

AI-Augmented Dermoscopy in Non-Invasive Skin Cancer Detection: A Narrative Review

Sona Bijunath¹; Ashwin Shajith²; B. B. Aruna Rajeswari³

^{1,2,3}6th Year Undergraduate Student Tbilisi State Medical University Tbilisi, Georgia

Publication Date: 2026/01/22

Abstract: Melanoma, the most aggressive form of skin cancer, remains a leading cause of cancer-related mortality worldwide. Although dermoscopy enhances non-invasive diagnosis, it remains heavily operator-dependent; integrating artificial intelligence can mitigate this limitation by improving diagnostic accuracy, enabling early detection, and supporting broader clinical application. This narrative review examines the current landscape, advantages, and challenges of AI-augmented dermoscopy, while envisioning a future of more precise, accessible, and personalized dermatologic care.

Keywords: Artificial Intelligence; Dermoscopy; Skin Cancer; Melanoma; Non-Invasive Diagnosis; Early Detection.

How to Cite: Sona Bijunath; Ashwin Shajith; B. B. Aruna Rajeswari (2026) AI-Augmented Dermoscopy in Non-Invasive Skin Cancer Detection: A Narrative Review. *International Journal of Innovative Science and Research Technology*, 11(1), 1434-1437. <https://doi.org/10.38124/ijisrt/26jan667>

I. INTRODUCTION

Skin cancer, particularly melanoma, is one of the most prevalent and dangerous cancers globally, with incidence rates steadily rising. Although benign skin lesions are frequently diagnosed, malignant lesions—especially melanoma—pose a significant health threat due to their metastatic potential. In the United States, melanoma constitutes a substantial portion of skin cancer diagnoses, and the number of new cases is projected to increase.

Diagnosing skin lesions is inherently complex, as they vary widely in appearance. While dermoscopy has significantly enhanced dermatologists' ability to assess lesions, interpretation remains heavily reliant on clinical expertise, introducing variability into diagnoses.

Recent advancements in artificial intelligence (AI) offer significant potential for improving diagnostic accuracy, reducing subjectivity, and accelerating lesion detection. This paper explores how AI, when integrated with dermoscopy, can substantially improve skin cancer diagnostics and patient outcomes.

➤ Objectives

This review aims to explore the integration of artificial intelligence with dermoscopy for skin cancer detection, evaluate its current clinical utility, analyze its advantages and limitations, and discuss future directions for responsible and effective implementation in dermatological practice.

II. METHODOLOGY

A narrative literature review was conducted using academic databases including PubMed, Google Scholar, and Scopus. Relevant peer-reviewed articles published between 2017 and 2024 were selected using keywords such as “artificial intelligence,” “dermoscopy,” “skin cancer,” and “melanoma.” Studies focusing on AI-assisted dermoscopic image analysis, diagnostic performance, clinical implementation, and ethical considerations were included. Opinion pieces, non-peer-reviewed sources, and studies lacking clinical relevance were excluded.

III. LITERATURE REVIEW

Benign and malignant skin lesions represent a global dermatological concern. Common benign lesions include moles (nevi) and seborrheic keratoses, while malignant types encompass melanoma, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Melanoma is particularly aggressive, whereas BCC and SCC are more prevalent but generally less invasive.

Skin lesion development is influenced by genetic, environmental, and lifestyle factors. Benign lesions often result from skin cell overgrowth, whereas malignant lesions are driven by uncontrolled proliferation, frequently initiated by UV radiation exposure.

Early detection is vital for effective treatment. Traditional diagnostic methods, such as the ABCDE criteria (Asymmetry, Border irregularity, Color variation, Diameter >6 mm, and Evolution), are helpful but can be subjective. Dermoscopy has emerged as a valuable non-invasive tool for

lesion assessment, but its diagnostic performance is influenced by clinician experience.

AI, particularly deep learning, has demonstrated high accuracy in image analysis and lesion classification. When combined with dermoscopy, AI offers a promising pathway to reduce diagnostic variability and enhance decision-making, especially in remote or telemedicine settings.

➤ *The Role of Dermoscopy in Skin Cancer Diagnosis*

Dermoscopy is a non-invasive imaging method that allows detailed visualization of skin structures, including blood vessels and pigment networks, not visible to the naked eye. It has become integral to diagnosing skin cancers, particularly melanoma.

Dermoscopy enhances diagnostic sensitivity, reduces unnecessary biopsies, and facilitates early melanoma detection. A 2009 survey found that 84% of U.S. dermatologists used dermoscopy regularly, and over 90% of dermatology residents received training in its use—demonstrating its growing importance. Despite widespread adoption, diagnostic accuracy varies considerably among clinicians, underscoring the need for standardized and supportive diagnostic tools.

Nonetheless, dermoscopy outcomes remain dependent on clinician expertise, which may lead to inter-observer variability. Educational initiatives and simplified algorithms are being developed to support novice users. The future of dermoscopy lies in its integration with AI to further improve diagnostic accuracy.

➤ *The Advent of Artificial Intelligence in Dermatology*

AI has shown strong potential in augmenting skin cancer diagnostics. One of the earliest milestones came from Nasr-Esfahani et al., who developed a neural network for melanoma detection with a sensitivity of 0.81 and specificity of 0.80.

In 2017, a widely cited study conducted at Stanford University trained a convolutional neural network (CNN) on 129,450 clinical images across 2,032 diseases. The model demonstrated dermatologist-level performance in differentiating between benign and malignant skin lesions. This pivotal study underscored AI's ability to aid clinical decision-making. However, most early AI models were trained on curated datasets, limiting their generalizability across diverse populations and clinical settings.

Despite these achievements, challenges such as dataset diversity and lack of demographic transparency limit generalizability. Moreover, the extensive data requirements for training deep learning systems present barriers to widespread deployment. Still, the accuracy and efficiency gains make AI an indispensable tool for future dermatological care.

IV. AI AND DERMOSCOPY: THE SYNERGISTIC APPROACH

The convergence of artificial intelligence (AI) and dermoscopy represents a transformative advancement in dermatologic diagnostics. This synergy harnesses the strengths of both technologies—AI's computational power and dermoscopy's detailed imaging—to improve skin cancer detection and patient care. The integration offers several distinct benefits:

➤ *Improved Diagnostic Accuracy:*

AI algorithms, particularly those based on deep learning, are capable of analyzing dermoscopic images with a high degree of precision. Trained on large, annotated datasets, these systems can detect complex patterns and minute visual cues that may not be immediately apparent to human observers. Several deep learning based systems have demonstrated high diagnostic accuracy in controlled studies, in some cases approaching the performance of experienced dermatologists in differentiating between benign and malignant skin lesions.

➤ *Early Detection:*

AI's ability to identify early, subtle changes in lesion morphology makes it a powerful tool for detecting skin cancers like melanoma in their initial stages. Early detection is crucial, as it significantly increases treatment success rates and reduces the likelihood of metastasis. AI enhances clinicians' ability to flag suspicious lesions sooner, often before they become clinically evident.

➤ *Workflow Efficiency:*

By rapidly analyzing dermoscopic images and flagging high-risk lesions for closer examination, AI streamlines the diagnostic workflow. This is particularly beneficial in high-volume practices or teledermatology settings where clinicians face time constraints. Automation of routine assessments allows dermatologists to allocate more time to complex cases and patient consultations.

➤ *Decision Support:*

AI serves as an objective, data-driven second opinion that supports clinical judgment, particularly in ambiguous or borderline cases. It helps reduce diagnostic errors and cognitive fatigue by offering consistent interpretations, which is especially valuable during busy clinical hours or when dealing with rare lesion types.

➤ *Mobile Health and Teledermatology:*

The integration of AI into mobile applications empowers patients to monitor their skin health using smartphones. These tools can analyze photos of skin lesions, provide risk assessments, and alert users when professional evaluation is recommended. This technology greatly enhances access to dermatologic services in remote, underserved, or rural regions where specialist care may be limited.

➤ *Standardization:*

One of the most significant contributions of AI is its ability to provide uniform assessments across diverse clinical settings. By minimizing variability linked to individual clinician experience or subjective interpretation, AI promotes consistency in lesion evaluation. This leads to more equitable care and helps maintain high diagnostic standards regardless of provider background or geographic location.

V. CHALLENGES AND CONSIDERATIONS

Despite the promise of AI-integrated dermoscopy, several critical challenges must be addressed:

➤ *Data Quality and Diversity:*

AI requires high-quality, annotated, and diverse datasets. Variability in image quality, lighting, and skin types can introduce bias and limit applicability.

➤ *Explainability and Trust:*

Many AI systems function as opaque "black boxes." Explainable AI (XAI) methods—such as attention maps and surrogate models—aim to make AI decisions more transparent. Building clinician trust is crucial.

➤ *Ethical and Regulatory Issues:*

Concerns around data privacy, algorithmic bias, and accountability remain. Regulatory frameworks (e.g., EU AI Act, ICMR guidelines) are still evolving. A stakeholder-inclusive approach is necessary to ensure ethical development.

➤ *Clinical Validation:*

Lab-based results may not translate directly into real-world settings. Multi-center trials are needed to confirm AI's performance across varied clinical environments.

➤ *Workflow Integration:*

For successful adoption, AI tools must integrate seamlessly into existing electronic health records and clinical routines with minimal disruption.

➤ *Interdisciplinary Collaboration:*

A collaborative ecosystem involving dermatologists, developers, regulators, and patients is essential to accelerate responsible AI innovation.

➤ *Algorithmic Bias:*

AI models trained on limited skin tone diversity may underperform in darker skin types, potentially worsening health disparities.

➤ *Medicolegal Accountability:*

Clear frameworks are needed to define liability when AI-assisted decisions contribute to diagnostic errors.

VI. LIMITATIONS OF CURRENT RESEARCH

Most existing studies evaluating AI-assisted dermoscopy are retrospective and rely on curated image

datasets obtained under controlled conditions. There is a lack of large-scale prospective trials and limited evidence linking AI use to long-term patient outcomes such as survival or recurrence rates. Additionally, variability in imaging devices, acquisition techniques, and real-world clinical workflows may affect AI performance. These limitations highlight the need for standardized evaluation protocols and real-world validation prior to widespread clinical adoption.

VII. THE FUTURE OF AI AND DERMOSCOPY: THE ROAD AHEAD

Looking ahead, AI-augmented dermoscopy is poised to continue reshaping skin cancer care through several key innovations. The integration of dermoscopic and clinical data will enable personalized treatment strategies tailored to individual patient profiles, advancing the field of precision medicine. Advanced data synthesis techniques will help generate diverse and representative datasets, including rare lesion types and a broad range of skin tones, thereby improving the generalizability of AI models. Multimodal AI systems, which combine dermoscopic images with clinical context and patient history, will enable more holistic, patient-centered diagnostics. As explainable AI (XAI) methods evolve, the transparency and interpretability of AI-driven decisions will increase, enhancing clinician trust and acceptance.

Future AI tools will also be designed with built-in regulatory compliance, ensuring ethical alignment and legal integrity. Emphasis on usability and seamless integration into existing clinical workflows will support effective clinician-AI collaboration with minimal disruption. Finally, sustained cross-sector collaboration among clinicians, researchers, technologists, and policymakers will be essential for building an inclusive and sustainable ecosystem for AI in dermatology. Together, these innovations represent a paradigm shift in dermatologic practice—one in which AI enhances rather than replaces human expertise, ultimately improving diagnostic outcomes and saving lives.

VIII. CONCLUSION

Artificial intelligence and dermoscopy are reshaping skin cancer diagnostics by uniting advanced computational analysis with non-invasive imaging. This combination offers greater diagnostic accuracy, earlier detection, and streamlined clinical workflows—ultimately enhancing outcomes and access to care.

Despite these advancements, challenges persist, including data bias, ethical considerations, and real-world integration. Addressing them will require continued collaboration among clinicians, developers, regulators, and patients.

With responsible development, rigorous validation, and ethical oversight, AI-assisted dermoscopy has the potential to become a transformative adjunct in skin cancer diagnosis and early intervention.

ACKNOWLEDGEMENT

None

➤ *Conflict of Interest*

The author declares no conflict of interest.

➤ *Funding*

This research received no external funding.

REFERENCES

- [1]. Mendi BI, Kose K, Fleshner L, Adam R, Safai B, Farabi B, et al. Artificial intelligence in the non-invasive detection of melanoma. *Life*. 2024;14(12):1602. doi:10.3390/life14121602
- [2]. Reddy S, Shaheed A, Patel R. Artificial intelligence in dermoscopy: Enhancing diagnosis to distinguish benign and malignant skin lesions. *Cureus*. 2024;16: e54656. doi:10.7759/cureus.54656
- [3]. Witkowski AM, Burshtein J, Christopher M, Cockerell C, Correa L, Cotter D, et al. Clinical utility of a digital dermoscopy image-based artificial intelligence device in the diagnosis and management of skin cancer by dermatologists. *Cancers (Basel)*. 2024;16(21):3592. doi:10.3390/cancers16213592
- [4]. Wolner ZJ, Yélamos O, Liopyris K, Rogers T, Marchetti MA, Marghoob AA. Enhancing skin cancer diagnosis with dermoscopy. *Dermatol Clin*. 2017;35(4):417–437. doi: 10.1016/j.det.2017.06.003
- [5]. European Society for Medical Oncology (ESMO). Man against machine: Artificial intelligence is better than dermatologists at diagnosing skin cancer [Internet]. 2023 May 9 [cited 2026 Jan 1]. Available from: <https://www.esmo.org/newsroom/press-and-media-hub/esmo-media-releases/artificial-intelligence-skin-cancer-diagnosis>
- [6]. De A, Sarda A, Gupta S, Das S. Use of artificial intelligence in dermatology. *Indian J Dermatol*. 2020;65(5):352–357. doi: 10.4103/ijd.ijd_418_20
- [7]. Arnett A. The integration of AI with dermatoscopic diagnosis [Internet]. Dermatology Innovations; 2024 May 17 [cited 2026 Jan 1]. Available from: <https://dermatology-innovation.com/medical-equipment/dermatoscopes/integration-artificial-intelligence-dermatoscopic-diagnosis/>
- [8]. Sengupta D. Artificial intelligence in diagnostic dermatology: Challenges and the way forward. *Indian Dermatol Online J*. 2023;14(6):782–787. doi: 10.4103/idoj.idoj_462_23