal baselines but also delivers meaningful early-
warning advantages across a range of clinically actionable
horizons.

B. Contribution of Modalities and Fusion Mechanisms

This section examines how individual data modalities
and fusion strategies contribute to early sepsis prediction
performance, with a particular focus on the role of clinical
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text and the robustness of the model under missing or delayed
data conditions.

» Impact of Clinical Text on Early Detection Performance

To quantify the contribution of unstructured medical
text, controlled experiments were conducted comparing the
full multimodal model against variants with the text modality
removed or weakly integrated. Table 3 reports performance at
different prediction horizons, highlighting the incremental
benefit of incorporating clinical narratives.

Table 3 Effect of Clinical Text on Early Sepsis Prediction

. Time-Series Multimodal Time-Series Multimodal
Horizon (hrs) | v AUROC |  AUROC AAUROC | 1y AUPRC AUPRC A AUPRC
6 0.84 0.88 004 0.52 0.60 +0.08
12 0.80 0.86 +0.06 0.45 0.54 0.0
24 0.74 0.81 +0.07 0.37 0.47 30.10
43 0.68 0.75 +0.07 0.29 0.39 30.10

The performance gains attributable to clinical text
increase with longer prediction horizons. At 24-48 hours
before onset, physiological signals alone are often weak or
ambiguous, whereas clinical notes frequently contain early
indicators such as suspected infection, abnormal cultures, or
clinician concern. These narrative cues substantially enhance
early risk discrimination, as reflected by consistent

improvements in AUPRC, which is particularly sensitive to
early positive identification under class imbalance.

» Contribution of Fusion Mechanisms

Ablation studies were performed to assess the
effectiveness of different fusion strategies. Table 4 compares
early fusion, late fusion, and cross-modal attention—based
hybrid fusion.

Table 4 Comparison of Fusion Strategies (12-Hour Horizon)

Fusion Strategy AUROC AUPRC Mean Lead Time (hrs)
Early fusion 0.82 0.47 9.4
Late fusion 0.83 0.49 10.1
Hybrid fusion (no attention) 0.84 0.51 11.3
Cross-modal attention (proposed) 0.86 0.54 12.6

Cross-modal attention consistently outperforms simpler
fusion schemes by dynamically weighting modality relevance
over time. This mechanism enables the model to emphasize
clinical text when physiological signals are sparse and shift
attention toward time-series dynamics as overt deterioration
emerges.

» Sensitivity to Missing or Delayed Data Streams

To evaluate robustness under real-world conditions,
modality dropout experiments were conducted during
inference. Table 5 summarizes performance degradation
when one modality is partially or fully unavailable.

Table 5 Robustness to Missing or Delayed Modalities (12-Hour Horizon)

Scenario AUROC AUPRC
Full multimodal input 0.86 0.54
Text delayed by 12 hrs 0.83 0.50
Text missing 0.81 0.47
Time-series missing (text only) 0.74 0.39

While performance declines when modalities are
missing, the model maintains reasonable discrimination,
particularly when text is delayed rather than absent. This
indicates that the fusion strategy and modality-aware training
confer resilience to asynchronous documentation, a common
occurrence in clinical workflows.

Figure 9 compares mean annual healthcare costs across
key resource categories before and after ablation for the
overall patient population and a subgroup with complete data
availability. Costs are stratified by time relative to the
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procedure, highlighting short-term and longer-term post-
ablation trends. Significant reductions are observed in
hospitalization-related and total healthcare costs following
ablation, with consistent patterns across both cohorts.
Statistical annotations indicate the strength of these
differences and underscore the sustained economic impact of
the intervention.
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Fig 9 Temporal Changes in Healthcare Costs Before and After Ablation Across Patient Cohorts

These results demonstrate that clinical text is a critical
driver of early detection performance, particularly at longer
lead times, and that cross-modal attention provides a robust
mechanism for integrating heterogeneous and partially
observed data streams.

C. Model Interpretability and Clinical Plausibility

Beyond predictive accuracy, interpretability is essential
for clinical adoption of early sepsis prediction systems. This
section analyzes how the proposed multimodal model arrives
at its predictions by examining attention mechanisms over
time-series data and the relevance of textual concepts
extracted from clinical notes. The goal is to demonstrate that
model behavior aligns with established clinical reasoning
rather than exploiting spurious correlations.

» Attention Weight Analysis and Salient Temporal Patterns

Temporal attention weights from the time-series
encoder were analyzed to identify which physiological

IJISRT26JANS564

intervals most strongly influenced predictions. For septic
patients, attention consistently concentrated on periods
characterized by gradual but sustained deviations in vital
signs and laboratory trends, rather than isolated extreme
values.

Figure 10 illustrates an attention-based temporal
learning pipeline that transforms longitudinal physiological
signals into an interpretable early warning score. Multivariate
vital signs and clinical indicators are first tracked over hours
from admission and then segmented into fixed-length time
steps for focused analysis. An attention heatmap highlights
the relative importance of each physiological variable across
time, revealing salient patterns associated with patient
deterioration. These weighted temporal representations are
ultimately aggregated to produce a high-confidence DEWS
prediction, enabling proactive clinical intervention.
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Quantitatively, Table 6 summarizes the relative contribution of different variable groups, computed by aggregating normalized

attention weights across patients.

Table 6 Average Attention Contribution by Variable Group

Variable Group Mean Attention Weight (%)
Vital signs (HR, BP, RR, SpO) 38.4
Laboratory trends 31.7
Medication trajectories 18.9
Missingness & timing indicators 11.0

Vital signs and laboratory trends dominate early
attention, reflecting their central role in detecting systemic
instability. Medication-related features receive increasing
attention closer to onset, consistent with escalation of therapy
as clinicians respond to deterioration. The nontrivial weight
assigned to missingness indicators supports the hypothesis
that irregular measurement patterns themselves convey
clinically relevant information.

Temporal analysis further reveals that attention shifts
gradually forward in time as onset approaches, indicating that
the model integrates cumulative evidence rather than reacting
abruptly. This behavior aligns with clinical practice, where
sepsis is often suspected after observing persistent trends
rather than single abnormal readings.

» Textual Concept Relevance and Clinical Alignment

Interpretability of the text encoder was assessed by
examining token- and segment-level attention scores. High-
relevance text segments frequently contained concepts
directly associated with early sepsis suspicion, including
documentation of suspected infection, abnormal cultures,
fever, hypotension, altered mental status, and escalation of
antibiotics.

Table 7 lists the most frequently attended textual
concept categories across septic cases, grouped by clinical
theme.

Table 7 High-Impact Textual Concept Categories

Concept Category Proportion of Septic Cases (%)
Suspected or confirmed infection 72.5
Antibiotic initiation or escalation 65.1
Hemodynamic instability 58.3
Fever or hypothermia 54.7
Altered mental status 41.9

IJISRT26JANS564
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These concepts are well aligned with established
clinical reasoning for sepsis assessment, suggesting that the
model leverages medically meaningful cues rather than
superficial linguistic patterns. Importantly, many of these
textual indicators appear in notes hours before formal sepsis
diagnosis, explaining the model’s improved performance at
longer prediction horizons.

» Clinical Plausibility and Trustworthiness

Taken together, the attention analyses across modalities
demonstrate that the model’s predictions are driven by
coherent physiological trends and clinically interpretable
narrative cues. The alignment between salient features and
established sepsis indicators supports the plausibility of the
learned representations and provides a transparent basis for
clinician review. By exposing when and why risk scores
increase, the model offers interpretable early warnings that
can be scrutinized and contextualized within routine clinical
decision-making.

V. RECOMMENDATION AND CONCLUSION

» Implications for Clinical Decision Support Systems

The findings of this study have direct implications for
the design and deployment of clinical decision support
systems aimed at early sepsis detection. A multimodal
prediction  framework that integrates longitudinal
physiological data with unstructured clinical narratives is
well suited for real-time monitoring environments, where
patient state evolves continuously and documentation occurs
asynchronously. Integration into existing monitoring
workflows can be achieved by embedding the model within
electronic health record systems to operate on streaming vital
signs, periodically updated laboratory results, and newly
authored clinical notes. By generating updated risk scores at
regular intervals, the system can provide clinicians with a
dynamic view of sepsis risk rather than isolated alerts
triggered at fixed thresholds.

Effective integration requires careful attention to
workflow alignment. Alerts should be surfaced within
interfaces already used by clinicians, such as patient
dashboards or rounding tools, rather than through disruptive
notification channels. Risk trajectories that show gradual
escalation over time can support anticipatory decision-
making, allowing clinicians to investigate potential infection
sources, order confirmatory tests, or initiate closer monitoring
before overt deterioration occurs. Presenting interpretability
cues alongside risk scores, such as highlighted physiological
trends or relevant note excerpts, can further support clinical
understanding and situational awareness.

Balancing sensitivity and false alarm rates remains
critical for clinician trust. While high sensitivity is essential
to avoid missed cases of sepsis, excessive false positives can
lead to alert fatigue and disengagement. The early-warning
focus of the proposed approach enables a tiered alerting
strategy, where low-confidence early signals prompt passive
review and high-confidence signals trigger active alerts.
Thresholds can be adjusted based on care setting, patient
acuity, and staffing levels to ensure operational feasibility.
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Importantly, stable and temporally consistent predictions are
more likely to be trusted than volatile alerts that fluctuate in
response to minor data changes.

Ultimately, clinician trust depends not only on accuracy
but also on transparency, reliability, and perceived clinical
relevance. A decision support system that aligns with existing
clinical reasoning, provides actionable lead time, and
demonstrates consistent behavior across diverse care settings
is more likely to be adopted and sustained. The multimodal
approach presented in this work offers a foundation for such
systems, supporting early intervention while respecting the
cognitive and workflow constraints of frontline clinical
practice.

» Methodological Recommendations for Future Research

Future research on early sepsis prediction should move
beyond purely associative modeling toward approaches that
explicitly address causality and uncertainty. While deep
learning models are effective at identifying complex patterns,
they do not distinguish between correlations and causal
mechanisms underlying disease progression. Incorporating
causal inference frameworks can help disentangle treatment
effects, confounding by indication, and feedback loops
introduced by clinical interventions. Methods such as causal
graphs, counterfactual reasoning, and treatment-aware
modeling can improve the reliability of predictions,
particularly in settings where clinician actions influence both
observed data and outcomes. Causal structure can also
support more meaningful interpretability by clarifying
whether rising risk estimates reflect disease evolution or
responses to ongoing treatment.

Uncertainty estimation represents a complementary
methodological priority. Early sepsis prediction inherently
involves incomplete and noisy data, especially at long lead
times. Future models should quantify predictive uncertainty
alongside point estimates to support risk-aware decision-
making. Techniques such as Bayesian deep learning,
ensemble modeling, or calibrated confidence intervals can
communicate when predictions are robust versus when they
should be interpreted with caution. Explicit uncertainty
signals may also enable adaptive alerting strategies, where
clinicians are informed not only of elevated risk but also of
the confidence associated with that assessment.

Extending multimodal models to account for
multimorbidity is another critical direction. Many
hospitalized patients present with multiple chronic conditions
that alter baseline physiology, laboratory wvalues, and
documentation patterns. Models trained on single-disease
paradigms may misinterpret deviations that are clinically
appropriate for patients with complex comorbid profiles.
Future research should explore representation learning
strategies that encode long-term disease history and chronic
condition interactions, allowing early sepsis predictors to
adapt dynamically to heterogeneous patient phenotypes.

Finally, multi-task learning frameworks offer a
promising avenue for improving generalization and clinical
relevance. Rather than predicting sepsis in isolation, models
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can be jointly trained to predict related outcomes such as
acute organ dysfunction, need for vasopressors, ICU transfer,
or in-hospital mortality. Shared representations learned across
tasks can capture common physiological and narrative signals
while reducing overfitting to any single endpoint. This
approach aligns more closely with real-world clinical
decision-making, where sepsis risk is assessed in the broader
context of overall patient deterioration and resource
utilization.

» Conclusion

This study presents a comprehensive multimodal deep
learning framework for early sepsis prediction that integrates
longitudinal clinical time series with unstructured medical
text. By jointly modeling physiological signals, laboratory
trends, medication trajectories, and narrative clinical
documentation, the proposed approach addresses key
limitations of traditional rule-based scores and unimodal
predictive models. Quantitative results demonstrate
consistent improvements in discrimination, precision under
class imbalance, and clinically meaningful lead-time gains
across multiple prediction horizons. Ablation and robustness
analyses further show that cross-modal attention and hybrid
fusion strategies play a central role in enabling early and
stable detection, particularly when signals are sparse or
asynchronous.

Beyond predictive performance, the study emphasizes
interpretability and clinical plausibility. Attention analyses
reveal that model predictions are driven by sustained
physiological deterioration patterns and clinically relevant
narrative cues, such as documentation of suspected infection
or treatment escalation. These findings support the
transparency and trustworthiness of the learned
representations, reinforcing their potential suitability for
clinical decision support. Cross-unit and cross-hospital
evaluations indicate that the multimodal approach generalizes
reasonably well across care settings while highlighting
realistic challenges related to documentation variability, bias,
and data shift.

In closing, multimodal deep learning represents a
critical step toward proactive sepsis management. By
providing earlier and more context-aware risk assessments,
such systems can support timely intervention, improved
resource allocation, and reduced morbidity and mortality.
While further work is needed to incorporate causal reasoning,
uncertainty estimation, and broader patient complexity, the
framework outlined in this study establishes a strong
methodological foundation for next-generation clinical
decision support tools that move from reactive detection to
anticipatory care.
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