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Abstract: Although enzymatic tenderization has proven to be one of the best methods for enhancing the quality of tough 

meat cuts, its industrial use is still restricted because of issues including unchecked proteolysis, the formation of off flavours, 

and uneven textural results. Technologies for encapsulation and immobilization present a viable way to manage enzyme 

activity, control diffusion, boost stability, and increase consistency while tenderizing meat. Despite clear benefits, there are 

still significant technological obstacles, such as a lack of food-grade carriers, a poor comprehension of the release kinetics 

within meat, a lack of comparative studies with free enzymes, and a lack of validated models explaining the interactions 

between enzymes and meat. Current developments in encapsulation and immobilization methods for proteolytic enzymes 

used in meat tenderization are critically assessed in this review. In order to optimize enzyme delivery systems that improve 

meat texture, sensory qualities, safety, and industrial scalability, it is critical to fill in the knowledge gaps regarding the 

science underlying carrier materials, controlled release mechanisms, and the impact of encapsulation and immobilization 

on enzymatic activity, specificity, and physicochemical properties of meat. The review concludes by outlining future research 

directions necessary to promote the use of encapsulated and immobilized enzymes in contemporary meat tenderization. 
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I. INTRODUCTION 

 

Exogenous proteolytic enzymes, such as microbial and 

plant proteases (such as ficin, papain, and bromelain), have 

been shown to be an efficient way to improve meat 

tenderness, especially for lower-grade or collagen-rich cuts.1 

However, conventional techniques like marination, injection, 

and surface treatments that depend on the use of free enzymes 

have serious disadvantages. These include quick and 

unregulated proteolysis, the possibility of over-tenderization 

leading to a mushy or "mealy" texture, unequal penetration 
into meat, increased cooking losses, and detrimental impacts 

on juiciness and flavour.2 

 

The pharmaceutical and food processing industries 

frequently use encapsulation and immobilization 

technologies, especially for the delivery of nutraceuticals and 

functional foods. However, their application in meat 

processing, such as the treatment of meat cuts and evaluation 

of texture, flavour, and consumer acceptability, is notably 

limited, indicating a significant translational gap between 

theoretical concepts and practical implementation.3,4 These 
technologies have been successfully used to regulate the 

activity of enzymatic tenderization processes and improve 

their industrial viability.5 

 

This review explores methods for immobilizing and 

encapsulating proteolytic enzymes used in meat 

tenderization. It identifies major technological and 

knowledge limitations that now restrict their use in industrial 

settings and describes key mechanisms and materials 

involved in these processes. 

 

II. EXISTING CHALLENGES AND RESEARCH 

GAPS 

 

However, there are currently several important 

scientific and technology limitations that prevent the use of 

encapsulated or immobilized enzymes in meat systems. Key 

problems include: 

 

Enzyme release kinetics in meat are poorly understood, 

which is a major problem. The diffusion and release of 

encapsulated enzymes within thick, heterogeneous, and 

organized meat tissue under practical processing conditions 
such as marinating, tumbling, injecting, and sous-vide 

cooking are not well documented. There is a knowledge gap 

that has to be filled in order to maximize the use of enzymes 

in meat tenderization because no regulated release curves 

tailored to meat applications have been published.1,6 

 

Few experimental research have been done on the 

encapsulation of enzymes to prevent over-tenderization in 

meat.5 Additionally, there aren't many comparative 

investigations of free, encapsulated, and immobilized 

enzymes in real meat matrices. The majority of the literature 

now in publication discusses free enzymes, and although 

some research has been done on encapsulated protease 

microcapsules, there has been no assessment of immobilized 

enzyme reactors for meat tenderization in conditions that 

mimic industrial settings.5 

 

Diffusion restrictions and steric hindrance are the main 

ways that encapsulation impacts enzyme activity and 

stability. Nevertheless, there aren't many published research 

that compare the precise peptide profiles and cleavage sites 

of free and encapsulated enzymes in meat. Rather than 
offering precise in situ cleavage site mapping within a meat 

matrix, the majority of research concentrates on the 

preservation of total enzyme activity or the bioactivity of 

peptides produced after digestion.7 

 

There are significant gaps in the practical usage of 

immobilized enzymes for large scale meat tenderization, 

despite the potential financial and environmental benefits of 

immobilization. These deficiencies are especially related to 

the effectiveness, reusability, and influence on meat quality 

results in processing settings.8 

 

The interactions between enzymes carrier and meat are 

not well predicted by any computational or mathematical 

models that have been validated. Existing diffusion or kinetic 

models, which are intended for homogenous liquids, are 

inapplicable in the context of meat due to its structural 

complexity, which includes muscle fibres, connective tissue, 

and changing water content.9 

 

The use of encapsulated enzymes in meat products is not 

yet governed by any defined safety or regulatory framework. 

Several elements of the use of encapsulated enzymes, 
including appropriate carrier materials, the enzymes' residual 

activity after cooking, labelling requirements, and possible 

allergic or migratory issues, have not been formally addressed 

by food regulators. Only free enzymes are covered by current 

laws and safety standards.10 

 

III. CURRENT STATUS OF PROTEOLYTIC 

ENZYMES IN MEAT TENDERIZATION 

 

Plant-derived proteases, including bromelain, ficin, and 

papain, have been the focus of meat tenderization research. 
However, newer proteases like actinidin, cucumisin and 

zingibain, are being explored for their potentially milder and 

more controllable tenderizing effects. Additionally, microbial 

enzymes are becoming increasingly popular due to their cost-

effectiveness, scalability for commercial use, and favorable 

functional properties in food processing.11 

 

Because free enzyme systems are sensitive to different 

processing conditions, including salt, pH, marinating, 

tumbling, and heat, they can produce unpredictable texture 

https://doi.org/10.38124/ijisrt/26jan838
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and flavour results. This inconsistency puts their industrial 

application at risk and creates difficulties.1 

 

IV. ENCAPSULATION 
 

Encapsulation is a process that involves the entrapment 

of enzymes within a carrier material. This technique serves to 

protect the enzymes from direct contact with substrates, 

thereby transforming the incorporation of enzymes into a 

system that allows for controlled release. For many 

applications where careful control of enzyme activity is 

required, this regulated release is beneficial.12 

 

V. ENCAPSULATION MATERIALS USED FOR 

ENZYME DELIVERY IN MEAT SYSTEMS 
 

Materials used for encapsulation must be stable, 

biodegradable, food-grade, and compatible with meat 

matrices.13 Common categories include: 

 

 Polysaccharide-Based Materials 

Alginate, carrageenan, starch derivatives, gum Arabic, 

and cellulose derivatives are examples of polysaccharide-

based compounds that have important benefits such as 

moderate processing  and efficient gelation. However, they 

also have drawbacks, such as inconsistent mechanical 

strength and low heat stability.14 
 

 Protein-Based Materials 

Protein-based substances that are edible, biodegradable, 

and useful for producing films include gelatin, whey protein, 

soy protein isolate, and zein. Nevertheless, they have 

disadvantages such as the possibility of enzyme interactions 

and temperature sensitivity.14 

 

 Lipid-Based and Nano-emulsions 

Lipid-Based and Nano-emulsions, including Liposomes 

and Solid lipid nanoparticles, offer excellent barrier systems, 
but their high cost and instability during cooking are 

drawbacks.15 

 

 Novel Biopolymers for Meat Processing 

Although they lack validation, emerging bio-based 

carriers such as edible plant-derived gums, resistant starches, 

and nanocellulose show promise for usage in meat systems.16 

 

VI. MECHANISMS OF CONTROLLED RELEASE 

FOR ENCAPSULATED ENZYMES IN MEAT 
 

Moisture diffusion during margination, muscle 
contraction and ionic changes, low-temperature cook-in 

(sous-vide) conditions, mechanical tumbling/injection 

pressure, pH or salt gradients, and other factors are commonly 

known to cause release.17,18 

 

VII. BENEFITS OF ENCAPSULATION 
 

This affords several potential benefits which include 

Protection of the structural integrity of enzymes against 

environmental stress like oxidation, pH, salt, and ionic 

strength,19 Protease activity can be released in a controlled, 

delayed, or sustained manner to lower the risk of over-

tenderization,20 Improved shelf life, storage stability, and 

possibly less enzyme autolysis before use,21 Control of 

enzyme activity in meat tissue both spatially and 
temporally.22 

 

VIII. IMMOBILIZATION 

 

Attaching enzymes to solid or semi-solid substrates, 

such as gels, membranes, beads, and polymer matrices, is 

known as immobilization. This technique promotes stability 

throughout processing, minimizes enzyme loss, and allows 

for reuse.23  

 

Immobilization offers several advantages which 
include, important characteristics include localized 

proteolytic activity, increased resistance to denaturation, 

possibility for reuse in industrial systems, and better thermal 

stability.12 

 

IX. NEW DEVELOPMENTS: ENZYME 

ENCAPSULATION FOR FOOD USES 
 

A study used a spray-drying technique with cross-linked 

chitosan to successfully microencapsulate a food-grade 

protease complex (Flavourzyme®). Under ideal 

circumstances, the method produced high encapsulation 
efficiency (≈ 78.6%) and activity yield (≈ 88%), indicating 

the possibility of producing stable protease-loaded 

microcapsules on a wide scale for use in food applications.24  

 

Encapsulation techniques of fixed formalin and 

paraffin,25 microcapsule biosensors,26 penicillinase 

immobilised phase change microcapsules,27 height difference 

nanoindentation,28 and self-assembly technology,29 are a few 

of the promising encapsulation and immobilization 

technologies that have been investigated recently. 

 
Furthermore, encapsulation, immobilization, and 

stabilization have recently been identified as strategic 

approaches to address problems associated with free enzyme 

tenderization in more comprehensive assessments of enzyme 

usage in meat processing. 

 

X. THE POTENTIAL REVOLUTION IN MEAT 

TENDERIZATION THROUGH 

ENCAPSULATION/ IMMOBILIZATION 

 

Technologies for encapsulation or immobilization 

could, if effectively implemented: 
 

 Deliver proteases slowly and in a controlled manner to 

avoid over-tenderization and maintain preferred meat 

texture.30,31,32,33 

 

 Enhance the stability of enzymes throughout handling, 

distribution, and storage, particularly important for 

developing nations with weak cold chains.34,35,36,37 

 

 



Volume 11, Issue 1, January – 2026                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                              https://doi.org/10.38124/ijisrt/26jan838 

 

  

IJISRT26JAN838                                                              www.ijisrt.com                                                                                      2110         

 Improve uniformity throughout a cut by enabling 

consistent enzyme distribution and penetration into 

deeper muscle layers, particularly when combined with 

marinating, injecting, or tumbling.38,39 

 

 Utilise reusable immobilized systems that are appropriate 

for industrial-scale operations to cut down on enzyme 

waste and processing expenses.40,41,42,43 

 

 Improve control over the kinetics of proteolysis to enable 

consistent processing procedures for various meat 

kinds.44,45 

 

 Modulate release profiles to potentially reduce sensory 

adverse effects (bitterness, off flavours). For instance, 
rather than an aggressive breakdown that releases bitter 

peptides all at once, slow release may result in mild, 

progressive proteolysis.46,47,48,49 

 

 Encapsulation/immobilization is therefore a viable 

paradigm shift, particularly for producers looking for 

scalability, cost effectiveness, and consistent quality.50,51 

 

XI. CONCLUSION 

 

By offering regulated and effective enzyme delivery 

systems, encapsulation and immobilization technologies have 
the potential to completely transform meat tenderization. 

Though there are still a lot of unanswered questions about 

enzyme kinetics, release inside meat, impacts on meat quality 

and sensory qualities, variance between meat kinds, and 

regulatory approval, however recent developments, such as 

the microencapsulation of proteases through spray-drying, 

offer promise. To validate these technologies for industrial 

usage, cooperative research involving food engineering, 

materials science, meat biochemistry, and sensory science is 

required. 

 

RECOMMENDATIONS 

 

In order to fully utilize encapsulated or immobilized 

enzymes in meat tenderization, future studies should focus 

on: 

 

 Creating and testing edible, salt-and heat-stable 

encapsulating materials (such as biopolymer gels and 

polysaccharide-protein composites) that are appropriate 

for processing and cooking meat. 

 

 Comparing free, encapsulated, and immobilized enzymes 
in systematic trials on a variety of meat types (beef, goat, 

poultry), cuts (lean, collagen-rich), and processing 

techniques (marination, injection, tumbling). Texture 

(shear force), water-holding capacity, microstructure, 

cooking loss, and sensory evaluation should also be 

determined. 

 

 Creating and verifying computational and mathematical 

models of the diffusion and release kinetics of enzymes 

inside muscle tissue that take temperature, mechanical 

forces, water distribution, fibre orientation, and 

connective tissue barriers into account. 
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