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Abstract: Early detection of sepsis remains a persistent challenge in acute and critical care due to the heterogeneous, 

temporal, and multimodal nature of clinical data preceding disease onset. Traditional rule-based scores and unimodal 

predictive models often fail to provide sufficient lead time for effective intervention, as they rely on static thresholds or 

limited representations of patient state. This study proposes a multimodal deep learning framework for early sepsis 

prediction that jointly models longitudinal clinical time series and unstructured medical text. The architecture integrates 

transformer-based temporal encoders for physiological signals and laboratory trends with domain-adapted language models 

for clinical narratives, coupled through a cross-modal attention fusion mechanism that supports asynchronous and partially 

observed data. The model is evaluated across multiple clinically relevant prediction horizons, with performance assessed 

using AUROC, AUPRC, and lead-time gain metrics. Results demonstrate that the multimodal approach consistently 

outperforms traditional risk scores, classical machine learning models, and unimodal deep learning baselines, particularly 

at longer lead times where early signals are sparse. Ablation and robustness analyses confirm the critical contribution of 

clinical text and cross-modal attention to early detection performance and stability under missing or delayed data conditions. 

Interpretability analyses further show that model predictions align with established clinical reasoning, highlighting salient 

physiological trends and meaningful narrative cues. This work illustrates the potential of multimodal deep learning to enable 

proactive sepsis management by delivering earlier, interpretable, and clinically actionable risk assessments. The proposed 

framework provides a foundation for next-generation clinical decision support systems that move beyond reactive detection 

toward anticipatory care. 
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I. INTRODUCTION 

 

A. Background and Clinical Significance of Early Sepsis 

Prediction 

Sepsis remains one of the most serious and resource-

intensive conditions encountered in acute and critical care. It 
is a life-threatening syndrome arising from a dysregulated 

host response to infection, leading to organ dysfunction and 

high short-term mortality. Global epidemiological analyses 

estimate tens of millions of sepsis cases annually, with 

mortality rates that remain unacceptably high despite 

advances in antimicrobial therapy and intensive care 

practices. In hospital settings, sepsis accounts for a 

substantial proportion of ICU admissions, prolonged length 

of stay, and escalating healthcare costs, particularly in low- 

and middle-income countries where diagnostic and 

monitoring infrastructure is often limited (Rudd et al., 2020). 

 

A defining clinical challenge in sepsis management is 

the narrow therapeutic window within which timely 

intervention can meaningfully alter patient outcomes. 
Multiple landmark studies have demonstrated that delays in 

key interventions, especially the administration of 

appropriate antibiotics and hemodynamic support, are 

strongly associated with increased mortality. Kumar et al. 

(2006); Idoko et al., 2023 showed that each hour of delay in 

effective antimicrobial therapy after the onset of septic shock 

significantly increases the risk of death, underscoring the 

need for early identification before overt organ failure 

becomes clinically apparent. This time sensitivity has 
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positioned early sepsis prediction as a central objective in 

critical care medicine. 

 

To support early detection, rule-based scoring systems 

such as the Sequential Organ Failure Assessment (SOFA) and 

its simplified variant, qSOFA, have been widely adopted. 

While these tools offer interpretability and ease of bedside 

use, they were primarily designed for risk stratification rather 
than early prediction. Evidence suggests that qSOFA, in 

particular, exhibits limited sensitivity in identifying patients 

at risk during the early phases of infection, often triggering 

alerts only after significant physiological deterioration has 

occurred (Seymour et al., 2016; Raith et al., 2017; Idoko et 

al., 2024). Moreover, both SOFA and qSOFA rely on static 

thresholds and sparse measurements, making them poorly 

suited to capture complex temporal trends and subtle 

preclinical signals present in longitudinal patient data. 

 

These limitations have prompted growing interest in 
data-driven approaches that can continuously analyze 

evolving physiological measurements and clinical narratives 

to anticipate sepsis onset earlier than conventional scoring 

systems. By moving beyond rule-based logic, predictive 

models have the potential to provide clinicians with 

actionable lead time, enabling earlier escalation of care and 

more effective deployment of scarce critical care resources. 

 

Figure 1 illustrates the progressive biological cascade of 
sepsis across anatomical and physiological scales. Panel I 

depicts a severe localized infectious focus serving as the 

initial trigger for systemic inflammation. Panel II details 

endothelial activation and dysfunction, highlighting 

microvascular injury in renal circulation and alveolar 

structures driven by inflammatory mediators, coagulation, 

and oxidative stress. Panel III demonstrates the downstream 

clinical manifestation of this process, contrasting normal 

pulmonary imaging with diffuse bilateral infiltrates 

characteristic of sepsis-induced acute lung injury. 

 

 
Fig 1 Multiscale Pathophysiology of Sepsis: From Local Tissue Infection to Systemic Endothelial Injury and Organ Dysfunction 
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B. Motivation for Multimodal Deep Learning Approaches 

Clinical data in modern healthcare environments are 

inherently fragmented across heterogeneous modalities. 

Structured data streams, such as vital signs, laboratory 

measurements, medication administrations, and ventilator 

settings, are recorded as longitudinal time series with 

irregular sampling, missing values, and evolving temporal 

dynamics. In parallel, unstructured medical text including 
physician progress notes, nursing documentation, discharge 

summaries, and radiology reports captures rich contextual 

information about clinical reasoning, symptom evolution, and 

diagnostic uncertainty that is rarely encoded in structured 

fields. These complementary data sources are typically 

analyzed in isolation, leading to an incomplete representation 

of patient state and disease trajectory (Shickel et al., 2018; 

Idoko et al., 2024). 

 

This fragmentation poses a fundamental limitation for 

traditional predictive models that rely on manually 
engineered clinical features. Handcrafted features often 

depend on expert-defined thresholds, summary statistics, or 

static snapshots that fail to capture complex temporal 

dependencies and nuanced linguistic cues. Moreover, feature 

engineering pipelines are labor-intensive, brittle to changes in 

clinical practice, and difficult to generalize across institutions 

with differing documentation styles and data schemas (Beam 

& Kohane, 2018). As a result, models built on handcrafted 

features frequently underperform in real-world deployment 

and struggle to adapt to new patient populations. 

 

Multimodal deep learning offers a principled framework 
for addressing these challenges by learning unified 

representations directly from raw clinical data. 

Representation learning enables models to automatically 

extract hierarchical and temporally coherent features from 

high-dimensional time series while simultaneously encoding 

semantic and contextual information from unstructured text. 

Large-scale studies have demonstrated that deep neural 

networks trained on raw electronic health record data can 

outperform traditional models across a range of clinical 

prediction tasks, including early disease detection and 

outcome forecasting, without relying on manual feature 

construction (Rajkomar et al., 2018; Idoko et al., 2024). 

 

The integration of multiple modalities further enhances 

predictive performance by allowing models to align 

physiological patterns with narrative clinical context. For 

example, subtle changes in laboratory trends may gain 

predictive significance when interpreted alongside clinician 
notes describing suspected infection or clinical deterioration. 

Latent representations learned jointly across modalities have 

been shown to capture patient phenotypes and disease states 

that are not apparent from any single data source alone 

(Miotto et al., 2016; Idoko et al., 2024). This capability is 

particularly critical for early sepsis prediction, where 

preclinical signals are often weak, distributed across time, 

and embedded within free-text documentation. 

 

In addition, representation learning supports scalability 

and transferability. Models trained on large, heterogeneous 
datasets can learn modality-invariant abstractions that 

generalize across tasks and institutions, reducing dependence 

on site-specific feature engineering. Benchmarking efforts on 

large critical care datasets have further shown that deep 

learning architectures are especially effective at modeling 

multivariate clinical time series with complex temporal 

structure, providing a strong foundation for multimodal 

extensions that incorporate text and other data sources 

(Harutyunyan et al., 2019; Idoko et al., 2024). 

 

Figure 2 illustrates a real-world, end-to-end framework 

for integrating multimodal healthcare data to support 
intelligent clinical decision-making. Data originating from 

hospital and health-care centers, including clinical records, 

imaging, laboratory results, and consultation notes, are 

systematically aggregated within a unified data environment. 

These heterogeneous data streams are processed through 

multimodal data fusion and AI-driven modeling layers to 

extract actionable insights and predictive knowledge. The 

resulting outputs inform clinical decision-making processes 

such as diagnosis, risk assessment, treatment planning, and 

personalized patient care within a continuous feedback loop. 

 

 
Fig 2 A Real-World Multimodal Data Integration Framework for Intelligent Clinical Decision Support 
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C. Longitudinal Clinical Time Series and Unstructured 

Medical Text 

 

 Physiological Signals, Laboratory Trends, and 

Medication Trajectories as Temporal Indicators 

Longitudinal clinical time series constitute the backbone 

of patient monitoring in acute and critical care. High-

frequency physiological signals such as heart rate, blood 

pressure, respiratory rate, oxygen saturation, and temperature 

provide continuous insight into cardiopulmonary and 

hemodynamic stability. In the context of sepsis, these signals 

often exhibit subtle but progressive deviations from baseline 

well before overt organ dysfunction is clinically recognized. 
Temporal patterns such as increasing heart rate variability, 

declining mean arterial pressure, or rising respiratory demand 

have been shown to precede sepsis onset by several hours, 

making them critical early indicators when analyzed as 

evolving sequences rather than isolated measurements 

(Henry et al., 2015; Idoko et al., 2024). 

 

Laboratory measurements further enrich this temporal 

perspective by reflecting underlying pathophysiological 

processes. Trends in serum lactate, white blood cell count, 

creatinine, bilirubin, and inflammatory markers capture the 
progression from localized infection to systemic 

inflammatory response and organ dysfunction. Importantly, it 

is the directionality and rate of change of these variables 

rather than single abnormal values that often carry the 

strongest predictive signal. Prior work has demonstrated that 

modeling laboratory trajectories over time substantially 

improves early detection of clinical deterioration compared to 

static threshold-based approaches (Desautels et al., 2016; 

Idoko et al., 2024). 

 

Medication administration data add a complementary 

temporal layer that reflects both disease severity and clinician 
response. The initiation, escalation, or discontinuation of 

antibiotics, vasopressors, intravenous fluids, and antipyretics 

implicitly encodes clinical suspicion, treatment intensity, and 

response to therapy. These medication trajectories are 

particularly informative in sepsis, where rapid changes in 

treatment patterns frequently coincide with evolving 

physiological instability. Incorporating medication timing 

and dosage sequences has been shown to improve predictive 

performance by contextualizing physiological changes within 

the therapeutic course of care (Raghu et al., 2017; Idoko et 

al., 2024). 
 

Despite their richness, longitudinal clinical time series 

are challenging to analyze due to irregular sampling intervals, 

missing values, and heterogeneous measurement frequencies 

across variables. These characteristics complicate traditional 

statistical modeling but are well suited to deep learning 

architectures designed to capture temporal dependencies and 

nonlinear interactions across multivariate sequences 

(Harutyunyan et al., 2019; Idoko et al., 2024). When 

combined with unstructured medical text such as clinician 

notes documenting suspected infection, evolving diagnoses, 

or concerns not yet reflected in structured data these time 
series form a comprehensive temporal narrative of patient 

state. 

Together, physiological signals, laboratory trends, and 

medication trajectories provide a dynamic and clinically 

grounded representation of disease evolution. Their effective 

modeling is central to early sepsis prediction, as it enables 

detection of preclinical deterioration patterns that are 

distributed over time and across multiple data streams, often 

preceding formal diagnostic recognition. 

 
Figure 3 illustrates the time-dependent progression of 

host immune responses following pathogen recognition, 

beginning with rapid innate immune activation and 

inflammatory cytokine release. This early phase transitions 

into coordinated cellular and humoral adaptive immune 

responses, characterized by lymphocyte activation and 

immunoglobulin production. Concurrently, counter-

regulatory anti-inflammatory mechanisms may suppress 

immune function, leading to reduced antigen presentation, T-

cell exhaustion, and immune cell apoptosis. The figure 

highlights the critical balance between recovery and 
deterioration, emphasizing how prolonged 

immunosuppression can culminate in immunoparalysis, 

secondary infections, and adverse clinical outcomes. 
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Fig 3 Temporal Dynamics of Innate and Adaptive Immune Responses and the Emergence of Immunoparalysis 

 
D. Research Objectives and Contributions 

This study aims to advance early sepsis prediction by 

developing a unified multimodal deep learning framework 

capable of jointly modeling longitudinal clinical time series 

and unstructured medical text. The primary objective is to 

move beyond isolated analysis of structured or narrative data 

by learning integrated patient representations that reflect both 

physiological evolution and clinical context. By aligning 

high-frequency vital signs, laboratory trends, medication 

trajectories, and temporally indexed clinical notes within a 

single architecture, the proposed approach seeks to capture 

early, distributed signals of sepsis that are often missed by 
conventional detection methods. 

 

A second core objective is the systematic evaluation of 

modeling choices across modalities. The study examines 

alternative temporal modeling strategies for clinical time 

series, including sequence-based and attention-driven 

architectures, to assess their ability to capture long-range 

dependencies and irregular sampling patterns. In parallel, 

multiple text encoding strategies are evaluated to determine 

how effectively narrative clinical documentation contributes 

to early risk estimation. The work further investigates 
multimodal fusion mechanisms, comparing early, late, and 

attention-based fusion designs to identify architectures that 

best preserve complementary information while remaining 

robust to missing or asynchronous data. 

The study also emphasizes clinical interpretability and 

actionable performance. Rather than focusing solely on 

predictive accuracy, it evaluates early-warning capability by 

measuring lead time before clinical sepsis onset and 

analyzing the stability of predictions over time. 

Interpretability mechanisms are incorporated to highlight 

influential physiological trends and salient textual cues that 

drive model outputs, supporting clinician trust and facilitating 

clinical validation. Collectively, these contributions aim to 

provide a technically rigorous and clinically meaningful 

framework for early sepsis prediction that can inform future 

multimodal decision-support systems in critical care. 
 

II. LITERATURE REVIEW 

 

 Traditional and Machine Learning–Based Sepsis 

Prediction Models 
Early efforts in sepsis identification have been 

dominated by statistical risk scores designed to support 

bedside screening and severity assessment. Systems such as 

the Systemic Inflammatory Response Syndrome (SIRS) 

criteria, the Sequential Organ Failure Assessment (SOFA), 

and the simplified qSOFA score rely on predefined 

physiological thresholds and point-based aggregation of a 

limited number of variables. These tools offer transparency 

and ease of implementation but are fundamentally descriptive 

rather than predictive. They are typically triggered after 
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significant physiological derangement has occurred, which 

constrains their utility for early intervention and proactive 

clinical decision-making (Singer et al., 2016). 

 

To overcome these limitations, classical machine 

learning approaches were introduced to leverage electronic 

health record data more flexibly. Models based on logistic 

regression, decision trees, random forests, and gradient 
boosting have been applied to structured clinical variables 

such as vital signs and laboratory values to estimate sepsis 

risk. These approaches demonstrated improved 

discrimination compared to rule-based scores by capturing 

nonlinear relationships and interactions among variables. 

Studies have shown that tree-based ensembles and 

regularized regression models can outperform traditional 

scores when trained on sufficiently large datasets (Desautels 

et al., 2016; Futoma et al., 2017; Ijiga et al., 2024). 

 

Despite these gains, classical machine learning models 
remain constrained by feature engineering and limited 

temporal expressiveness. Most approaches rely on manually 

constructed features, including rolling averages, maximum or 

minimum values, and recent measurement windows, which 

compress complex temporal dynamics into static summaries. 

This aggregation leads to loss of information about rate of 

change, temporal ordering, and long-range dependencies that 

are clinically meaningful in sepsis progression. As a result, 

these models often struggle to detect early, gradual 

deterioration patterns that unfold over extended time horizons 

(Futoma et al., 2017; Ijiga et al., 2024). 

 
Generalization across clinical settings also poses a 

persistent challenge. Statistical scores and classical machine 

learning models are highly sensitive to cohort definitions, 

variable availability, and local documentation practices. 

Models trained in one institution frequently exhibit degraded 

performance when deployed elsewhere due to shifts in patient 

populations, measurement frequency, and clinical workflows. 

Comparative evaluations have shown that even widely used 

early warning models can exhibit substantial variability in 

performance across hospitals, limiting their reliability in real-
world deployment (Seymour et al., 2016; Shickel et al., 2018; 

Ijiga et al., 2024). 

 

These limitations in temporal resolution and 

generalizability have motivated the transition toward deep 

learning–based approaches capable of modeling raw 

longitudinal data directly. By learning representations from 

full time-series trajectories rather than handcrafted 

summaries, newer methods aim to address the structural 

shortcomings of traditional and classical machine learning 

models in early sepsis prediction. 
 

Figure 4 illustrates a clinically realistic pipeline for early 

sepsis detection using multimodal electronic medical record 

data. Structured data streams, including vital signs, laboratory 

results, and treatment records, are combined with 

unstructured clinical narratives processed through text 

mining and natural language processing. A centralized data 

parsing layer harmonizes these inputs and feeds a diagnostic 

model to determine current sepsis status. When sepsis is not 

yet present, the system activates an early prediction module 

to estimate future risk across multiple time horizons, enabling 

proactive clinical intervention. 

 

 
Fig 4 Multimodal Clinical Data Integration Pipeline for Real-Time Sepsis Detection and Early Risk Prediction 

 

 Deep Learning for Clinical Time-Series Modeling 

Deep learning has emerged as a powerful paradigm for 

modeling clinical time series, enabling direct learning from 
raw longitudinal data without reliance on handcrafted 

temporal features. Recurrent neural networks (RNNs) were 

among the earliest architectures applied to electronic health 

record data due to their ability to process sequential inputs 

and maintain hidden states that summarize past observations. 

Variants such as Long Short-Term Memory (LSTM) 

networks and Gated Recurrent Units (GRUs) were introduced 
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to mitigate the vanishing gradient problem and improve 

learning of longer temporal dependencies, making them well 

suited for capturing gradual physiological deterioration in 

critical care settings (Lipton et al., 2016; Ijiga et al., 2024; 

Ayoola et al., 2024). 

 

Beyond recurrent architectures, temporal convolutional 

neural networks (CNNs) have gained traction for clinical 
time-series analysis. By applying one-dimensional 

convolutions over time, temporal CNNs model local and 

hierarchical temporal patterns while benefiting from parallel 

computation and stable gradients. Comparative studies have 

shown that temporal CNNs can achieve performance 

comparable to or exceeding recurrent models on healthcare 

prediction tasks, particularly when modeling long sequences 

with complex temporal structure (Bai et al., 2018; Manuel et 

al., 2024). Their fixed receptive fields also offer more 

predictable behavior in deployment scenarios. 

 
A defining challenge in clinical time-series modeling is 

irregular sampling and pervasive missingness, as 

measurements are recorded opportunistically rather than at 

fixed intervals. Standard deep learning models assume 

regular time steps and complete data, assumptions that rarely 

hold in real-world clinical environments. To address this, 

specialized architectures such as GRU-D explicitly 

incorporate masking vectors and time-since-last-observation 

information into the recurrent update mechanism. This design 

allows the model to learn decay dynamics and distinguish 

between informative absence and random missingness, 

leading to more faithful representations of patient trajectories 
(Che et al., 2018; Ugbane et al., 2024). 

 

Attention-based models represent a further evolution in 

temporal modeling by relaxing strict sequential processing. 

Self-attention mechanisms enable models to dynamically 

weight past observations based on their relevance to the 

current prediction, regardless of temporal distance. This 

capability is particularly important in sepsis prediction, where 

early indicators may occur many hours before diagnosis. 

Attention-based approaches have demonstrated strong 
performance in modeling long-range dependencies and 

heterogeneous temporal patterns in multivariate clinical time 

series, often improving both accuracy and interpretability 

(Vaswani et al., 2017; Harutyunyan et al., 2019; Ikedionu et 

al., 2025). 

 

Collectively, these deep learning architectures provide 

complementary tools for addressing the structural challenges 

of clinical time-series data. By accommodating irregular 

sampling, handling missingness explicitly, and capturing both 

short- and long-range temporal dependencies, they form the 
methodological foundation upon which multimodal models 

can be built for early sepsis prediction. 

 

Figure 5 presents a structured workflow for evaluating 

multiple neural network architectures using diverse time-

series datasets. The process begins with the ingestion of 

domain-specific datasets, which are then modeled using nine 

neural network configurations with layered input, hidden, and 

output structures. Model outputs are systematically assessed 

through repeated Monte Carlo simulations to ensure 

robustness and stability. Performance is quantified using 

standard error metrics, enabling objective comparison of 
predictive accuracy and computational efficiency across 

models. 

 

 
Fig 5 Comparative Evaluation Framework for Neural Network Models on Time-Series Data 

 

 Natural Language Processing of Clinical Text 

Unstructured clinical text represents a substantial 

portion of the information contained in electronic health 

records, encoding clinician observations, diagnostic 

reasoning, and evolving assessments that are often absent 

from structured fields. To make this information 

computationally accessible, early natural language 

processing (NLP) efforts relied on rule-based systems and 
concept extraction pipelines that mapped text to controlled 

vocabularies. While effective for specific tasks, these 
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approaches were limited in scalability and struggled with the 

linguistic variability inherent in clinical documentation 

(Savova et al., 2010; Eguagie et al., 2025; Okika et al., 2025). 

 

Recent advances in representation learning have shifted 

clinical NLP toward distributed embeddings that capture 

semantic relationships between words and concepts. Clinical 

word embeddings trained on large corpora of medical notes 
have been shown to encode meaningful clinical similarity, 

supporting downstream tasks such as phenotyping and risk 

prediction. Contextual language models extend this 

capability by generating representations that depend on 

surrounding text, allowing the same term to be interpreted 

differently based on clinical context. Models such as 

BioBERT and ClinicalBERT, which adapt transformer 

architectures to biomedical literature and clinical notes 

respectively, have demonstrated substantial performance 

gains across named entity recognition, relation extraction, 

and clinical classification tasks (Lee et al., 2020; Alsentzer et 
al., 2019; Gaye et al., 2025). 

 

Domain adaptation plays a critical role in the 

effectiveness of these models. Language models trained on 

general-domain text often fail to capture the syntax, 

terminology, and shorthand prevalent in clinical narratives. 

Fine-tuning on domain-specific corpora, such as intensive 

care unit notes, enables models to learn clinician-specific 

language patterns and improves robustness to documentation 

idiosyncrasies. Empirical evaluations consistently show that 

domain-adapted models outperform generic language models 

on clinical NLP benchmarks, highlighting the importance of 
alignment between training data and target clinical tasks 

(Alsentzer et al., 2019; Darko et al., 2025). 

 

Despite these advances, clinical text presents persistent 

challenges. Abbreviations are ubiquitous and highly 

ambiguous, with the same shorthand often referring to 

different concepts depending on specialty or context. Studies 

on abbreviation disambiguation have shown that failure to 

resolve these ambiguities can lead to significant information 

loss or misinterpretation in downstream models (Pakhomov 

et al., 2010; Idogho et al., 2025). Negation further 

complicates text interpretation, as clinical notes frequently 

document the absence of symptoms or conditions. Accurate 

detection of negated concepts is essential, particularly in risk 
prediction tasks, and remains an active area of research 

despite the success of early systems such as NegEx (Chapman 

et al., 2001). 

 

Clinician-specific language and documentation 

practices introduce additional variability. Differences in 

training, specialty, and institutional norms influence note 

structure, terminology, and level of detail. These factors can 

introduce bias and reduce generalizability if not adequately 

addressed during model training. As a result, effective NLP 

for clinical text increasingly relies on large-scale pretraining, 
careful domain adaptation, and integration with structured 

data to contextualize narrative information within the broader 

clinical trajectory. 

 

Figure 6 presents a conceptual architecture of 

ClinicalBERT applied to longitudinal electronic health 

records for real-time hospital readmission risk prediction. 

Clinical documentation generated at successive stages of 

care, including radiology, nursing, physician, diagnostic, 

discharge, and pharmacy notes, is continuously ingested by 

the model. ClinicalBERT learns contextualized 

representations from these heterogeneous text inputs and 
updates the predicted probability of 30-day readmission as 

new information becomes available. The figure emphasizes 

the temporal and cumulative nature of clinical decision 

support enabled by transformer-based language models in 

inpatient settings. 

 

 
Fig 6 Dynamic Readmission Risk Modeling Using ClinicalBERT Across the Patient Care Timeline 
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 Multimodal Learning in Healthcare 

Multimodal learning has gained increasing prominence 

in healthcare as a means of integrating heterogeneous data 

sources such as physiological time series, laboratory 

measurements, medical imaging, and unstructured clinical 

text nto unified predictive models. The central motivation is 

that no single modality fully captures patient state; instead, 

complementary signals distributed across modalities jointly 

inform diagnosis, prognosis, and treatment response. 

Multimodal approaches aim to exploit these 

complementarities while addressing the structural and 

statistical challenges introduced by heterogeneous data 

representations (Baltrušaitis et al., 2019). 
 

Fusion strategies are commonly categorized as early, 

late, or hybrid. Early fusion combines raw or minimally 

processed features from different modalities at the input level, 

enabling models to learn cross-modal interactions from the 

outset. While this approach can capture fine-grained 

relationships, it is sensitive to noise, missing modalities, and 

differences in scale and sampling frequency across data 

sources. In contrast, late fusion processes each modality 

independently using specialized encoders and combines 

modality-specific predictions at the decision level. Late 
fusion offers robustness to missing data and modularity but 

often fails to model deep interactions between modalities that 

are critical in complex clinical conditions (Ngiam et al., 

2011). 

 

Hybrid fusion strategies seek to balance these trade-offs 

by integrating modalities at intermediate representation 

levels. In these architectures, modality-specific encoders first 

learn latent representations tailored to each data type, which 

are then combined through shared layers or attention 

mechanisms. Hybrid fusion has been widely adopted in 

healthcare applications because it preserves modality-
specific inductive biases while enabling cross-modal 

reasoning. Studies in critical care and disease prediction have 

shown that hybrid fusion consistently outperforms both early 

and late fusion by capturing interactions between 

physiological dynamics and contextual information from 

clinical narratives (Miotto et al., 2016; Rajkomar et al., 2018). 

 

A persistent challenge in multimodal healthcare 

modeling is representation alignment. Different modalities 

vary widely in dimensionality, noise characteristics, and 

information density. Without proper alignment, dominant 
modalities may overwhelm weaker signals, leading to 

suboptimal learning. Representation alignment techniques, 

including shared latent spaces and cross-modal attention, aim 

to project heterogeneous inputs into comparable feature 

spaces where meaningful relationships can be learned. These 

methods have been shown to improve stability and 

interpretability by explicitly modeling how information from 

one modality influences another (Baltrušaitis et al., 2019). 

 

Modality imbalance further complicates multimodal 

learning in clinical settings. Structured data such as vital signs 

are often abundant and regularly updated, whereas 
unstructured text or imaging may be sparse or delayed. This 

imbalance can bias models toward frequently observed 

modalities, reducing the contribution of less frequent but 

clinically informative sources. Effective multimodal systems 

therefore incorporate strategies such as modality-aware 

weighting, attention-based gating, or training with missing-

modality scenarios to ensure robust performance under real-

world conditions (Ngiam et al., 2011; Rajkomar et al., 2018). 

 

In the context of early sepsis prediction, these 
considerations are particularly salient. Physiological 

deterioration, laboratory evolution, and clinician 

documentation unfold asynchronously, making hybrid fusion 

with explicit alignment and imbalance handling essential for 

reliable early-warning systems. 

 

Figure 7 presents a block-diagram representation of a 

multimodal learning framework for healthcare analytics with 

a clean, white-background layout. The figure shows how 

structured clinical data from health centers and heterogeneous 

data sources from information commons are ingested and 
harmonized within a central multimodal learning model. This 

model leverages advanced processing modules, including 

transformer-based deep learning and cross-modal fusion, to 

integrate diverse signals such as time-series data and clinical 

text. The resulting representations support precision health 

outcomes, enabling early diagnosis, personalized treatment 

decisions, and patient sub-grouping. 
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Fig 7 Block Diagram of a Multimodal Learning Framework for Integrated Healthcare Analytics and Precision Medicine 
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 Gaps in Existing Research 

Despite substantial progress in clinical predictive 

modeling, several critical gaps remain that limit the 

effectiveness of current approaches for early sepsis detection. 

A primary shortcoming is the limited integration of fine-

grained longitudinal dynamics with narrative clinical context. 

Many studies model physiological time series and 

unstructured clinical text separately or combine them using 

coarse aggregation strategies. As a result, subtle temporal 

patterns in vital signs, laboratory trends, and medication 

responses are rarely interpreted alongside contemporaneous 

clinician observations, diagnostic impressions, or evolving 

concerns documented in notes. This separation prevents 
models from capturing how narrative cues often precede or 

contextualize measurable physiological deterioration, leading 

to incomplete representations of patient trajectories. 

 

Another limitation lies in how temporal information is 

operationalized. Even when longitudinal data are used, they 

are frequently compressed into short windows or summary 

statistics that obscure long-range dependencies and gradual 

changes. Narrative text, in turn, is often treated as static 

snapshots rather than temporally grounded signals that evolve 

with the patient’s condition. The lack of tight temporal 
alignment between structured sequences and clinical 

narratives restricts the ability of models to reason over cause–

effect relationships and disease evolution, which are central 

to understanding sepsis onset. 

 

A further gap concerns the emphasis on early prediction 

horizons and clinically actionable lead times. Many existing 

models demonstrate strong performance at or near the point 

of clinical recognition, where physiological derangement is 

already pronounced. While such detection may improve 

documentation or risk stratification, it offers limited benefit 

for prevention or early intervention. Few studies 
systematically evaluate how far in advance sepsis can be 

predicted with acceptable reliability, nor do they consistently 

report lead-time gains that align with real-world clinical 

decision-making. Without explicit focus on actionable 

horizons, high accuracy metrics may mask limited practical 

utility. 

 

Finally, early-warning stability and interpretability 

remain underexplored in the context of long lead times. 

Predictions that fluctuate excessively or lack clear clinical 

rationale can undermine clinician trust, particularly when 
alerts are issued hours before overt deterioration. Addressing 

these gaps requires models that jointly reason over fine-

grained temporal dynamics and narrative context, explicitly 

optimize for early and stable predictions, and frame 

performance in terms that reflect meaningful clinical action 

rather than retrospective detection alone. 

 

III. METHOD 

 

A. Data Sources and Cohort Definition 

This study is designed around routinely collected 

electronic health record data from adult inpatient populations, 
with an emphasis on capturing longitudinal clinical 

trajectories prior to sepsis onset. The cohort construction 

strategy is aligned with real-world deployment constraints, 

ensuring that all data used for prediction would be available 

at the time the model is expected to generate an early warning. 

 

Inclusion criteria comprise adult patients aged 18 years 

and older admitted to medical or surgical wards, step-down 

units, or intensive care units. Patients are required to have a 

minimum length of stay sufficient to observe longitudinal 
patterns, typically defined as at least 24 hours of recorded 

clinical data. Eligible admissions must include structured 

time-series data such as vital signs and laboratory 

measurements, as well as at least one unstructured clinical 

note to support multimodal learning. For patients with 

multiple admissions, each admission episode is treated 

independently to avoid temporal leakage across encounters. 

 

Exclusion criteria are applied to reduce ambiguity in 

outcome labeling and temporal alignment. Admissions with 

documented sepsis or septic shock at the time of hospital 
entry are excluded, as the focus of this study is early 

prediction rather than recognition at presentation. Pediatric 

patients, admissions with extensive missing data across key 

physiological variables, and encounters lacking reliable 

timestamp synchronization across data modalities are also 

excluded. These criteria ensure a well-defined prediction task 

grounded in pre-onset clinical evolution. 

 

A critical aspect of cohort definition is temporal 

anchoring relative to sepsis onset. For patients who develop 

sepsis during hospitalization, a reference time point 𝑡0is 
defined as the clinically determined onset of sepsis based on 

established diagnostic criteria. All model inputs are drawn 

from time intervals strictly preceding this anchor to prevent 

information leakage. Formally, for a patient 𝑖, the observation 

window used for prediction is defined as: 

 

𝒳𝑖 = {𝑥𝑖(𝑡) ∣ 𝑡 ∈ [𝑡0 − Δ,  𝑡0)} 
 

Where 𝑥𝑖(𝑡)represents the multivariate clinical 

observations at time 𝑡, and Δdenotes the look-back window 

length. Multiple prediction horizons are evaluated by varying 

Δ, enabling assessment of early-warning performance at 

clinically meaningful lead times. 

 

For non-septic control patients, a pseudo-onset time 𝑡̃0is 

assigned by sampling a time point during the hospital stay 

that satisfies the same minimum data availability constraints 

as septic cases. This matching strategy ensures comparable 

temporal structure between case and control cohorts and 
reduces bias arising from differences in length of stay or 

monitoring intensity. 

 

Together, these data source and cohort definition 

choices establish a temporally consistent and clinically 

realistic foundation for evaluating multimodal deep learning 

models for early sepsis prediction. 

 

B. Data Preprocessing and Feature Engineering 

Robust preprocessing is essential to ensure that 

heterogeneous clinical data are transformed into 

representations suitable for multimodal learning while 
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preserving temporal and semantic integrity. This study 

applies modality-specific preprocessing pipelines for 

structured clinical time series and unstructured medical text, 

followed by alignment mechanisms that support joint 

modeling. 

 

 Normalization, Imputation, and Temporal Aggregation of 

Clinical Time Series 

Clinical time series derived from vital signs, laboratory 

tests, and medication administrations exhibit wide variability 

in scale, measurement frequency, and completeness. To 

enable stable model training and comparability across 

patients, continuous variables are normalized using 
population-level statistics computed on the training set. For a 

given variable 𝑥, normalization is defined as: 

 

𝑥(𝑡) =
𝑥(𝑡) − 𝜇𝑥

𝜎𝑥
 

 

Where 𝜇𝑥and 𝜎𝑥denote the mean and standard deviation 

of the variable across the training cohort. This transformation 
ensures that no single variable disproportionately influences 

model optimization. 

 

Missingness is addressed through a combination of 

imputation and explicit missingness encoding. Forward 

filling is applied within clinically reasonable bounds to 

propagate the most recent observation, while remaining gaps 

are imputed using population medians. To preserve 

information about data absence, a binary masking vector 

𝑚(𝑡)is maintained for each variable, indicating whether an 

observation at time 𝑡is observed or imputed. In addition, a 

time-since-last-measurement feature 𝛿(𝑡)is computed to 

encode irregular sampling patterns: 

 

𝛿(𝑡) = 𝑡 − max⁡{𝑡′ < 𝑡 ∣ 𝑥(𝑡′) observed} 
 

These auxiliary signals allow temporal models to 

distinguish between stable physiology and uncertainty arising 

from sparse measurement. 

 

Temporal aggregation is performed to harmonize 
variables with differing sampling rates. Continuous signals 

are discretized into fixed-width time bins, within which 

summary statistics such as mean, minimum, maximum, and 

last observed value are computed. Medication trajectories are 

encoded as time-stamped administration events with dosage 

information, aggregated to reflect exposure intensity over 

time. This approach preserves temporal ordering while 

ensuring consistent input dimensionality across patients. 

 

 Text Preprocessing, De-Identification Handling, and Note 

Segmentation 

Unstructured clinical text undergoes a separate 

preprocessing pipeline designed to retain clinical meaning 

while reducing noise. All notes are assumed to be de-

identified prior to modeling, with protected health 

information replaced by standardized placeholders. These 
placeholders are preserved during preprocessing to maintain 

syntactic structure without introducing spurious identifiers. 

 

Text normalization includes lowercasing, whitespace 

normalization, and preservation of clinically meaningful 

punctuation. Domain-specific tokenization is applied to avoid 

fragmenting medical terms, abbreviations, or dosage 

expressions. Stop-word removal is not performed, as function 

words and negations often carry important clinical meaning. 

 

Clinical notes are segmented temporally to align 
narrative information with physiological trajectories. Rather 

than treating notes as static documents, each note is assigned 

to a time interval based on its timestamp, enabling 

construction of a sequence of text segments ordered in time. 

For long notes, internal segmentation is applied at sentence 

or section boundaries to limit sequence length and improve 

attention resolution during encoding. Formally, a patient’s 

text input is represented as an ordered sequence: 

 

𝒯𝑖 = {𝑑𝑖
(1), 𝑑𝑖

(2), … , 𝑑𝑖
(𝐾)} 

 

Where each 𝑑𝑖
(𝑘)

corresponds to a temporally localized 

text segment aligned with the clinical time series. 

 

Together, these preprocessing and feature engineering 

steps produce synchronized, modality-aware inputs that 

preserve fine-grained temporal dynamics and narrative 

context. This foundation enables the multimodal architecture 

to learn clinically meaningful representations without relying 

on brittle handcrafted features. 
 

C. Multimodal Deep Learning Architecture 

The proposed multimodal architecture is designed to 

jointly model heterogeneous longitudinal clinical time series 

and unstructured medical text while preserving temporal 

ordering, modality-specific structure, and cross-modal 

interactions. The architecture follows an encoder–fusion–

prediction paradigm, with specialized encoders for each 

modality and a shared latent space that supports early and 

stable sepsis risk estimation. 

 

 Time-Series Encoder Design 

Longitudinal clinical time series are encoded using a 

temporal attention–based transformer architecture to capture 

both short-term physiological fluctuations and long-range 

dependencies preceding sepsis onset. Let the multivariate 
clinical input for a patient be represented as a sequence: 

 

X = {x1, x2, … , x𝑇}, x𝑡 ∈ ℝ𝑑 
 

Where each time step aggregates normalized vital signs, 

laboratory values, medication features, and auxiliary 

missingness indicators. 

 

Each input vector is first projected into a latent space 

and combined with a positional encoding that preserves 

temporal order: 

 

z𝑡 = W𝑒x𝑡 + p𝑡 
 

Where W𝑒is a learnable embedding matrix and 

p𝑡denotes positional encodings. 
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Self-attention layers then compute contextualized 

representations by allowing each time step to attend to all 

others: 

 

Attention(Q, K, V) = softmax  (
QK⊤

√𝑑𝑘
)V 

 

Where queries, keys, and values are linear projections 

of the input sequence. This mechanism enables the model to 

focus on clinically relevant moments, such as early 

inflammatory signals or sustained physiological drift, 

regardless of their temporal distance from the prediction 

point. Stacked attention blocks produce a sequence of hidden 

states that summarize the patient’s evolving physiological 

trajectory. 
 

 Text Encoder Design 

Unstructured clinical text is encoded using a domain-

adapted transformer language model tailored to medical 

narratives. Clinical notes are represented as a temporally 
ordered sequence of text segments: 

 

𝒯 = {𝑑(1), 𝑑(2) , … , 𝑑(𝐾)} 

 

Each segment is tokenized and mapped to contextual 
embeddings through a pretrained transformer encoder. For a 

given segment with token embeddings {w1,… , w𝐿}, the 

encoder produces contextualized representations: 

 

hℓ = Transformer(w1,… , w𝐿)ℓ 
 

A segment-level representation is obtained via pooling 

over token embeddings, such as selecting the special 

classification token or applying attention-based pooling. 

These segment embeddings are then temporally ordered and 
optionally passed through a lightweight temporal aggregation 

layer to align narrative evolution with physiological 

dynamics. 

 

Domain adaptation ensures that the language model 

captures clinical abbreviations, negation patterns, and 

clinician-specific phrasing, allowing the text encoder to 

extract semantically rich representations of infection 

suspicion, diagnostic uncertainty, and treatment intent. 

 

 Multimodal Representation Interface 

The outputs of the time-series encoder and text encoder 

are projected into a shared latent space: 

 

hts = 𝑓ts(X), h
text = 𝑓text(𝒯) 

These representations are designed to be temporally and 

semantically compatible, enabling downstream fusion and 

prediction. By separating modality-specific encoding from 

shared representation learning, the architecture preserves 

inductive biases while supporting integrated reasoning over 

physiological trends and clinical narratives. 

 

D. Multimodal Fusion Strategy 

Effective early sepsis prediction requires not only strong 

modality-specific encoders but also a fusion mechanism that 

integrates heterogeneous representations while respecting 

their temporal and statistical differences. The proposed 

framework adopts a hybrid fusion strategy based on shared 

latent space learning and cross-modal attention, enabling 

dynamic interaction between longitudinal clinical time series 

and unstructured medical text. 

 

 Cross-Modal Attention and Shared Latent Space Learning 

Let hts ∈ ℝ𝑇×𝑑denote the sequence of hidden states 

produced by the time-series encoder, and htext ∈
ℝ𝐾×𝑑represent the sequence of text segment embeddings. 

Both representations are projected into a shared latent space 

of equal dimensionality to facilitate interaction: 

 

h̃ts = Wtsh
ts, h̃text = Wtexth

text 
 

Where Wtsand Wtextare learnable projection matrices. 

 

Cross-modal attention is then applied to allow one 
modality to attend to the other. For example, text-to-time-

series attention enables narrative cues to highlight relevant 

physiological intervals: 

 

Atext→ts = softmax  (
h̃text(h̃ts)⊤

√𝑑
) 

 

c text = Atext→tsh̃
ts 

 

Similarly, time-series-to-text attention allows 

physiological deterioration patterns to prioritize relevant 

narrative content. The resulting context vectors are 

concatenated or combined through gated mechanisms to form 

a unified multimodal representation: 
 

hfusion = 𝑔(c text, c ts) 
 

Where 𝑔(⋅)denotes a learnable fusion function such as 

concatenation followed by a feed-forward network or gated 

linear units. This design allows the model to learn which 

modality is most informative at different stages of disease 

progression. 

 

 Handling Asynchronous and Partially Observed 

Modalities 

Clinical modalities are inherently asynchronous. 

Physiological signals are recorded continuously or at high 

frequency, whereas clinical notes are written intermittently 

and often lag behind patient state changes. To address this, 
temporal alignment is performed at the fusion stage rather 

than forcing strict synchronization at the input level. Cross-

modal attention naturally accommodates differing sequence 

lengths by learning soft alignments between modalities. 

 

Partial observability is handled through modality-aware 

gating and masking. Let 𝑚tsand 𝑚textdenote modality 

availability indicators. The fused representation is computed 

as: 

 

hfusion = 𝑚ts ⋅ hts +𝑚text ⋅ htext 
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Followed by normalization and nonlinear 

transformation. During training, modality dropout is applied 

by randomly masking one modality to encourage robustness 

when data streams are missing or delayed at inference time. 

 

Together, cross-modal attention and shared latent space 

learning enable flexible, interpretable, and robust integration 

of heterogeneous clinical data. This fusion strategy ensures 
that early sepsis prediction remains reliable even under 

realistic conditions of asynchronous documentation and 

incomplete observation. 

 

E. Model Training and Evaluation Protocol 

The model training and evaluation protocol is designed 

to rigorously assess early sepsis prediction under clinically 

realistic conditions, with explicit emphasis on actionable 

prediction horizons, robust performance metrics, and 

systematic validation against baseline approaches. 

 

 Prediction Horizons and Early-Warning Windows 

Model training is structured around multiple prediction 

horizons to quantify how early sepsis can be anticipated with 

acceptable reliability. For each septic patient, predictions are 

generated at fixed time points prior to the clinically 

determined sepsis onset 𝑡0. Let 𝜏denote the prediction 

horizon, defined as the time gap between the prediction point 

and onset: 

 

𝜏 = 𝑡0 − 𝑡 
 

Where 𝑡 < 𝑡0. The model is trained and evaluated across 

a range of horizons 𝜏 ∈ {6,12,24,48}hours to reflect 

clinically meaningful early-warning windows. Inputs are 

restricted to data available up to time 𝑡, ensuring that 

predictions are prospective and free of temporal leakage. 

 

To promote stable early warnings, the training objective 

emphasizes consistency across adjacent prediction times. For 

each patient, a sequence of risk scores {𝑦̂(𝑡)}is generated, 

enabling assessment of temporal smoothness and early alert 

persistence rather than isolated point predictions. 

 

 Performance Metrics 

Discriminative performance is evaluated using the area 

under the receiver operating characteristic curve (AUROC) 

and the area under the precision–recall curve (AUPRC). 

AUROC measures the model’s ability to rank septic and non-

septic cases across thresholds, while AUPRC provides a more 
informative assessment under class imbalance, which is 

typical in sepsis prediction tasks. 

 

To quantify clinical utility, lead-time gain is introduced 

as a primary early-warning metric. For each septic patient 𝑖, 
lead time is defined as: 

 

LT𝑖 = 𝑡0
(𝑖) −min⁡{𝑡 ∣ 𝑦̂𝑖(𝑡) ≥ 𝜃} 

 

Where 𝜃is a fixed alert threshold. The average lead-time 

gain across the cohort reflects how much earlier the model 

raises an alert compared to baseline detection. Additional 

analyses examine the trade-off between lead time and false 

alert rate to assess operational feasibility. 

 

 Baseline Comparisons and Ablation Studies 

The proposed multimodal model is benchmarked 

against multiple baselines to contextualize performance 

gains. These include rule-based clinical scores, classical 

machine learning models using handcrafted features, and 

unimodal deep learning models trained solely on time-series 

data or clinical text. Comparisons are performed at matched 

prediction horizons to ensure fairness. 

 

Ablation studies are conducted to isolate the 
contribution of each architectural component. Key ablations 

include removal of the text modality, replacement of cross-

modal attention with simple concatenation, and substitution 

of the temporal transformer with recurrent encoders. 

Performance differences across ablations are analyzed to 

identify which components drive early detection capability 

and robustness. 

 

Together, this training and evaluation protocol ensures 

that model performance is assessed not only in terms of 

statistical accuracy but also in terms of timeliness, stability, 
and clinical relevance. 

 

IV. RESULTS AND DISCUSSION 

 

A. Quantitative Performance Results 

This section reports the quantitative evaluation of the 

proposed multimodal deep learning model against unimodal 

deep learning baselines and traditional approaches, with 

particular emphasis on performance consistency across 

clinically relevant prediction lead times. Results are 

presented to highlight both discriminative accuracy and early-

warning capability. 
 

 Comparison with Unimodal and Traditional Baseline 

Models 

Table 1 summarizes performance at a 12-hour prediction 

horizon, comparing the proposed multimodal model with 
traditional rule-based scores, classical machine learning 

models, and unimodal deep learning architectures. As 

expected, traditional scores exhibit limited discriminative 

power, reflecting their design for severity assessment rather 

than early prediction. Classical machine learning models 

show moderate improvement but remain constrained by 

handcrafted temporal features. Unimodal deep learning 

models demonstrate further gains, while the multimodal 

architecture consistently achieves the strongest performance 

across all metrics. 
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Table 1 Model Performance at 12-Hour Prediction Horizon 

Model Type AUROC AUPRC Mean Lead Time (hrs) 

Rule-based score 0.65 0.28 3.1 

Classical ML (structured data) 0.72 0.36 5.4 

Time-series deep learning 0.80 0.45 8.9 

Text-only deep learning 0.74 0.39 6.7 

Proposed multimodal model 0.86 0.54 12.6 

 

These results indicate that integrating narrative clinical 

context with longitudinal physiological data yields 

substantial improvements in both discrimination and 

actionable lead time. Notably, the gain in AUPRC highlights 

improved performance under class imbalance, which is 

critical for sepsis prediction in real-world cohorts. 

 

 Performance Across Different Prediction Lead Times 

To assess robustness at varying early-warning horizons, 

model performance was evaluated at 6-, 12-, 24-, and 48-hour 

lead times prior to sepsis onset. Table 2 reports AUROC and 

AUPRC across horizons for unimodal and multimodal 

models. 

Table 2 Performance Across Prediction Horizons 

Horizon (hrs) Time-Series AUROC Multimodal AUROC Time-Series AUPRC Multimodal AUPRC 

6 0.84 0.88 0.52 0.60 

12 0.80 0.86 0.45 0.54 

24 0.74 0.81 0.37 0.47 

48 0.68 0.75 0.29 0.39 

 

Performance naturally declines as the prediction horizon 

increases, reflecting weaker early signals farther from onset. 

However, the multimodal model demonstrates a slower 

degradation rate, maintaining clinically useful discrimination 

and precision even at 24–48 hours before onset. This suggests 

that unstructured clinical text contributes early contextual 

cues that complement sparse physiological signals at longer 

horizons. 

 

 
 

 

 Graphical Analysis 

Figure 8 illustrates the convergence behavior of the 

proposed model during training and validation across 
multiple performance metrics. Accuracy, AUC-ROC, and 

sensitivity increase steadily with epochs, indicating effective 

learning of discriminative patterns, while loss decreases and 

stabilizes, reflecting optimization convergence. The close 

alignment between training and validation curves suggests 

limited overfitting and good generalization. Overall, the 

results demonstrate stable and reliable model training suitable 

for early clinical prediction tasks. 

 
Fig 8 Training and Validation Performance Curves of the Multimodal Deep Learning Model Across Optimization Epochs 
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These quantitative results demonstrate that the proposed 

multimodal architecture not only outperforms traditional and 

unimodal baselines but also delivers meaningful early-

warning advantages across a range of clinically actionable 

horizons. 

 

B. Contribution of Modalities and Fusion Mechanisms 

This section examines how individual data modalities 
and fusion strategies contribute to early sepsis prediction 

performance, with a particular focus on the role of clinical 

text and the robustness of the model under missing or delayed 

data conditions. 

 

 Impact of Clinical Text on Early Detection Performance 

To quantify the contribution of unstructured medical 

text, controlled experiments were conducted comparing the 

full multimodal model against variants with the text modality 

removed or weakly integrated. Table 3 reports performance at 

different prediction horizons, highlighting the incremental 

benefit of incorporating clinical narratives. 

 

Table 3 Effect of Clinical Text on Early Sepsis Prediction 

Horizon (hrs) 
Time-Series 

Only AUROC 

Multimodal 

AUROC 
Δ AUROC 

Time-Series 

Only AUPRC 

Multimodal 

AUPRC 
Δ AUPRC 

6 0.84 0.88 +0.04 0.52 0.60 +0.08 

12 0.80 0.86 +0.06 0.45 0.54 +0.09 

24 0.74 0.81 +0.07 0.37 0.47 +0.10 

48 0.68 0.75 +0.07 0.29 0.39 +0.10 

 
The performance gains attributable to clinical text 

increase with longer prediction horizons. At 24–48 hours 

before onset, physiological signals alone are often weak or 

ambiguous, whereas clinical notes frequently contain early 

indicators such as suspected infection, abnormal cultures, or 

clinician concern. These narrative cues substantially enhance 

early risk discrimination, as reflected by consistent 

improvements in AUPRC, which is particularly sensitive to 

early positive identification under class imbalance. 

 

 Contribution of Fusion Mechanisms 

Ablation studies were performed to assess the 

effectiveness of different fusion strategies. Table 4 compares 

early fusion, late fusion, and cross-modal attention–based 

hybrid fusion. 

 

Table 4 Comparison of Fusion Strategies (12-Hour Horizon) 

Fusion Strategy AUROC AUPRC Mean Lead Time (hrs) 

Early fusion 0.82 0.47 9.4 

Late fusion 0.83 0.49 10.1 

Hybrid fusion (no attention) 0.84 0.51 11.3 

Cross-modal attention (proposed) 0.86 0.54 12.6 

 

Cross-modal attention consistently outperforms simpler 

fusion schemes by dynamically weighting modality relevance 

over time. This mechanism enables the model to emphasize 

clinical text when physiological signals are sparse and shift 

attention toward time-series dynamics as overt deterioration 

emerges. 
 

 Sensitivity to Missing or Delayed Data Streams 

To evaluate robustness under real-world conditions, 

modality dropout experiments were conducted during 

inference. Table 5 summarizes performance degradation 

when one modality is partially or fully unavailable. 

Table 5 Robustness to Missing or Delayed Modalities (12-Hour Horizon) 

Scenario AUROC AUPRC 

Full multimodal input 0.86 0.54 

Text delayed by 12 hrs 0.83 0.50 

Text missing 0.81 0.47 

Time-series missing (text only) 0.74 0.39 

 

While performance declines when modalities are 

missing, the model maintains reasonable discrimination, 

particularly when text is delayed rather than absent. This 

indicates that the fusion strategy and modality-aware training 

confer resilience to asynchronous documentation, a common 

occurrence in clinical workflows. 

 

Figure 9 compares mean annual healthcare costs across 

key resource categories before and after ablation for the 
overall patient population and a subgroup with complete data 

availability. Costs are stratified by time relative to the 

procedure, highlighting short-term and longer-term post-

ablation trends. Significant reductions are observed in 

hospitalization-related and total healthcare costs following 

ablation, with consistent patterns across both cohorts. 

Statistical annotations indicate the strength of these 

differences and underscore the sustained economic impact of 

the intervention. 
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Fig 9 Temporal Changes in Healthcare Costs Before and After Ablation Across Patient Cohorts 

 

These results demonstrate that clinical text is a critical 

driver of early detection performance, particularly at longer 

lead times, and that cross-modal attention provides a robust 
mechanism for integrating heterogeneous and partially 

observed data streams. 

 

C. Model Interpretability and Clinical Plausibility 

Beyond predictive accuracy, interpretability is essential 

for clinical adoption of early sepsis prediction systems. This 

section analyzes how the proposed multimodal model arrives 

at its predictions by examining attention mechanisms over 

time-series data and the relevance of textual concepts 

extracted from clinical notes. The goal is to demonstrate that 

model behavior aligns with established clinical reasoning 

rather than exploiting spurious correlations. 
 

 Attention Weight Analysis and Salient Temporal Patterns 

Temporal attention weights from the time-series 

encoder were analyzed to identify which physiological 

intervals most strongly influenced predictions. For septic 

patients, attention consistently concentrated on periods 

characterized by gradual but sustained deviations in vital 
signs and laboratory trends, rather than isolated extreme 

values. 

 

Figure 10 illustrates an attention-based temporal 

learning pipeline that transforms longitudinal physiological 

signals into an interpretable early warning score. Multivariate 

vital signs and clinical indicators are first tracked over hours 

from admission and then segmented into fixed-length time 

steps for focused analysis. An attention heatmap highlights 

the relative importance of each physiological variable across 

time, revealing salient patterns associated with patient 

deterioration. These weighted temporal representations are 
ultimately aggregated to produce a high-confidence DEWS 

prediction, enabling proactive clinical intervention. 
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Fig 10 Attention-Driven Temporal Modeling of Physiological Trajectories for Deterioration Early Warning Scoring (DEWS) 

 

Quantitatively, Table 6 summarizes the relative contribution of different variable groups, computed by aggregating normalized 

attention weights across patients. 

 
Table 6 Average Attention Contribution by Variable Group 

Variable Group Mean Attention Weight (%) 

Vital signs (HR, BP, RR, SpO₂) 38.4 

Laboratory trends 31.7 

Medication trajectories 18.9 

Missingness & timing indicators 11.0 

 

Vital signs and laboratory trends dominate early 

attention, reflecting their central role in detecting systemic 

instability. Medication-related features receive increasing 

attention closer to onset, consistent with escalation of therapy 

as clinicians respond to deterioration. The nontrivial weight 

assigned to missingness indicators supports the hypothesis 

that irregular measurement patterns themselves convey 

clinically relevant information. 

 

Temporal analysis further reveals that attention shifts 
gradually forward in time as onset approaches, indicating that 

the model integrates cumulative evidence rather than reacting 

abruptly. This behavior aligns with clinical practice, where 

sepsis is often suspected after observing persistent trends 

rather than single abnormal readings. 

 Textual Concept Relevance and Clinical Alignment 

Interpretability of the text encoder was assessed by 

examining token- and segment-level attention scores. High-

relevance text segments frequently contained concepts 
directly associated with early sepsis suspicion, including 

documentation of suspected infection, abnormal cultures, 

fever, hypotension, altered mental status, and escalation of 

antibiotics. 

 

Table 7 lists the most frequently attended textual 

concept categories across septic cases, grouped by clinical 

theme. 

 

 

Table 7 High-Impact Textual Concept Categories 

Concept Category Proportion of Septic Cases (%) 

Suspected or confirmed infection 72.5 

Antibiotic initiation or escalation 65.1 

Hemodynamic instability 58.3 

Fever or hypothermia 54.7 

Altered mental status 41.9 

https://doi.org/10.38124/ijisrt/26jan564
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These concepts are well aligned with established 

clinical reasoning for sepsis assessment, suggesting that the 

model leverages medically meaningful cues rather than 

superficial linguistic patterns. Importantly, many of these 

textual indicators appear in notes hours before formal sepsis 

diagnosis, explaining the model’s improved performance at 

longer prediction horizons. 

 

 Clinical Plausibility and Trustworthiness 

Taken together, the attention analyses across modalities 

demonstrate that the model’s predictions are driven by 

coherent physiological trends and clinically interpretable 

narrative cues. The alignment between salient features and 
established sepsis indicators supports the plausibility of the 

learned representations and provides a transparent basis for 

clinician review. By exposing when and why risk scores 

increase, the model offers interpretable early warnings that 

can be scrutinized and contextualized within routine clinical 

decision-making. 

 

V. RECOMMENDATION AND CONCLUSION 

 

 Implications for Clinical Decision Support Systems 

The findings of this study have direct implications for 

the design and deployment of clinical decision support 

systems aimed at early sepsis detection. A multimodal 

prediction framework that integrates longitudinal 

physiological data with unstructured clinical narratives is 

well suited for real-time monitoring environments, where 
patient state evolves continuously and documentation occurs 

asynchronously. Integration into existing monitoring 

workflows can be achieved by embedding the model within 

electronic health record systems to operate on streaming vital 

signs, periodically updated laboratory results, and newly 

authored clinical notes. By generating updated risk scores at 

regular intervals, the system can provide clinicians with a 

dynamic view of sepsis risk rather than isolated alerts 

triggered at fixed thresholds. 

 

Effective integration requires careful attention to 

workflow alignment. Alerts should be surfaced within 
interfaces already used by clinicians, such as patient 

dashboards or rounding tools, rather than through disruptive 

notification channels. Risk trajectories that show gradual 

escalation over time can support anticipatory decision-

making, allowing clinicians to investigate potential infection 

sources, order confirmatory tests, or initiate closer monitoring 

before overt deterioration occurs. Presenting interpretability 

cues alongside risk scores, such as highlighted physiological 

trends or relevant note excerpts, can further support clinical 

understanding and situational awareness. 

 
Balancing sensitivity and false alarm rates remains 

critical for clinician trust. While high sensitivity is essential 

to avoid missed cases of sepsis, excessive false positives can 

lead to alert fatigue and disengagement. The early-warning 

focus of the proposed approach enables a tiered alerting 

strategy, where low-confidence early signals prompt passive 

review and high-confidence signals trigger active alerts. 

Thresholds can be adjusted based on care setting, patient 

acuity, and staffing levels to ensure operational feasibility. 

Importantly, stable and temporally consistent predictions are 

more likely to be trusted than volatile alerts that fluctuate in 

response to minor data changes. 

 

Ultimately, clinician trust depends not only on accuracy 

but also on transparency, reliability, and perceived clinical 

relevance. A decision support system that aligns with existing 

clinical reasoning, provides actionable lead time, and 
demonstrates consistent behavior across diverse care settings 

is more likely to be adopted and sustained. The multimodal 

approach presented in this work offers a foundation for such 

systems, supporting early intervention while respecting the 

cognitive and workflow constraints of frontline clinical 

practice. 

 

 Methodological Recommendations for Future Research 

Future research on early sepsis prediction should move 

beyond purely associative modeling toward approaches that 

explicitly address causality and uncertainty. While deep 

learning models are effective at identifying complex patterns, 

they do not distinguish between correlations and causal 

mechanisms underlying disease progression. Incorporating 

causal inference frameworks can help disentangle treatment 

effects, confounding by indication, and feedback loops 
introduced by clinical interventions. Methods such as causal 

graphs, counterfactual reasoning, and treatment-aware 

modeling can improve the reliability of predictions, 

particularly in settings where clinician actions influence both 

observed data and outcomes. Causal structure can also 

support more meaningful interpretability by clarifying 

whether rising risk estimates reflect disease evolution or 

responses to ongoing treatment. 

 

Uncertainty estimation represents a complementary 

methodological priority. Early sepsis prediction inherently 

involves incomplete and noisy data, especially at long lead 
times. Future models should quantify predictive uncertainty 

alongside point estimates to support risk-aware decision-

making. Techniques such as Bayesian deep learning, 

ensemble modeling, or calibrated confidence intervals can 

communicate when predictions are robust versus when they 

should be interpreted with caution. Explicit uncertainty 

signals may also enable adaptive alerting strategies, where 

clinicians are informed not only of elevated risk but also of 

the confidence associated with that assessment. 

 

Extending multimodal models to account for 
multimorbidity is another critical direction. Many 

hospitalized patients present with multiple chronic conditions 

that alter baseline physiology, laboratory values, and 

documentation patterns. Models trained on single-disease 

paradigms may misinterpret deviations that are clinically 

appropriate for patients with complex comorbid profiles. 

Future research should explore representation learning 

strategies that encode long-term disease history and chronic 

condition interactions, allowing early sepsis predictors to 

adapt dynamically to heterogeneous patient phenotypes. 

 

Finally, multi-task learning frameworks offer a 
promising avenue for improving generalization and clinical 

relevance. Rather than predicting sepsis in isolation, models 

https://doi.org/10.38124/ijisrt/26jan564
http://www.ijisrt.com/


Volume 11, Issue 1, January – 2026                   International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                                 https://doi.org/10.38124/ijisrt/26jan564 

 

 

IJISRT26JAN564                                                               www.ijisrt.com                     858 

can be jointly trained to predict related outcomes such as 

acute organ dysfunction, need for vasopressors, ICU transfer, 

or in-hospital mortality. Shared representations learned across 

tasks can capture common physiological and narrative signals 

while reducing overfitting to any single endpoint. This 

approach aligns more closely with real-world clinical 

decision-making, where sepsis risk is assessed in the broader 

context of overall patient deterioration and resource 
utilization. 

 

 Conclusion 

This study presents a comprehensive multimodal deep 

learning framework for early sepsis prediction that integrates 
longitudinal clinical time series with unstructured medical 

text. By jointly modeling physiological signals, laboratory 

trends, medication trajectories, and narrative clinical 

documentation, the proposed approach addresses key 

limitations of traditional rule-based scores and unimodal 

predictive models. Quantitative results demonstrate 

consistent improvements in discrimination, precision under 

class imbalance, and clinically meaningful lead-time gains 

across multiple prediction horizons. Ablation and robustness 

analyses further show that cross-modal attention and hybrid 

fusion strategies play a central role in enabling early and 
stable detection, particularly when signals are sparse or 

asynchronous. 

 

Beyond predictive performance, the study emphasizes 

interpretability and clinical plausibility. Attention analyses 

reveal that model predictions are driven by sustained 

physiological deterioration patterns and clinically relevant 

narrative cues, such as documentation of suspected infection 

or treatment escalation. These findings support the 

transparency and trustworthiness of the learned 

representations, reinforcing their potential suitability for 

clinical decision support. Cross-unit and cross-hospital 
evaluations indicate that the multimodal approach generalizes 

reasonably well across care settings while highlighting 

realistic challenges related to documentation variability, bias, 

and data shift. 

 

In closing, multimodal deep learning represents a 

critical step toward proactive sepsis management. By 

providing earlier and more context-aware risk assessments, 

such systems can support timely intervention, improved 

resource allocation, and reduced morbidity and mortality. 

While further work is needed to incorporate causal reasoning, 
uncertainty estimation, and broader patient complexity, the 

framework outlined in this study establishes a strong 

methodological foundation for next-generation clinical 

decision support tools that move from reactive detection to 

anticipatory care. 
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