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Abstract: The increasing penetration of non-linear and power-electronic-based loads in industrial distribution systems has 

led to a growing prevalence of power quality (PQ) disturbances such as voltage sags, harmonics, transients, and mixed 

events, which adversely affect equipment reliability and operational efficiency. Conventional PQ assessment techniques 

based on time-domain indices and Fourier analysis are limited in their ability to accurately characterize non-stationary 

and transient disturbances commonly observed in industrial environments. This study presents an advanced PQ 

assessment framework that integrates wavelet-based signal processing with machine learning (ML) classification to enable 

automated, high-resolution disturbance analysis. Multi-level wavelet decomposition is employed to extract discriminative 

time–frequency features, including energy distribution, statistical measures, and entropy, which effectively capture the 

intrinsic characteristics of diverse PQ events. These features are subsequently used to train and evaluate supervised ML 

classifiers, including support vector machines, random forest models, artificial neural networks, and convolutional neural 

networks. The proposed framework is validated using representative industrial distribution system data under varying 

operating conditions, including noisy and mixed PQ scenarios. Comparative results demonstrate that the wavelet–ML 

approach significantly outperforms traditional RMS-, FFT-, and STFT-based methods in terms of classification accuracy 

and robustness. The findings highlight the suitability of the proposed framework for real-time industrial PQ monitoring, 

predictive maintenance, and intelligent decision support, contributing to enhanced reliability and resilience of modern 

industrial power systems. 
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I. INTRODUCTION 

 

 Background and Motivation 

Industrial distribution systems have undergone 

significant transformation over the past three decades due to 

the widespread adoption of power-electronic-based and non-

linear loads such as variable frequency drives (VFDs), 

controlled rectifiers, arc furnaces, and switched-mode power 

supplies. These technologies are essential for improving 

energy efficiency, process controllability, and operational 

flexibility in modern industries; however, they 

fundamentally alter the electrical characteristics of 

distribution networks. Unlike linear loads, non-linear loads 

draw non-sinusoidal currents even when supplied with 

sinusoidal voltages, leading to waveform distortion and 

complex interactions within the power system (Bollen, 

2000; Arrillaga, Watson, & Chen, 2000). 

 

Because of this growing penetration of non-linear 

equipment, industrial power systems increasingly experience 

power quality (PQ) disturbances such as voltage sags, 

swells, harmonics, transients, flicker, and momentary 

interruptions. These disturbances can cause malfunction, 

premature aging, or failure of sensitive equipment, resulting 
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in unplanned downtime, reduced productivity, and 

substantial economic losses (Dugan et al., 2012). Voltage 

sags associated with motor starting or fault conditions are 

particularly critical in industrial plants, while harmonics and 

interharmonics generated by converters and furnaces 

degrade power factor, increase losses, and cause thermal 

stress in transformers and cables (IEEE Std 1159-2019). 

 

Accurate assessment and classification of PQ 

disturbances are therefore essential for effective monitoring, 

mitigation, and compliance with international standards such 

as IEEE 519 and IEC 61000. Traditionally, Fourier-based 

techniques, including Fast Fourier Transform (FFT) 

analysis, have been widely used for PQ evaluation due to 

their mathematical simplicity and effectiveness in steady-

state harmonic analysis. However, industrial PQ 

disturbances are inherently non-stationary and time-

localized in nature, particularly events such as transients, 

voltage sags, and flicker. Fourier methods assume signal 

stationarity over the analysis window and provide only 

global frequency information, making them inadequate for 

capturing time-varying and short-duration disturbances with 

sufficient resolution (Santoso et al., 2000; Dash et al., 2003). 

 

These limitations have motivated the exploration of 

advanced signal processing techniques capable of joint 

time–frequency analysis. In particular, the wavelet transform 

has emerged as a powerful tool for PQ assessment because it 

enables multi-resolution decomposition of signals, allowing 

transient and non-stationary events to be localized 

simultaneously in time and frequency domains (Mallat, 

1999; Ribeiro, Duque, Silveira, & Cerqueira, 2014). When 

combined with machine learning–based classification 

methods, wavelet-derived features can further support 

automated, accurate, and scalable PQ disturbance 

identification in complex industrial environments. This 

integrated approach addresses the shortcomings of 

conventional Fourier analysis and aligns with the growing 

demand for intelligent monitoring solutions in modern 

industrial distribution systems. 

 

 Power Quality Challenges in Industrial Distribution 

Networks 

Industrial distribution networks face persistent power 

quality (PQ) challenges arising from the operation of 

sensitive equipment and complex load dynamics. Modern 

industrial processes increasingly rely on automation 

systems, programmable logic controllers (PLCs), variable 

speed drives, and digital control electronics, all of which are 

highly susceptible to PQ disturbances. Events such as 

voltage sags, swells, harmonics, and transients can trigger 

nuisance tripping, data corruption, process interruptions, and 

premature equipment degradation. These effects translate 

directly into reduced productivity, increased maintenance 

requirements, and substantial economic losses due to 

downtime and product quality deviations (Dugan et al., 

2012). In continuous-process industries, even short-duration 

PQ events can disrupt entire production cycles, amplifying 

their financial impact. 

 

Beyond operational consequences, PQ disturbances 

impose additional costs related to energy inefficiency and 

asset lifespan reduction. Harmonic distortion increases 

copper and core losses in transformers, causes overheating 

in motors, and accelerates insulation aging in cables. 

Voltage fluctuations and flicker further degrade system 

performance and operator safety, particularly in 

environments with large fluctuating loads such as arc 

furnaces and rolling mills (Bollen, 2000). As industrial 

facilities expand and integrate more power-electronic 

converters, these challenges become increasingly difficult to 

manage using conventional monitoring approaches. 

 

To mitigate these risks, regulatory bodies have 

established standards to control and assess PQ levels in 

electrical systems. IEEE 519 provides recommended limits 

on harmonic voltage and current distortion to ensure 

compatibility between utility supplies and customer 

equipment, while the IEC 61000 series defines measurement 

methods, immunity levels, and emission limits for PQ 

disturbances. Compliance with these standards is essential 

not only for maintaining system reliability but also for 

avoiding penalties, contractual disputes, and equipment 

warranty violations (IEEE Standards Association, 2014; 

IEC, 2014). However, meeting these requirements in 

industrial environments is challenging due to the dynamic 

and non-stationary nature of PQ events. 

 

These regulatory and operational pressures underscore 

the need for real-time, high-resolution PQ monitoring 

systems capable of capturing transient and evolving 

disturbances. Traditional steady-state measurement tools are 

insufficient for detecting short-duration or overlapping PQ 

events. Consequently, there is growing demand for 

intelligent monitoring frameworks that combine advanced 

signal processing with automated disturbance classification. 

Such systems enable rapid diagnosis, root-cause analysis, 

and proactive mitigation, supporting both regulatory 

compliance and resilient industrial operation (Ribeiro et al., 

2014). 

 

 Role of Wavelet Transform and Machine Learning 

The assessment of power quality (PQ) disturbances in 

industrial distribution networks requires analytical 

techniques capable of accurately capturing non-stationary 

and transient signal characteristics. Traditional signal 

processing methods based on Fourier analysis provide 

global frequency information but lack temporal resolution, 

limiting their effectiveness for short-duration and time-

varying PQ events. The wavelet transform overcomes this 

limitation by offering multi-resolution time–frequency 

analysis, enabling localized examination of signal features 

across different frequency bands and time scales. By 

decomposing electrical signals into wavelet coefficients at 

multiple resolutions, transient phenomena such as voltage 

sags, impulsive transients, and switching events can be 

precisely identified in both time and frequency domains 

(Mallat, 1999; Santoso et al., 2000). This capability makes 

wavelet-based analysis particularly well suited for industrial 

PQ monitoring, where disturbances often occur abruptly and 

evolve dynamically. 
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Beyond signal representation, effective PQ assessment 

also requires robust classification of disturbance types to 

support diagnosis and mitigation. Machine learning (ML) 

techniques provide powerful tools for intelligent pattern 

recognition by learning discriminative features from data 

rather than relying on fixed thresholds or heuristic rules. 

Supervised learning algorithms such as support vector 

machines, artificial neural networks, and decision-tree-based 

classifiers have demonstrated strong performance in 

distinguishing among complex PQ events, including mixed 

and overlapping disturbances (Dash et al., 2003; Ribeiro et 

al., 2014). ML-based classifiers are capable of handling 

high-dimensional feature spaces, adapting to varying 

operating conditions, and improving accuracy as more 

labeled data become available. 

 

The integration of wavelet transform–based feature 

extraction with ML-driven classification creates a 

synergistic framework for advanced PQ assessment. 

Wavelet analysis provides compact and informative time–

frequency features such as energy distribution, entropy, and 

statistical descriptors—that effectively capture the intrinsic 

characteristics of PQ disturbances. These features serve as 

high-quality inputs to ML classifiers, enhancing their ability 

to generalize and discriminate between disturbance classes 

with high reliability (Santoso et al., 2000). This hybrid 

approach combines the interpretability and physical 

relevance of signal processing with the adaptive intelligence 

of data-driven models, enabling automated, real-time, and 

scalable PQ monitoring solutions. As industrial power 

systems continue to grow in complexity, the wavelet–ML 

paradigm represents a critical advancement toward 

intelligent power quality management and resilient industrial 

operation. 

 

 Research Objectives and Contributions 

The primary objective of this study is to advance 

power quality (PQ) assessment methodologies for industrial 

distribution systems by integrating wavelet-based signal 

processing with machine learning (ML) driven classification 

techniques. Industrial PQ signals are often characterized by 

non-stationary, transient, and overlapping disturbances that 

are inadequately captured by conventional analysis tools. To 

address this challenge, the first objective of this research is 

to develop a robust wavelet-based feature extraction 

framework capable of decomposing industrial PQ signals 

into informative time frequency representations. By 

leveraging multi-resolution wavelet analysis, the framework 

aims to isolate transient behaviours, capture localized 

frequency variations, and generate discriminative features 

that reflect the intrinsic characteristics of different PQ 

disturbances. 

 

The second objective is to design and evaluate ML 

classifiers for automated identification and classification of 

PQ events. Using wavelet-derived features as inputs, various 

supervised ML models are trained to recognize common 

industrial PQ disturbances such as voltage sags, swells, 

harmonics, transients, and composite events. The 

performance of these classifiers is systematically evaluated 

to determine their accuracy, robustness, and generalization 

capability under varying operating conditions, thereby 

enabling intelligent and scalable PQ monitoring without 

reliance on manual interpretation or fixed threshold rules. 

 

A further objective of this research is to validate the 

proposed wavelet ML framework using data obtained from 

industrial distribution systems, including either field 

measurements, laboratory test systems, or high-fidelity 

simulations representative of real industrial environments. 

This validation ensures that the proposed approach is 

practically applicable and capable of handling realistic noise 

levels, load variations, and disturbance combinations 

commonly observed in industrial networks. 

 

The key contributions of this study include the 

development of an integrated wavelet-based feature 

extraction and ML classification framework tailored 

specifically for industrial PQ assessment, comprehensive 

performance evaluation using industrially relevant data, and 

a quantitative demonstration of improved disturbance 

detection and classification accuracy compared to traditional 

Fourier-based PQ assessment techniques. Collectively, these 

contributions support the deployment of intelligent, real-

time PQ monitoring systems that enhance reliability, 

compliance, and operational efficiency in modern industrial 

distribution networks. 

 

II. POWER QUALITY DISTURBANCES IN 

INDUSTRIAL SYSTEMS 

 

Power quality (PQ) disturbances in industrial systems 

encompass a wide range of electrical phenomena that 

deviate from ideal sinusoidal voltage and current 

waveforms. Common PQ events are typically classified into 

categories such as voltage sags, voltage swells, 

interruptions, harmonics, interharmonics, transients, and 

voltage flicker. Voltage sags short-duration reductions in 

RMS voltage are among the most frequently reported 

disturbances in industrial environments and are often caused 

by motor starting, short-circuit faults, or transformer 

energization. In contrast, voltage swells and interruptions 

usually arise from sudden load changes or upstream 

switching operations. Harmonic distortion results from the 

operation of non-linear loads, including variable frequency 

drives, rectifiers, and arc furnaces, which inject non-

sinusoidal currents into the distribution network (Bollen, 

2000; Dugan et al., 2012). 

 

Each class of PQ disturbance exhibits distinct temporal 

and spectral characteristics that influence its impact on 

industrial systems. Harmonics are typically steady-state 

phenomena characterized by integer multiples of the 

fundamental frequency, while transients and impulsive 

disturbances are high-frequency, short-duration events 

associated with capacitor switching, lightning strikes, or 

power-electronic commutations. Voltage flicker is a low-

frequency modulation of voltage magnitude caused by 

rapidly fluctuating loads such as arc furnaces and welding 

equipment. The non-stationary nature and overlapping 

occurrence of these events complicate accurate detection 
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and classification, particularly in complex industrial 

distribution networks (IEEE Standards Association, 2019). 

 

The effects of PQ disturbances on industrial loads and 

grid reliability are significant and multifaceted. Sensitive 

equipment such as programmable logic controllers (PLCs), 

adjustable speed drives, and process control systems can 

malfunction or shut down in response to even brief voltage 

variations. Harmonic distortion increases thermal stress in 

motors, transformers, and capacitors, leading to reduced 

efficiency and shortened equipment lifespan. Frequent PQ 

events also contribute to nuisance tripping of protection 

devices, compromising process continuity and system 

stability (Arrillaga et al., 2000). At the grid level, 

widespread PQ issues can degrade overall power system 

reliability, increase losses, and interfere with the operation 

of neighbouring facilities connected to the same distribution 

network. 

 

Given these consequences, effective identification and 

characterization of PQ disturbances are critical for industrial 

power system planning, operation, and maintenance. 

Accurate PQ assessment supports informed mitigation 

strategies, improved asset management, and compliance 

with international standards, ultimately enhancing both 

industrial productivity and distribution grid resilience. 

 

 Conventional Power Quality Analysis Techniques 

Conventional power quality (PQ) analysis techniques 

have long been employed in industrial distribution systems 

to monitor and quantify deviations from ideal electrical 

waveforms. Among the most widely used approaches are 

root mean square (RMS) measurements, Fast Fourier 

Transform (FFT) based spectral analysis, and Short-Time 

Fourier Transform (STFT) techniques. RMS-based indices 

provide a simple and effective means of evaluating steady-

state voltage and current magnitude variations and are 

commonly used for detecting long-duration events such as 

sustained undervoltage, overvoltage, and interruptions. Due 

to their low computational complexity, RMS measurements 

are widely implemented in power quality meters and 

protective relays for routine monitoring (Dugan et al., 2012). 

 

FFT-based analysis extends RMS assessment by 

decomposing signals into their frequency components, 

enabling the identification and quantification of harmonic 

distortion. This method is particularly effective for analysing 

steady-state harmonics generated by non-linear industrial 

loads, such as rectifiers and adjustable speed drives, and 

remains a cornerstone of harmonic compliance evaluation 

under standards such as IEEE 519. However, FFT assumes 

signal stationarity over the analysis window and provides 

only frequency-domain information averaged across time. 

As a result, it is poorly suited for capturing non-stationary 

PQ events, including voltage sags, impulsive transients, and 

rapidly evolving disturbances commonly observed in 

industrial environments (Arrillaga et al., 2000; Bollen, 

2000). 

 

To address some of these limitations, the STFT was 

introduced as a time–frequency analysis technique by 

applying FFT over sliding time windows. STFT enables 

limited temporal localization of spectral content and has 

been applied to PQ monitoring for identifying events with 

moderate time variation. Nevertheless, STFT suffers from 

an inherent trade-off between time and frequency resolution 

determined by the fixed window length. A narrow window 

improves time resolution but degrades frequency resolution, 

while a wider window enhances frequency resolution at the 

expense of temporal accuracy. This fixed-resolution 

constraint limits STFT’s effectiveness in detecting short-

duration transients and overlapping PQ disturbances with 

diverse spectral characteristics (Gabor, 1946; Dash et al., 

2003). 

 

Overall, while RMS, FFT, and STFT-based techniques 

remain useful for steady-state and compliance-oriented PQ 

assessment, their limited ability to represent transient and 

non-stationary phenomena restricts their applicability in 

modern industrial distribution networks. These limitations 

have driven the adoption of advanced time–frequency 

analysis methods, such as wavelet transforms, that offer 

adaptive resolution and improved disturbance localization. 

 

 Wavelet Transform in Power Quality Analysis 

The wavelet transform has emerged as a powerful tool 

for power quality (PQ) analysis due to its ability to represent 

electrical signals in both time and frequency domains with 

adaptive resolution. Unlike conventional Fourier-based 

techniques, wavelet-based methods are well suited for 

analysing non-stationary and transient PQ disturbances 

commonly encountered in industrial distribution systems. 

Among the most widely applied wavelet techniques in PQ 

analysis are the Discrete Wavelet Transform (DWT), 

Wavelet Packet Transform (WPT), and Continuous Wavelet 

Transform (CWT), each offering distinct analytical 

advantages (Mallat, 1999; Santoso et al., 2000). 

 

The DWT decomposes a signal into approximation and 

detail coefficients across multiple resolution levels using a 

pair of low-pass and high-pass filters. This hierarchical 

decomposition enables efficient identification of transient 

disturbances such as voltage sags, swells, and impulsive 

events while maintaining low computational complexity, 

making DWT suitable for real-time PQ monitoring. The 

WPT extends the DWT by decomposing both approximation 

and detail components, resulting in a more detailed 

frequency-band representation. This enhanced spectral 

resolution is particularly useful for analysing harmonics and 

interharmonics generated by non-linear industrial loads. In 

contrast, the CWT provides a highly redundant but 

continuous time–frequency representation, offering superior 

visualization and precise localization of PQ events, albeit at 

a higher computational cost (Ribeiro et al., 2014). 

 

A critical aspect of wavelet-based PQ analysis is the 

selection of an appropriate mother wavelet, as it directly 

influences disturbance detection accuracy and feature 

discrimination. Mother wavelets such as Daubechies (db), 

Symlets (sym), and Coiflets (coif) are commonly employed 

in PQ applications due to their compact support, 

orthogonality, and similarity to PQ disturbance waveforms. 
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Studies have shown that Daubechies wavelets, particularly 

db4 and db6, provide an effective balance between time 

localization and frequency resolution for industrial PQ 

signals (Santoso et al., 2000; Misiti et al., 2009). 

 

Wavelet transforms also enable the extraction of 

informative features that characterize PQ disturbances 

quantitatively. Commonly extracted features include wavelet 

energy distribution across decomposition levels, Shannon 

entropy to measure signal complexity, statistical measures 

such as variance and standard deviation, and selected 

wavelet coefficients representing localized transient 

behaviour. These features capture both temporal and spectral 

characteristics of PQ events and serve as effective inputs for 

subsequent machine learning–based classification and 

decision-making processes. As a result, wavelet-based 

feature extraction has become a cornerstone of advanced and 

intelligent PQ assessment frameworks. 

 

 Machine Learning Approaches for Power Quality 

Classification 

Machine learning (ML) techniques have become 

integral to modern power quality (PQ) disturbance 

classification due to their ability to learn complex, non-

linear relationships from data and to generalize across 

varying operating conditions. In supervised learning 

settings—where PQ events are labeled a priori—algorithms 

such as Support Vector Machines (SVM), k-Nearest 

Neighbours (k-NN), Random Forest (RF), Artificial Neural 

Networks (ANN), and Convolutional Neural Networks 

(CNN) have been widely applied. SVMs are particularly 

effective for PQ classification because they construct 

optimal separating hyperplanes in high-dimensional feature 

spaces and exhibit strong generalization performance with 

limited training samples. k-NN classifiers, while simpler, are 

effective for PQ problems with well-separated feature 

clusters and provide competitive accuracy when 

computational latency is acceptable (Dash et al., 2003; 

Zhang et al., 2015). 

 

Tree-based ensemble methods such as Random Forests 

offer robustness to noise and feature redundancy by 

aggregating decisions from multiple randomized decision 

trees. Their interpretability and resistance to overfitting 

make them suitable for industrial PQ monitoring 

applications. ANN-based models further enhance 

classification capability by learning hierarchical feature 

representations from wavelet-derived inputs. More recently, 

CNNs have been employed to automatically extract spatial 

and temporal features from time–frequency representations 

such as scalograms, reducing dependence on manual feature 

engineering and achieving high classification accuracy for 

complex and composite PQ disturbances (Ribeiro et al., 

2014). 

 

Given the high dimensionality of wavelet-based feature 

sets, feature selection and dimensionality reduction play a 

critical role in improving classifier performance and 

computational efficiency. Techniques such as principal 

component analysis (PCA), linear discriminant analysis 

(LDA), and mutual information–based feature selection are 

commonly used to remove redundant or irrelevant features 

while preserving discriminative information. Effective 

feature reduction not only enhances classification accuracy 

but also reduces training time and improves real-time 

deployment feasibility in industrial environments (Mallat, 

1999; Santoso et al., 2000). 

 

Performance evaluation of ML-based PQ classifiers 

relies on standardized metrics to ensure objective 

comparison across studies. Commonly used metrics include 

classification accuracy, precision, recall, F1-score, and 

confusion matrices, which collectively capture correctness, 

robustness, and class-wise performance. In real-time PQ 

applications, computational complexity and response latency 

are also critical evaluation criteria. Together, these metrics 

provide a comprehensive assessment of classifier 

effectiveness and suitability for deployment in industrial 

distribution systems. 

 

 Research Gaps 

Despite significant progress in power quality (PQ) 

monitoring and classification research, several critical gaps 

remain, particularly with respect to industrial distribution 

environments. A large portion of existing PQ studies relies 

on synthetic signals or laboratory-scale test systems that do 

not fully capture the complexity, load diversity, and 

operational variability of real industrial networks. Industrial 

distribution systems are characterized by frequent load 

switching, high penetration of power-electronic converters, 

and simultaneous occurrence of multiple disturbances, 

which can significantly affect signal characteristics. 

Consequently, methods validated primarily on simplified or 

simulated datasets may not generalize effectively to real-

world industrial settings (Bollen, 2000; Dugan et al., 2012). 

 

Another notable gap is the limited and inconsistent 

comparison of machine learning (ML) classifiers when 

applied to wavelet-based PQ features. While numerous 

studies demonstrate the effectiveness of individual 

classifiers such as support vector machines or neural 

networks comparative evaluations across multiple ML 

techniques using a unified wavelet feature set are relatively 

scarce. Differences in datasets, feature extraction methods, 

and evaluation metrics further complicate objective 

benchmarking across studies. This lack of systematic 

comparison makes it difficult to identify optimal classifier–

feature combinations for industrial PQ applications and 

limits reproducibility and standardization of research 

outcomes (Santoso et al., 2000; Zhang et al., 2015). 

 

Furthermore, many existing PQ assessment 

frameworks prioritize classification accuracy without 

sufficient consideration of scalability and real-time 

deployment requirements. Industrial PQ monitoring systems 

must process high-frequency data streams with minimal 

latency to enable timely disturbance detection and 

mitigation. However, computational complexity associated 

with high-dimensional wavelet features and complex ML 

models can hinder real-time performance, particularly in 

resource-constrained environments. There is therefore a 

clear need for PQ assessment frameworks that balance 
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accuracy with computational efficiency, scalability, and 

robustness, enabling practical implementation in online 

monitoring systems and smart industrial grids (Ribeiro et al., 

2014). 

 

Addressing these gaps requires research that focuses 

explicitly on industrial distribution data, conducts 

comprehensive comparative evaluations of ML classifiers 

using standardized wavelet-based features, and emphasizes 

real-time feasibility. Such efforts are essential to advance 

PQ assessment from experimental studies toward 

deployable, intelligent monitoring solutions for modern 

industrial power systems. 

 

III. SYSTEM DESCRIPTION AND 

DATA ACQUISITION 

 

The system under study represents a typical medium- 

to low-voltage industrial distribution network supplying a 

mix of linear and non-linear loads commonly found in 

manufacturing and process industries. The configuration 

generally includes an incoming utility supply or dedicated 

substation transformer feeding multiple distribution feeders 

that serve variable frequency drives, induction motors, 

rectifier units, welding machines, and auxiliary control 

equipment. Such a configuration is representative of 

industrial environments where frequent load switching, and 

power-electronic interfaces introduce diverse power quality 

(PQ) disturbances. The distribution system is modeled to 

capture realistic operating conditions, including feeder 

impedance, transformer characteristics, and load variability, 

ensuring that the acquired data reflect actual industrial PQ 

behaviour. 

 

Data acquisition is performed using a high-resolution 

measurement setup designed to capture both steady-state 

and transient PQ events. Voltage and current signals are 

measured at critical points in the distribution network, such 

as the point of common coupling (PCC) and selected feeder 

terminals. Hall-effect or potential transformer–based voltage 

sensors and current transformers (CTs) are employed to 

ensure electrical isolation and measurement accuracy. To 

adequately capture high-frequency transients and rapid 

waveform distortions, signals are sampled at a sufficiently 

high sampling frequency, typically several kilohertz or 

higher, in accordance with power quality monitoring 

standards. Anti-aliasing filters are applied prior to analog-to-

digital conversion to prevent spectral distortion and 

measurement errors. 

 

The dataset used in this study is obtained from a 

combination of sources to ensure robustness and 

generalizability of the proposed approach. Simulated PQ 

signals are generated using detailed industrial distribution 

system models to produce controlled disturbance scenarios 

such as voltage sags, harmonics, and switching transients. In 

addition, laboratory test systems are employed to validate 

measurement accuracy under repeatable conditions using 

programmable power sources and controlled non-linear 

loads. Where available, field measurements from operating 

industrial facilities are incorporated to capture real-world 

variability, noise, and mixed PQ events. This multi-source 

data acquisition strategy provides a comprehensive dataset 

for developing, training, and validating the wavelet-based 

feature extraction and machine learning classification 

framework under realistic industrial operating conditions. 

 

 Power Quality Signal Preprocessing 

Effective preprocessing of power quality (PQ) signals 

is a critical step in ensuring accurate feature extraction and 

reliable classification of disturbances in industrial 

distribution systems. Raw voltage and current measurements 

acquired from industrial environments are often 

contaminated with measurement noise, sensor offsets, and 

interference from adjacent equipment. If not properly 

addressed, these artifacts can obscure disturbance 

characteristics and degrade the performance of subsequent 

wavelet-based analysis and machine learning (ML) 

classifiers. 

 

 Noise Filtering and Normalization 

Noise filtering is first applied to suppress high-

frequency measurement noise while preserving essential PQ 

disturbance components. Digital filtering techniques, such as 

low-pass finite impulse response (FIR) or band-pass filters, 

are commonly employed to remove noise outside the 

frequency range of interest. In PQ applications, the filter 

cutoff frequency is selected to retain fundamental, harmonic, 

and transient components relevant to disturbance analysis 

(Dugan et al., 2012). For impulsive noise or non-Gaussian 

interference, wavelet-based denoising is often preferred, as 

it exploits multi-resolution decomposition to attenuate noise-

dominated coefficients while preserving signal features 

(Mallat, 1999). 

 

Following noise suppression, signal normalization is 

performed to ensure numerical stability and comparability 

across datasets collected under different operating 

conditions. Normalization scales the signal amplitude to a 

common reference, reducing bias caused by voltage level 

variations or sensor gains. A commonly used normalization 

approach is min–max scaling, defined as 

 

𝑥norm(𝑛) =
𝑥(𝑛) − 𝑥min

𝑥max − 𝑥min

, 

 

Where 𝑥(𝑛) is the original signal sample, 

and 𝑥min and 𝑥max are the minimum and maximum values 

of the signal over the observation window. Alternatively, z-

score normalization is applied to centre the signal around 

zero with unit variance: 

 

𝑥norm(𝑛) =
𝑥(𝑛) − 𝜇

𝜎
, 

 

Where 𝜇 and 𝜎 denote the mean and standard deviation 

of the signal, respectively. Normalization improves the 

convergence and classification accuracy of ML algorithms 

by ensuring that extracted features lie within comparable 

numerical ranges (Santoso et al., 2000). 
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 Segmentation of Power Quality Events 

Segmentation involves identifying and isolating time 

intervals that contain PQ disturbances from continuous 

signal recordings. Accurate segmentation is essential for 

associating extracted features with specific PQ events and 

avoiding contamination from normal operating conditions. 

Event segmentation is typically based on sliding window 

analysis combined with thresholding of signal indices such 

as RMS deviation, wavelet energy, or instantaneous 

amplitude changes. For example, a voltage sag event can be 

detected when the RMS voltage 𝑉RMS falls below a 

predefined threshold: 

 

𝑉RMS = √
1

𝑁
∑𝑣2
𝑁

𝑛=1

(𝑛) < 𝛼𝑉nom, 

 

Where 𝑉nom is the nominal voltage and 𝛼 is a threshold 

factor defined by PQ standards. 

 

Wavelet-based segmentation methods further enhance 

detection accuracy by exploiting abrupt changes in wavelet 

coefficients that correspond to disturbance onset and 

termination. Such approaches are particularly effective for 

non-stationary and short-duration events, including 

transients and flicker. Proper segmentation ensures that each 

PQ event is accurately localized in time, enabling reliable 

feature extraction and subsequent ML-based classification 

(Ribeiro et al., 2014). 

 

 Wavelet-Based Feature Extraction 

Wavelet-based feature extraction forms the core 

analytical stage of the proposed power quality (PQ) 

assessment framework, as it enables compact and 

discriminative representation of non-stationary PQ 

disturbances in industrial distribution systems. By 

decomposing voltage and current signals into multiple time–

frequency components, wavelet analysis captures both 

transient and steady-state characteristics that are essential 

for reliable disturbance classification. 

 

 Selection of Mother Wavelet 

The choice of an appropriate mother wavelet 

significantly influences the effectiveness of PQ feature 

extraction. In industrial PQ applications, mother wavelets 

are selected based on their similarity to PQ disturbance 

waveforms, compact support, and good time–frequency 

localization properties. Daubechies (db) and Symlets (sym) 

wavelets are among the most widely adopted due to their 

orthogonality and ability to capture abrupt changes in signal 

behavior. In particular, Daubechies wavelets such as db4 

and db6 have been shown to provide an effective balance 

between temporal resolution and frequency selectivity for 

detecting voltage sags, harmonics, and transients, while 

Symlets offer improved symmetry and reduced phase 

distortion for feature consistency (Santoso et al., 2000; 

Mallat, 1999). 

 

 

 

 Multi-Level Wavelet Decomposition 

Using the selected mother wavelet, PQ signals are 

decomposed through multi-level Discrete Wavelet 

Transform (DWT) analysis. At each decomposition level 𝑗, 
the signal 𝑥(𝑛) is separated into approximation 

coefficients 𝐴𝑗 and detail coefficients 𝐷𝑗  using low-pass and 

high-pass filtering followed by down sampling: 

 

𝐴𝑗(𝑛) =∑𝑥(𝑘) 

𝑘

𝑔𝑗(𝑛 − 𝑘), 𝐷𝑗(𝑛) =∑𝑥(𝑘) 

𝑘

ℎ𝑗(𝑛 − 𝑘), 

 

Where 𝑔𝑗 and ℎ𝑗 represent the scaled low-pass and 

high-pass wavelet filters, respectively. Higher 

decomposition levels correspond to lower frequency bands, 

allowing isolation of fundamental and harmonic 

components, while lower levels capture high-frequency 

transients and impulsive disturbances. This hierarchical 

structure enables effective representation of PQ events 

across multiple frequency scales. 

 

 Feature Computation 

From the resulting wavelet coefficients, a set of 

quantitative features is computed to characterize PQ 

disturbances. One of the most commonly used features is 

wavelet energy, which reflects the signal power distribution 

across different scales: 

 

𝐸𝑗 = ∑ ∣

𝑁𝑗

𝑛=1

𝐷𝑗(𝑛) ∣
2, 

 

Where 𝐸𝑗 denotes the energy at decomposition level 𝑗, 

and 𝑁𝑗 is the number of coefficients at that level. Different 

PQ events exhibit distinct energy patterns across scales, 

making this feature highly discriminative. 

 

In addition to energy, statistical features are extracted 

from the wavelet coefficients to capture signal variability 

and complexity. These include the mean 𝜇𝑗, standard 

deviation 𝜎𝑗, and Shannon entropy 𝐻𝑗, defined as 

 

𝜇𝑗 =
1

𝑁𝑗
∑𝐷𝑗

𝑁𝑗

𝑛=1

(𝑛), 𝜎𝑗 = √
1

𝑁𝑗
∑(

𝑁𝑗

𝑛=1

𝐷𝑗(𝑛) − 𝜇𝑗)
2, 

 

𝐻𝑗 = −∑𝑝𝑗

𝑁𝑗

𝑛=1

(𝑛)log⁡𝑝𝑗(𝑛), 

 

Where 𝑝𝑗(𝑛) represents the normalized energy 

probability of the wavelet coefficients. Entropy measures the 

degree of disorder within the signal and is particularly 

effective for distinguishing transient and impulsive PQ 

events. 

 

Collectively, these wavelet-derived features form 

time–frequency signatures that uniquely characterize 

different PQ disturbances. By capturing localized spectral 
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content and temporal evolution, the extracted features 

provide a robust and compact representation suitable for 

input into machine learning classifiers, thereby enabling 

accurate and automated PQ disturbance identification in 

industrial distribution systems (Ribeiro et al., 2014). 

 

 Machine Learning Classification Framework 

The machine learning (ML) classification framework is 

designed to enable automated identification of power quality 

(PQ) disturbances using wavelet-derived features. This 

framework consists of systematic dataset labelling, selection 

of suitable classifier models, and rigorous training, 

validation, and testing procedures to ensure reliable and 

generalizable performance in industrial distribution 

environments. 

 

 Dataset Labelling and Class Definitions 

Following signal preprocessing and wavelet-based 

feature extraction, each PQ event segment is labeled 

according to standardized disturbance categories. Class 

definitions typically include voltage sag, voltage swell, 

interruption, harmonic distortion, transient events, flicker, 

and normal operating conditions, in accordance with IEEE 

1159 guidelines. Accurate labelling is achieved using 

disturbance thresholds, expert knowledge, and reference 

events from simulation or laboratory experiments. These 

labeled datasets form the basis for supervised learning, 

enabling classifiers to learn discriminative patterns 

associated with each PQ disturbance class (Ribeiro et al., 

2014). 

 

 Classifier Models 

Several supervised ML classifiers are employed to 

evaluate classification performance and robustness. 

 

 Support Vector Machine (SVM): 

SVM classifiers construct an optimal separating 

hyperplane that maximizes the margin between different PQ 

disturbance classes in a high-dimensional feature space. For 

non-linearly separable data, kernel functions such as the 

radial basis function (RBF) are applied. The SVM 

optimization problem is expressed as 

 

min⁡
w,𝑏,𝜉

1

2
∥ w ∥2+ 𝐶∑𝜉𝑖

𝑁

𝑖=1

 

 

Subject to 

 

𝑦𝑖(w ⋅ 𝜙(x𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 
 

Where 𝐱𝑖 represents the feature vector, 𝑦𝑖  the class 

label, 𝜉𝑖 the slack variables, and 𝐶 the regularization 

parameter (Zhang et al., 2015). 

 

 Random Forest (RF): 

Random Forest classifiers are ensemble learning 

methods that combine multiple decision trees trained on 

randomly sampled subsets of data and features. Each tree 

produces a class prediction, and the final output is obtained 

through majority voting. RF models are robust to noise, 

handle feature redundancy effectively, and are well suited 

for high-dimensional wavelet feature sets. 

 

 Artificial Neural Network (ANN) and Convolutional 

Neural Network (CNN): 

ANNs consist of interconnected layers of neurons that 

learn non-linear mappings between input features and output 

classes through backpropagation. CNNs extend this 

capability by automatically learning spatial and temporal 

features from structured inputs such as time–frequency 

representations (e.g., wavelet scalograms). These models are 

particularly effective for complex and composite PQ 

disturbances due to their hierarchical feature learning 

capability (Mallat, 1999). 

 

 Training, Validation, and Testing Procedures 

The labeled dataset is divided into training, validation, 

and testing subsets to ensure unbiased performance 

evaluation. The training set is used to optimize model 

parameters, while the validation set supports hyperparameter 

tuning and prevents overfitting. Final performance 

assessment is conducted on the independent test set. Cross-

validation techniques, such as k-fold cross-validation, are 

employed to enhance robustness and generalization across 

different data partitions. This structured training and 

evaluation process ensures that the proposed ML framework 

delivers reliable and scalable PQ disturbance classification 

suitable for real-time industrial applications. 

 

IV. WAVELET FEATURE ANALYSIS 

 

Wavelet feature analysis was conducted to evaluate the 

ability of multi-resolution decomposition to discriminate 

among different power quality (PQ) disturbances in 

industrial distribution systems. Using Discrete Wavelet 

Transform (DWT), wavelet energy features were extracted 

across multiple decomposition levels corresponding to 

different frequency bands. The analysis demonstrates that 

different PQ events exhibit distinctive energy distribution 

patterns, reflecting their underlying physical and spectral 

characteristics. 

 

Table 1 Wavelet Energy Distribution Across Scales for Different PQ Disturbances 

PQ Disturbance Type 

Low-Frequency Band 

Energy (E₁) 

Mid-Frequency Band 

Energy (E₂) 

High-Frequency Band 

Energy (E₃) 

Normal Operation 82.5 12.1 5.4 

Voltage Sag 64.8 27.6 7.6 

Harmonic Distortion 48.2 41.3 10.5 

Transient Event 21.7 33.9 44.4 
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The numerical results of table 2 show clear separation 

among PQ disturbance types. Normal operation is 

dominated by low-frequency energy associated with the 

fundamental component. Voltage sags exhibit increased 

mid-frequency energy due to abrupt magnitude variations. 

Harmonic distortion spreads energy across low and mid-

frequency bands, while transient events are characterized by 

dominant high-frequency energy, confirming the sensitivity 

of wavelet analysis to fast, impulsive disturbances. 

 

Figure 1 presents a 3×3 arrangement of real-time 

signals drawn from audio, biomedical, geophysical, 

financial, and environmental domains. The top row contrasts 

highly periodic music and speech waveforms with the slow-

varying behavior of seismic tremors. The middle row 

highlights physiological signals and economic time series, 

showing differences in periodicity, noise, and trend 

dynamics. The bottom row illustrates variability-dominated 

signals, where heart rate variability, broadband audio noise, 

and temperature trends emphasize increasing complexity, 

stochasticity, and long-term evolution across domains. 

 

 
Fig 1 Comparative Wavelet Energy Distribution for PQ Disturbances 

 

Figure 2 presents a three-stage representation of a 

periodic signal, progressing from the raw time domain to 

wavelet-based analysis. Panel (a) shows a stationary 

sinusoidal waveform with constant amplitude and frequency 

over the full observation window. Panel (b) illustrates the 

corresponding continuous wavelet transform scalogram, 

where signal energy is distributed across scales, clearly 

revealing dominant low-frequency components over time. 

Panel (c) displays the extracted wavelet coefficients, which 

preserve the underlying oscillatory structure while 

significantly reducing amplitude and noise, making them 

suitable for feature extraction and denoising. 
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Fig 2 Time-Domain, Wavelet Scalogram, and Wavelet Coefficient Representation of a Stationary Sinusoidal Signal 

 

Table 2 Statistical Wavelet Features for Different PQ Disturbances 

PQ Disturbance Type Mean of Coefficients Standard Deviation Wavelet Entropy 

Normal Operation 0.012 0.083 0.42 

Voltage Sag 0.028 0.146 0.67 

Harmonic Distortion 0.031 0.198 0.74 

Transient Event 0.067 0.312 0.91 

 

 Machine Learning Classification Results 

This section evaluates the performance of the proposed 

wavelet–machine learning (ML) framework for power 

quality (PQ) disturbance classification in industrial 

distribution systems. The analysis focuses on (i) 

comparative performance across ML classifiers, (ii) 

accuracy improvements over traditional methods, and (iii) 

robustness under noise and mixed PQ events. 

 

Table 3 Comparative Classification Performance of ML Models 

Classifier Model Overall Accuracy (%) Precision (%) Recall (%) 

SVM (RBF Kernel) 94.6 93.8 94.1 

Random Forest 92.3 91.5 92.0 

ANN 90.7 89.9 90.2 

CNN 96.2 95.6 96.0 
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 Brief Discussion: 

The CNN achieved the highest overall accuracy, 

reflecting its ability to automatically learn hierarchical 

representations from wavelet-based time–frequency inputs. 

SVM also demonstrated strong performance due to its 

margin-maximization property in high-dimensional feature 

spaces. Random Forest and ANN models showed 

competitive but slightly lower accuracy, highlighting trade-

offs between interpretability, computational cost, and 

classification performance. 

 

 

 

 

 Performance Metrics Formulation 

Classification accuracy is computed as: 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, 

 

While precision and recall are defined as: 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

 

Where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 denote true positives, true 

negatives, false positives, and false negatives, respectively. 

Table 4 Accuracy Comparison with Traditional PQ Assessment Methods 

Methodology Feature Type Classifier Used Accuracy (%) 

RMS + Thresholding Time-domain indices Rule-based 71.4 

FFT-Based Harmonic Analysis Frequency-domain Rule-based 78.6 

STFT + Statistical Features Time–frequency k-NN 85.2 

Wavelet + ML (Proposed) Multi-resolution CNN 96.2 

 

Figure 3 presents a side-by-side comparison of 

Gaussian signals in the time domain and their corresponding 

normalized magnitude spectra. The left panel shows that 

increasing the parameter σ\sigma broadens the temporal 

distribution while reducing peak amplitude, indicating 

weaker time localization. The right panel demonstrates that 

larger σ\sigma values lead to narrower spectra with energy 

concentrated at low frequencies, whereas smaller σ\sigma 

values produce wider spectral spread. Together, the plots 

clearly illustrate the fundamental trade-off between time 

resolution and frequency resolution in signal analysis. 

 

 
Fig 3 Time–Frequency Trade-Off Between Gaussian Time-Domain Localization and Spectral Concentration 

 

Table 5 Robustness Under Mixed and Noisy PQ Events 

Classifier Accuracy at SNR = 30 dB (%) Accuracy at SNR = 20 dB (%) Mixed PQ Events Accuracy (%) 

SVM 93.8 90.2 88.7 

RF 91.1 86.5 84.3 

ANN 89.6 83.9 82.1 

CNN 95.4 92.1 91.3 

 

 Brief Discussion: 

Results confirm that the proposed framework remains 

effective under noisy conditions and mixed PQ scenarios, 

which are common in industrial environments. CNN 

consistently shows superior robustness due to its deep 

feature learning capability, while SVM provides a strong 

balance between accuracy and computational efficiency. 
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 Overall Interpretation 

The results demonstrate that wavelet-based features 

combined with advanced ML classifiers deliver substantial 

improvements in PQ disturbance classification accuracy 

compared to traditional techniques. The framework exhibits 

strong robustness to noise and mixed events, validating its 

suitability for real-time, industrial-scale PQ monitoring and 

intelligent decision support. 

 

V. DISCUSSION OF FINDINGS 

 

This section interprets the machine learning 

classification results within realistic industrial power system 

contexts, examines the influence of wavelet choice and 

feature selection on model accuracy, and discusses the 

practical implications for industrial power quality (PQ) 

monitoring systems. 

 

 Interpretation of Classification Performance in 

Industrial Contexts 

The classification results demonstrate that wavelet-

based machine learning models can reliably distinguish 

among PQ disturbances commonly observed in industrial 

distribution networks. High classification accuracy for 

transient and harmonic events is particularly significant, as 

these disturbances are prevalent in facilities with variable 

frequency drives, rectifiers, and rapid load switching. In 

industrial environments, even brief misclassification of PQ 

events can lead to incorrect mitigation actions or delayed 

fault diagnosis. The consistently strong performance of 

CNN and SVM models indicates their suitability for 

environments characterized by noise, load variability, and 

overlapping disturbances. 

 

 

Table 6 Classification Accuracy Across Industrial Operating Conditions 

Operating Condition SVM Accuracy (%) RF Accuracy (%) CNN Accuracy (%) 

Normal Load Operation 96.1 94.2 97.4 

High Non-Linear Load 93.4 91.0 95.8 

Mixed PQ Disturbances 88.7 84.3 91.3 

Noisy Measurement (20 dB) 90.2 86.5 92.1 

 

 Brief Discussion: 

The table shows that classification accuracy decreases 

as operating conditions become more complex; however, 

CNN consistently outperforms other models. This resilience 

is critical for industrial systems where multiple PQ 

disturbances often coexist. 

 

 

 

 Influence of Wavelet Choice and Feature Selection 

The selection of the mother wavelet and feature subset 

significantly impacts classification performance. Wavelets 

with compact support and strong similarity to PQ 

waveforms (e.g., Daubechies and Symlets) produce more 

discriminative coefficients. Additionally, combining energy-

based features with statistical descriptors improves 

robustness, while excessive feature dimensionality leads to 

diminishing returns and increased computational cost. 

 

Table 7 Impact of Wavelet Choice and Feature Set on Classification Accuracy 

Wavelet Type Feature Set Used Number of Features Accuracy (%) 

db4 Energy only 12 90.8 

db4 Energy + Statistics 24 94.6 

sym6 Energy + Statistics 24 95.2 

sym6 Energy + Statistics + Entropy 30 96.2 

 

 Brief Discussion: 

Accuracy improves as richer feature representations 

are used; however, the marginal gain beyond a balanced 

feature set is limited. This highlights the importance of 

feature selection in achieving optimal accuracy–complexity 

trade-offs. 

 

 

 

Figure 4 illustrates how classification accuracy varies 

with the number of neighbors for different feature–transform 

combinations. Hu Moments with DWT show moderate and 

fluctuating accuracy, while Zernike Moments with DWT 

consistently yield lower performance across all K values. In 

contrast, the DDWT-based approaches significantly improve 

accuracy, with Hu Moments + DDWT peaking at low K and 

gradually declining as K increases. Zernike Moments + 

DDWT demonstrates the most stable and highest accuracy, 

remaining close to 100% across all neighbor settings. 
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Fig 4 Classification Accuracy Versus Number of Neighbors for Hu and Zernike Moment Features Using DWT and DDWT 

 

 Practical Implications for Industrial PQ Monitoring 

Systems 

The findings have direct implications for the design 

and deployment of industrial PQ monitoring solutions. First, 

wavelet–ML frameworks enable automated, real-time 

classification of PQ disturbances, reducing dependence on 

expert interpretation. Second, robust performance under 

noisy and mixed-event conditions supports deployment in 

harsh industrial environments. Finally, optimized feature 

selection ensures scalability, allowing implementation on 

embedded systems, smart meters, or edge-computing 

platforms without excessive computational overhead. 

 

Table 8 Practical Trade-Offs for Industrial Deployment 

Design Aspect Traditional PQ Methods Wavelet–ML Framework Industrial Benefit 

Transient Detection Limited High Faster fault response 

Classification Accuracy Moderate Very High Reduced downtime 

Noise Robustness Low High Reliable monitoring 

Scalability High Moderate–High Edge deployment feasible 

 

 Overall Interpretation 

The discussion confirms that integrating wavelet-based 

feature extraction with advanced ML classifiers provides 

both technical superiority and practical viability for 

industrial PQ monitoring. Careful wavelet selection and 

feature optimization are key enablers of high accuracy, 

robustness, and deplorability, positioning the proposed 

framework as a strong candidate for next-generation 

industrial power quality assessment systems. 

 

 Comparison with Existing Studies 

This section benchmarks the proposed hybrid wavelet–

machine learning (ML) framework against representative 

power quality (PQ) classification studies reported in the 

literature and highlights the demonstrated advantages of the 

proposed approach in industrial distribution system contexts. 

 

 

 

 Benchmarking Against Reported Results in Literature 

Several studies have investigated PQ disturbance 

classification using signal processing and ML techniques; 

however, notable differences exist in feature representation, 

classifier robustness, and industrial applicability. Earlier 

approaches relying on FFT or STFT features primarily 

focused on steady-state harmonic analysis and showed 

limited performance for transient and mixed PQ events 

(Santoso et al., 2000). Subsequent studies incorporating 

wavelet-based features improved classification accuracy but 

often evaluated a single classifier or relied on laboratory-

generated datasets, limiting generalizability to real industrial 

environments (Dash et al., 2003; Zhang et al., 2015). 

 

The proposed framework advances the state of the art 

by combining multi-level wavelet feature extraction with 

systematic comparison of multiple ML classifiers and 

validation under noisy and mixed PQ conditions 

representative of industrial systems. 
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Table 9 Benchmark Comparison with Existing PQ Classification Studies 

Study/ Approach Feature Extraction Method Classifier Used Reported Accuracy (%) 

Santoso et al. (2000) DWT (energy features) Rule-based 85.0 

Dash et al. (2003) STFT / S-transform ANN 88.5 

Zhang et al. (2015) DWT (energy + statistics) SVM 94.0 

Ribeiro et al. (2014) Wavelet + signal indices k-NN / ANN 92.3 

Proposed Study Multi-level DWT + entropy CNN 96.2 

 

Figure presents a structured comparison of raw and 

processed signal representations across time, frequency, and 

statistical domains. The first row shows the raw signal, 

where high-amplitude variability and noise are evident in 

both the time-domain waveform and its spectrogram, 

accompanied by boxplots with wide spreads and numerous 

outliers. In contrast, the second row illustrates the processed 

signal, which exhibits reduced amplitude variance and more 

organized spectral patterns, indicating effective noise 

suppression. The corresponding boxplots confirm improved 

feature stability through tighter distributions and fewer 

extreme values, demonstrating the analytical benefit of 

signal preprocessing for robust feature extraction 

The figure contrasts raw and processed signals using 

time-domain waveforms, spectrograms, and feature 

distribution boxplots. The raw signal exhibits high 

amplitude variability, diffuse spectral energy, and wide 

statistical dispersion with numerous outliers. After 

processing, the signal shows reduced noise, clearer spectral 

structure, and more concentrated energy in the time–

frequency domain. The tighter boxplot distributions further 

indicate enhanced feature stability and improved suitability 

for downstream analysis. 

 

 

 
Fig 5 Comparative Time-Domain, Time–Frequency, and Statistical Analysis of Raw and Processed Signals Demonstrating the 

Benefit of Integrating Advanced Feature Extraction with Robust ML Models. 

 

 Demonstrated Advantages of the Proposed Hybrid 

Wavelet–ML Approach 

Beyond raw accuracy, the proposed framework offers 

advantages in robustness, scalability, and industrial 

relevance. Unlike many prior studies that focused on clean 

or single-event datasets, this work evaluates performance 

under noisy measurements and mixed PQ disturbances, 

which are common in real industrial distribution networks. 

The results confirm that deep learning–based classifiers, 

particularly CNNs, maintain high performance where 

traditional and shallow ML models experience degradation. 
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Table 10 Comparative Evaluation Across Key Performance Dimensions 

Evaluation Criterion Traditional Methods 

Existing Wavelet–ML 

Studies 

Proposed Wavelet–ML 

Framework 

Transient Detection Capability Low Moderate High 

Mixed PQ Event Handling Limited Moderate High 

Noise Robustness Low Moderate High 

 

VI. CONCLUSION 

 

This study has demonstrated that wavelet-based feature 

extraction provides a powerful and reliable approach for 

analysing power quality (PQ) disturbances in industrial 

distribution systems. By employing multi-level wavelet 

decomposition, the proposed framework effectively captured 

the time–frequency characteristics of non-stationary and 

transient PQ events such as voltage sags, harmonics, and 

impulsive disturbances. Distinctive wavelet energy 

distributions and statistical features, including entropy and 

variance, enabled clear discrimination among different PQ 

disturbance types, overcoming the limitations of 

conventional RMS-, FFT-, and STFT-based analysis 

techniques. 

 

The results further confirm the effectiveness of 

machine learning (ML) classifiers in automating PQ 

disturbance identification. Supervised models, particularly 

convolutional neural networks and support vector machines, 

achieved high classification accuracy and demonstrated 

strong robustness under noisy conditions and mixed-event 

scenarios. The integration of wavelet-derived features with 

ML classifiers significantly improved classification 

performance compared to traditional rule-based methods, 

enabling reliable and scalable automated PQ assessment 

suitable for complex industrial environments. 

 

Overall, the proposed hybrid wavelet–ML framework 

contributes meaningfully to advanced industrial power 

quality monitoring by providing an intelligent, high-

resolution, and adaptable solution for real-time disturbance 

detection and classification. The findings support the 

deployment of data-driven PQ monitoring systems that 

enhance operational reliability, reduce downtime, and 

facilitate compliance with power quality standards, thereby 

advancing the state of industrial power system management. 

 

VII. PRACTICAL RECOMMENDATIONS 

 

Based on the findings of this study, industrial facilities 

are strongly encouraged to deploy wavelet–machine learning 

(ML) based power quality (PQ) monitoring systems to 

enhance visibility into electrical disturbances and improve 

operational reliability. Such systems should be installed at 

critical monitoring points, particularly at the point of 

common coupling and major feeder lines supplying sensitive 

or non-linear loads. The high time frequency resolution 

provided by wavelet analysis, combined with automated 

ML-based classification, enables early detection and 

accurate identification of PQ events, supporting faster 

response and targeted mitigation strategies in complex 

industrial environments. 

 

To maximize effectiveness and scalability, the 

proposed wavelet ML framework should be integrated with 

existing smart meters, digital relays, and supervisory control 

and data acquisition (SCADA) systems. Integration with 

these platforms allows continuous streaming of high-

resolution voltage and current data, real-time visualization 

of PQ events, and centralized alarm management. 

Embedding intelligent PQ analytics within supervisory 

control systems also facilitates interoperability with energy 

management systems and supports compliance reporting 

with standards such as IEEE 519 and IEC 61000. Edge-

computing implementations can further reduce latency by 

enabling local disturbance detection and classification at the 

measurement node. 

 

Finally, the adoption of wavelet ML-based PQ 

monitoring should be extended to predictive maintenance 

and fault prevention programs. Recurrent patterns of PQ 

disturbances such as increasing harmonic levels or frequent 

transient events can serve as early indicators of equipment 

degradation, insulation failure, or improper load operation. 

By leveraging historical PQ data and ML-driven insights, 

industrial operators can transition from reactive maintenance 

to predictive strategies, reducing unplanned downtime, 

extending asset lifespan, and improving overall system 

resilience. These practical applications position intelligent 

PQ monitoring as a critical component of modern industrial 

reliability and asset management frameworks. 

 

VIII. LIMITATIONS OF THE STUDY 

 

Despite the promising results achieved in this study, 

several limitations should be acknowledged. First, data 

availability and generalization constraints may affect the 

broader applicability of the proposed wavelet–machine 

learning (ML) framework. Although the dataset used in this 

work was designed to represent realistic industrial operating 

conditions through a combination of simulated, laboratory, 

and limited field data, it may not fully capture the diversity 

of industrial distribution networks across different sectors, 

voltage levels, and geographic regions. Variations in load 

composition, network topology, and operating practices can 

influence power quality (PQ) disturbance characteristics, 

potentially impacting model generalization when applied to 

unseen industrial environments. Larger and more diverse 

field datasets are therefore required to further validate and 

enhance the robustness of the proposed approach. 

 

A second limitation relates to the computational 

requirements associated with real-time implementation. 

While wavelet-based feature extraction and advanced ML 

classifiers particularly convolutional neural networks offer 

high classification accuracy, they also introduce increased 

computational complexity. High sampling rates, multi-level 

https://doi.org/10.38124/ijisrt/26jan890
http://www.ijisrt.com/


Volume 11, Issue 1, January – 2026                 International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                               https://doi.org/10.38124/ijisrt/26jan890 

 

 

IJISRT26JAN890                                                               www.ijisrt.com                   1699 

wavelet decomposition, and deep learning inference can 

impose significant processing and memory demands, 

especially in resource-constrained embedded systems or 

edge devices. Without appropriate optimization, these 

requirements may limit real-time deployment in large-scale 

industrial monitoring networks. Future implementations 

should therefore consider model compression, feature 

dimensionality reduction, and hardware acceleration 

techniques to balance accuracy with real-time performance 

and scalability. 

 

FUTURE RESEARCH DIRECTIONS 

 

Future research should focus on deeper integration of 

advanced deep learning architectures with wavelet-based 

power quality (PQ) analysis to further enhance classification 

accuracy and adaptability. While this study demonstrated 

strong performance using conventional neural networks and 

convolutional models, emerging architectures such as 

attention-based networks, transformers, and hybrid CNN–

LSTM models offer potential for improved temporal 

dependency modelling and adaptive feature learning. 

Integrating these models with edge computing platforms 

would enable distributed intelligence, allowing PQ 

disturbances to be detected and classified locally with 

minimal latency while reducing data transmission burdens 

on centralized systems. 

 

Another important research direction involves real-

time implementation of the proposed wavelet–machine 

learning framework using hardware-accelerated platforms 

such as field-programmable gate arrays (FPGAs) and 

embedded processors. Implementing wavelet decomposition 

and ML inference directly on hardware can significantly 

improve processing speed, determinism, and energy 

efficiency, which are critical for time-sensitive industrial 

applications. Research into algorithm–hardware co-design, 

fixed-point optimization, and lightweight model deployment 

will be essential to translate the proposed framework into 

practical, real-time PQ monitoring devices. 

 

Finally, extending the framework to multi-location and 

smart grid environments represents a key avenue for future 

work. Industrial facilities increasingly operate as part of 

interconnected smart grids with distributed energy 

resources, microgrids, and bidirectional power flows. 

Expanding PQ assessment to multi-node monitoring 

architectures would enable coordinated analysis of 

disturbances across different network locations, supporting 

system-wide situational awareness and grid resilience. 

Incorporating communication technologies and data fusion 

techniques can further enable scalable PQ monitoring across 

smart grid infrastructures, positioning the proposed 

approach as a foundation for next-generation intelligent 

power system management. 
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