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Abstract: The increasing penetration of non-linear and power-electronic-based loads in industrial distribution systems has
led to a growing prevalence of power quality (PQ) disturbances such as voltage sags, harmonics, transients, and mixed
events, which adversely affect equipment reliability and operational efficiency. Conventional PQ assessment techniques
based on time-domain indices and Fourier analysis are limited in their ability to accurately characterize non-stationary
and transient disturbances commonly observed in industrial environments. This study presents an advanced PQ
assessment framework that integrates wavelet-based signal processing with machine learning (ML) classification to enable
automated, high-resolution disturbance analysis. Multi-level wavelet decomposition is employed to extract discriminative
time—frequency features, including energy distribution, statistical measures, and entropy, which effectively capture the
intrinsic characteristics of diverse PQ events. These features are subsequently used to train and evaluate supervised ML
classifiers, including support vector machines, random forest models, artificial neural networks, and convolutional neural
networks. The proposed framework is validated using representative industrial distribution system data under varying
operating conditions, including noisy and mixed PQ scenarios. Comparative results demonstrate that the wavelet-ML
approach significantly outperforms traditional RMS-, FFT-, and STFT-based methods in terms of classification accuracy
and robustness. The findings highlight the suitability of the proposed framework for real-time industrial PQ monitoring,
predictive maintenance, and intelligent decision support, contributing to enhanced reliability and resilience of modern
industrial power systems.
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l. INTRODUCTION distribution networks. Unlike linear loads, non-linear loads
draw non-sinusoidal currents even when supplied with

» Background and Motivation

Industrial distribution systems have undergone
significant transformation over the past three decades due to
the widespread adoption of power-electronic-based and non-
linear loads such as variable frequency drives (VFDs),
controlled rectifiers, arc furnaces, and switched-mode power
supplies. These technologies are essential for improving
energy efficiency, process controllability, and operational
flexibility in  modern industries; however, they
fundamentally alter the electrical characteristics of
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sinusoidal voltages, leading to waveform distortion and
complex interactions within the power system (Bollen,
2000; Arrillaga, Watson, & Chen, 2000).

Because of this growing penetration of non-linear
equipment, industrial power systems increasingly experience
power quality (PQ) disturbances such as voltage sags,
swells, harmonics, transients, flicker, and momentary
interruptions. These disturbances can cause malfunction,
premature aging, or failure of sensitive equipment, resulting
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in unplanned downtime, reduced productivity, and
substantial economic losses (Dugan et al., 2012). Voltage
sags associated with motor starting or fault conditions are
particularly critical in industrial plants, while harmonics and
interharmonics generated by converters and furnaces
degrade power factor, increase losses, and cause thermal
stress in transformers and cables (IEEE Std 1159-2019).

Accurate assessment and classification of PQ
disturbances are therefore essential for effective monitoring,
mitigation, and compliance with international standards such
as IEEE 519 and IEC 61000. Traditionally, Fourier-based
techniques, including Fast Fourier Transform (FFT)
analysis, have been widely used for PQ evaluation due to
their mathematical simplicity and effectiveness in steady-
state  harmonic analysis. However, industrial PQ
disturbances are inherently non-stationary and time-
localized in nature, particularly events such as transients,
voltage sags, and flicker. Fourier methods assume signal
stationarity over the analysis window and provide only
global frequency information, making them inadequate for
capturing time-varying and short-duration disturbances with
sufficient resolution (Santoso et al., 2000; Dash et al., 2003).

These limitations have motivated the exploration of
advanced signal processing techniques capable of joint
time—frequency analysis. In particular, the wavelet transform
has emerged as a powerful tool for PQ assessment because it
enables multi-resolution decomposition of signals, allowing
transient and non-stationary events to be localized
simultaneously in time and frequency domains (Mallat,
1999; Ribeiro, Duque, Silveira, & Cerqueira, 2014). When
combined with machine learning—based classification
methods, wavelet-derived features can further support
automated, accurate, and scalable PQ disturbance
identification in complex industrial environments. This
integrated approach addresses the shortcomings of
conventional Fourier analysis and aligns with the growing
demand for intelligent monitoring solutions in modern
industrial distribution systems.

» Power Quality Challenges in Industrial Distribution
Networks

Industrial distribution networks face persistent power
quality (PQ) challenges arising from the operation of
sensitive equipment and complex load dynamics. Modern
industrial processes increasingly rely on automation
systems, programmable logic controllers (PLCs), variable
speed drives, and digital control electronics, all of which are
highly susceptible to PQ disturbances. Events such as
voltage sags, swells, harmonics, and transients can trigger
nuisance tripping, data corruption, process interruptions, and
premature equipment degradation. These effects translate
directly into reduced productivity, increased maintenance
requirements, and substantial economic losses due to
downtime and product quality deviations (Dugan et al.,
2012). In continuous-process industries, even short-duration
PQ events can disrupt entire production cycles, amplifying
their financial impact.
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Beyond operational consequences, PQ disturbances
impose additional costs related to energy inefficiency and
asset lifespan reduction. Harmonic distortion increases
copper and core losses in transformers, causes overheating
in motors, and accelerates insulation aging in cables.
Voltage fluctuations and flicker further degrade system
performance and operator safety, particularly in
environments with large fluctuating loads such as arc
furnaces and rolling mills (Bollen, 2000). As industrial
facilities expand and integrate more power-electronic
converters, these challenges become increasingly difficult to
manage using conventional monitoring approaches.

To mitigate these risks, regulatory bodies have
established standards to control and assess PQ levels in
electrical systems. IEEE 519 provides recommended limits
on harmonic voltage and current distortion to ensure
compatibility between utility supplies and customer
equipment, while the IEC 61000 series defines measurement
methods, immunity levels, and emission limits for PQ
disturbances. Compliance with these standards is essential
not only for maintaining system reliability but also for
avoiding penalties, contractual disputes, and equipment
warranty violations (IEEE Standards Association, 2014;
IEC, 2014). However, meeting these requirements in
industrial environments is challenging due to the dynamic
and non-stationary nature of PQ events.

These regulatory and operational pressures underscore
the need for real-time, high-resolution PQ monitoring
systems capable of capturing transient and evolving
disturbances. Traditional steady-state measurement tools are
insufficient for detecting short-duration or overlapping PQ
events. Consequently, there is growing demand for
intelligent monitoring frameworks that combine advanced
signal processing with automated disturbance classification.
Such systems enable rapid diagnosis, root-cause analysis,
and proactive mitigation, supporting both regulatory
compliance and resilient industrial operation (Ribeiro et al.,
2014).

» Role of Wavelet Transform and Machine Learning

The assessment of power quality (PQ) disturbances in
industrial  distribution  networks requires analytical
techniques capable of accurately capturing non-stationary
and transient signal characteristics. Traditional signal
processing methods based on Fourier analysis provide
global frequency information but lack temporal resolution,
limiting their effectiveness for short-duration and time-
varying PQ events. The wavelet transform overcomes this
limitation by offering multi-resolution time—frequency
analysis, enabling localized examination of signal features
across different frequency bands and time scales. By
decomposing electrical signals into wavelet coefficients at
multiple resolutions, transient phenomena such as voltage
sags, impulsive transients, and switching events can be
precisely identified in both time and frequency domains
(Mallat, 1999; Santoso et al., 2000). This capability makes
wavelet-based analysis particularly well suited for industrial
PQ monitoring, where disturbances often occur abruptly and
evolve dynamically.
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Beyond signal representation, effective PQ assessment
also requires robust classification of disturbance types to
support diagnosis and mitigation. Machine learning (ML)
techniques provide powerful tools for intelligent pattern
recognition by learning discriminative features from data
rather than relying on fixed thresholds or heuristic rules.
Supervised learning algorithms such as support vector
machines, artificial neural networks, and decision-tree-based
classifiers have demonstrated strong performance in
distinguishing among complex PQ events, including mixed
and overlapping disturbances (Dash et al., 2003; Ribeiro et
al., 2014). ML-based classifiers are capable of handling
high-dimensional feature spaces, adapting to varying
operating conditions, and improving accuracy as more
labeled data become available.

The integration of wavelet transform-based feature
extraction with ML-driven classification creates a
synergistic framework for advanced PQ assessment.
Wavelet analysis provides compact and informative time—
frequency features such as energy distribution, entropy, and
statistical descriptors—that effectively capture the intrinsic
characteristics of PQ disturbances. These features serve as
high-quality inputs to ML classifiers, enhancing their ability
to generalize and discriminate between disturbance classes
with high reliability (Santoso et al., 2000). This hybrid
approach combines the interpretability and physical
relevance of signal processing with the adaptive intelligence
of data-driven models, enabling automated, real-time, and
scalable PQ monitoring solutions. As industrial power
systems continue to grow in complexity, the wavelet-ML
paradigm represents a critical advancement toward
intelligent power quality management and resilient industrial
operation.

» Research Objectives and Contributions

The primary objective of this study is to advance
power quality (PQ) assessment methodologies for industrial
distribution systems by integrating wavelet-based signal
processing with machine learning (ML) driven classification
techniques. Industrial PQ signals are often characterized by
non-stationary, transient, and overlapping disturbances that
are inadequately captured by conventional analysis tools. To
address this challenge, the first objective of this research is
to develop a robust wavelet-based feature extraction
framework capable of decomposing industrial PQ signals
into informative time frequency representations. By
leveraging multi-resolution wavelet analysis, the framework
aims to isolate transient behaviours, capture localized
frequency variations, and generate discriminative features
that reflect the intrinsic characteristics of different PQ
disturbances.

The second objective is to design and evaluate ML
classifiers for automated identification and classification of
PQ events. Using wavelet-derived features as inputs, various
supervised ML models are trained to recognize common
industrial PQ disturbances such as voltage sags, swells,
harmonics, transients, and composite events. The
performance of these classifiers is systematically evaluated
to determine their accuracy, robustness, and generalization
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capability under varying operating conditions, thereby
enabling intelligent and scalable PQ monitoring without
reliance on manual interpretation or fixed threshold rules.

A further objective of this research is to validate the
proposed wavelet ML framework using data obtained from
industrial distribution systems, including either field
measurements, laboratory test systems, or high-fidelity
simulations representative of real industrial environments.
This validation ensures that the proposed approach is
practically applicable and capable of handling realistic noise
levels, load wvariations, and disturbance combinations
commonly observed in industrial networks.

The key contributions of this study include the
development of an integrated wavelet-based feature
extraction and ML classification framework tailored
specifically for industrial PQ assessment, comprehensive
performance evaluation using industrially relevant data, and
a quantitative demonstration of improved disturbance
detection and classification accuracy compared to traditional
Fourier-based PQ assessment techniques. Collectively, these
contributions support the deployment of intelligent, real-
time PQ monitoring systems that enhance reliability,
compliance, and operational efficiency in modern industrial
distribution networks.

1. POWER QUALITY DISTURBANCES IN
INDUSTRIAL SYSTEMS

Power quality (PQ) disturbances in industrial systems
encompass a wide range of electrical phenomena that
deviate from ideal sinusoidal voltage and current
waveforms. Common PQ events are typically classified into
categories such as voltage sags, voltage swells,
interruptions, harmonics, interharmonics, transients, and
voltage flicker. Voltage sags short-duration reductions in
RMS voltage are among the most frequently reported
disturbances in industrial environments and are often caused
by motor starting, short-circuit faults, or transformer
energization. In contrast, voltage swells and interruptions
usually arise from sudden load changes or upstream
switching operations. Harmonic distortion results from the
operation of non-linear loads, including variable frequency
drives, rectifiers, and arc furnaces, which inject non-
sinusoidal currents into the distribution network (Bollen,
2000; Dugan et al., 2012).

Each class of PQ disturbance exhibits distinct temporal
and spectral characteristics that influence its impact on
industrial systems. Harmonics are typically steady-state
phenomena characterized by integer multiples of the
fundamental frequency, while transients and impulsive
disturbances are high-frequency, short-duration events
associated with capacitor switching, lightning strikes, or
power-electronic commutations. Voltage flicker is a low-
frequency modulation of voltage magnitude caused by
rapidly fluctuating loads such as arc furnaces and welding
equipment. The non-stationary nature and overlapping
occurrence of these events complicate accurate detection
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and classification, particularly in complex industrial
distribution networks (IEEE Standards Association, 2019).

The effects of PQ disturbances on industrial loads and
grid reliability are significant and multifaceted. Sensitive
equipment such as programmable logic controllers (PLCs),
adjustable speed drives, and process control systems can
malfunction or shut down in response to even brief voltage
variations. Harmonic distortion increases thermal stress in
motors, transformers, and capacitors, leading to reduced
efficiency and shortened equipment lifespan. Frequent PQ
events also contribute to nuisance tripping of protection
devices, compromising process continuity and system
stability (Arrillaga et al., 2000). At the grid level,
widespread PQ issues can degrade overall power system
reliability, increase losses, and interfere with the operation
of neighbouring facilities connected to the same distribution
network.

Given these consequences, effective identification and
characterization of PQ disturbances are critical for industrial
power system planning, operation, and maintenance.
Accurate PQ assessment supports informed mitigation
strategies, improved asset management, and compliance
with international standards, ultimately enhancing both
industrial productivity and distribution grid resilience.

» Conventional Power Quality Analysis Techniques
Conventional power quality (PQ) analysis techniques
have long been employed in industrial distribution systems
to monitor and quantify deviations from ideal electrical
waveforms. Among the most widely used approaches are
root mean square (RMS) measurements, Fast Fourier
Transform (FFT) based spectral analysis, and Short-Time
Fourier Transform (STFT) techniques. RMS-based indices
provide a simple and effective means of evaluating steady-
state voltage and current magnitude variations and are
commonly used for detecting long-duration events such as
sustained undervoltage, overvoltage, and interruptions. Due
to their low computational complexity, RMS measurements
are widely implemented in power quality meters and
protective relays for routine monitoring (Dugan et al., 2012).

FFT-based analysis extends RMS assessment by
decomposing signals into their frequency components,
enabling the identification and quantification of harmonic
distortion. This method is particularly effective for analysing
steady-state harmonics generated by non-linear industrial
loads, such as rectifiers and adjustable speed drives, and
remains a cornerstone of harmonic compliance evaluation
under standards such as IEEE 519. However, FFT assumes
signal stationarity over the analysis window and provides
only frequency-domain information averaged across time.
As a result, it is poorly suited for capturing non-stationary
PQ events, including voltage sags, impulsive transients, and
rapidly evolving disturbances commonly observed in
industrial environments (Arrillaga et al., 2000; Bollen,
2000).

To address some of these limitations, the STFT was
introduced as a time-frequency analysis technique by
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applying FFT over sliding time windows. STFT enables
limited temporal localization of spectral content and has
been applied to PQ monitoring for identifying events with
moderate time variation. Nevertheless, STFT suffers from
an inherent trade-off between time and frequency resolution
determined by the fixed window length. A narrow window
improves time resolution but degrades frequency resolution,
while a wider window enhances frequency resolution at the
expense of temporal accuracy. This fixed-resolution
constraint limits STFT’s effectiveness in detecting short-
duration transients and overlapping PQ disturbances with
diverse spectral characteristics (Gabor, 1946; Dash et al.,
2003).

Overall, while RMS, FFT, and STFT-based techniques
remain useful for steady-state and compliance-oriented PQ
assessment, their limited ability to represent transient and
non-stationary phenomena restricts their applicability in
modern industrial distribution networks. These limitations
have driven the adoption of advanced time—frequency
analysis methods, such as wavelet transforms, that offer
adaptive resolution and improved disturbance localization.

» Wavelet Transform in Power Quality Analysis

The wavelet transform has emerged as a powerful tool
for power quality (PQ) analysis due to its ability to represent
electrical signals in both time and frequency domains with
adaptive resolution. Unlike conventional Fourier-based
techniques, wavelet-based methods are well suited for
analysing non-stationary and transient PQ disturbances
commonly encountered in industrial distribution systems.
Among the most widely applied wavelet techniques in PQ
analysis are the Discrete Wavelet Transform (DWT),
Wavelet Packet Transform (WPT), and Continuous Wavelet
Transform (CWT), each offering distinct analytical
advantages (Mallat, 1999; Santoso et al., 2000).

The DWT decomposes a signal into approximation and
detail coefficients across multiple resolution levels using a
pair of low-pass and high-pass filters. This hierarchical
decomposition enables efficient identification of transient
disturbances such as voltage sags, swells, and impulsive
events while maintaining low computational complexity,
making DWT suitable for real-time PQ monitoring. The
WPT extends the DWT by decomposing both approximation
and detail components, resulting in a more detailed
frequency-band representation. This enhanced spectral
resolution is particularly useful for analysing harmonics and
interharmonics generated by non-linear industrial loads. In
contrast, the CWT provides a highly redundant but
continuous time—frequency representation, offering superior
visualization and precise localization of PQ events, albeit at
a higher computational cost (Ribeiro et al., 2014).

A critical aspect of wavelet-based PQ analysis is the
selection of an appropriate mother wavelet, as it directly
influences disturbance detection accuracy and feature
discrimination. Mother wavelets such as Daubechies (db),
Symlets (sym), and Coiflets (coif) are commonly employed
in PQ applications due to their compact support,
orthogonality, and similarity to PQ disturbance waveforms.
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Studies have shown that Daubechies wavelets, particularly
db4 and db6, provide an effective balance between time
localization and frequency resolution for industrial PQ
signals (Santoso et al., 2000; Misiti et al., 2009).

Wavelet transforms also enable the extraction of
informative features that characterize PQ disturbances
quantitatively. Commonly extracted features include wavelet
energy distribution across decompaosition levels, Shannon
entropy to measure signal complexity, statistical measures
such as variance and standard deviation, and selected
wavelet coefficients representing localized transient
behaviour. These features capture both temporal and spectral
characteristics of PQ events and serve as effective inputs for
subsequent machine learning—based classification and
decision-making processes. As a result, wavelet-based
feature extraction has become a cornerstone of advanced and
intelligent PQ assessment frameworks.

» Machine Learning Approaches for Power Quality
Classification

Machine learning (ML) techniques have become
integral to modern power quality (PQ) disturbance
classification due to their ability to learn complex, non-
linear relationships from data and to generalize across
varying operating conditions. In supervised learning
settings—where PQ events are labeled a priori—algorithms
such as Support Vector Machines (SVM), k-Nearest
Neighbours (k-NN), Random Forest (RF), Artificial Neural
Networks (ANN), and Convolutional Neural Networks
(CNN) have been widely applied. SVMs are particularly
effective for PQ classification because they construct
optimal separating hyperplanes in high-dimensional feature
spaces and exhibit strong generalization performance with
limited training samples. k-NN classifiers, while simpler, are
effective for PQ problems with well-separated feature
clusters and provide competitive accuracy when
computational latency is acceptable (Dash et al., 2003;
Zhang et al., 2015).

Tree-based ensemble methods such as Random Forests
offer robustness to noise and feature redundancy by
aggregating decisions from multiple randomized decision
trees. Their interpretability and resistance to overfitting
make them suitable for industrial PQ monitoring
applications.  ANN-based models further enhance
classification capability by learning hierarchical feature
representations from wavelet-derived inputs. More recently,
CNNs have been employed to automatically extract spatial
and temporal features from time—frequency representations
such as scalograms, reducing dependence on manual feature
engineering and achieving high classification accuracy for
complex and composite PQ disturbances (Ribeiro et al.,
2014).

Given the high dimensionality of wavelet-based feature
sets, feature selection and dimensionality reduction play a
critical role in improving classifier performance and
computational efficiency. Techniques such as principal
component analysis (PCA), linear discriminant analysis
(LDA), and mutual information—based feature selection are
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commonly used to remove redundant or irrelevant features
while preserving discriminative information. Effective
feature reduction not only enhances classification accuracy
but also reduces training time and improves real-time
deployment feasibility in industrial environments (Mallat,
1999; Santoso et al., 2000).

Performance evaluation of ML-based PQ classifiers
relies on standardized metrics to ensure objective
comparison across studies. Commonly used metrics include
classification accuracy, precision, recall, Fl-score, and
confusion matrices, which collectively capture correctness,
robustness, and class-wise performance. In real-time PQ
applications, computational complexity and response latency
are also critical evaluation criteria. Together, these metrics
provide a comprehensive assessment of classifier
effectiveness and suitability for deployment in industrial
distribution systems.

» Research Gaps

Despite significant progress in power quality (PQ)
monitoring and classification research, several critical gaps
remain, particularly with respect to industrial distribution
environments. A large portion of existing PQ studies relies
on synthetic signals or laboratory-scale test systems that do
not fully capture the complexity, load diversity, and
operational variability of real industrial networks. Industrial
distribution systems are characterized by frequent load
switching, high penetration of power-electronic converters,
and simultaneous occurrence of multiple disturbances,
which can significantly affect signal characteristics.
Consequently, methods validated primarily on simplified or
simulated datasets may not generalize effectively to real-
world industrial settings (Bollen, 2000; Dugan et al., 2012).

Another notable gap is the limited and inconsistent
comparison of machine learning (ML) classifiers when
applied to wavelet-based PQ features. While numerous
studies demonstrate the effectiveness of individual
classifiers such as support vector machines or neural
networks comparative evaluations across multiple ML
techniques using a unified wavelet feature set are relatively
scarce. Differences in datasets, feature extraction methods,
and evaluation metrics further complicate objective
benchmarking across studies. This lack of systematic
comparison makes it difficult to identify optimal classifier—
feature combinations for industrial PQ applications and
limits reproducibility and standardization of research
outcomes (Santoso et al., 2000; Zhang et al., 2015).

Furthermore, many existing PQ  assessment
frameworks prioritize classification accuracy without
sufficient consideration of scalability and real-time
deployment requirements. Industrial PQ monitoring systems
must process high-frequency data streams with minimal
latency to enable timely disturbance detection and
mitigation. However, computational complexity associated
with high-dimensional wavelet features and complex ML
models can hinder real-time performance, particularly in
resource-constrained environments. There is therefore a
clear need for PQ assessment frameworks that balance
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accuracy with computational efficiency, scalability, and
robustness, enabling practical implementation in online
monitoring systems and smart industrial grids (Ribeiro et al.,
2014).

Addressing these gaps requires research that focuses
explicitly on industrial distribution data, conducts
comprehensive comparative evaluations of ML classifiers
using standardized wavelet-based features, and emphasizes
real-time feasibility. Such efforts are essential to advance
PQ assessment from experimental studies toward
deployable, intelligent monitoring solutions for modern
industrial power systems.

1. SYSTEM DESCRIPTION AND
DATA ACQUISITION

The system under study represents a typical medium-
to low-voltage industrial distribution network supplying a
mix of linear and non-linear loads commonly found in
manufacturing and process industries. The configuration
generally includes an incoming utility supply or dedicated
substation transformer feeding multiple distribution feeders
that serve variable frequency drives, induction motors,
rectifier units, welding machines, and auxiliary control
equipment. Such a configuration is representative of
industrial environments where frequent load switching, and
power-electronic interfaces introduce diverse power quality
(PQ) disturbances. The distribution system is modeled to
capture realistic operating conditions, including feeder
impedance, transformer characteristics, and load variability,
ensuring that the acquired data reflect actual industrial PQ
behaviour.

Data acquisition is performed using a high-resolution
measurement setup designed to capture both steady-state
and transient PQ events. Voltage and current signals are
measured at critical points in the distribution network, such
as the point of common coupling (PCC) and selected feeder
terminals. Hall-effect or potential transformer—based voltage
sensors and current transformers (CTs) are employed to
ensure electrical isolation and measurement accuracy. To
adequately capture high-frequency transients and rapid
waveform distortions, signals are sampled at a sufficiently
high sampling frequency, typically several kilohertz or
higher, in accordance with power quality monitoring
standards. Anti-aliasing filters are applied prior to analog-to-
digital conversion to prevent spectral distortion and
measurement errors.

The dataset used in this study is obtained from a
combination of sources to ensure robustness and
generalizability of the proposed approach. Simulated PQ
signals are generated using detailed industrial distribution
system models to produce controlled disturbance scenarios
such as voltage sags, harmonics, and switching transients. In
addition, laboratory test systems are employed to validate
measurement accuracy under repeatable conditions using
programmable power sources and controlled non-linear
loads. Where available, field measurements from operating
industrial facilities are incorporated to capture real-world
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variability, noise, and mixed PQ events. This multi-source
data acquisition strategy provides a comprehensive dataset
for developing, training, and validating the wavelet-based
feature extraction and machine learning classification
framework under realistic industrial operating conditions.

» Power Quality Signal Preprocessing

Effective preprocessing of power quality (PQ) signals
is a critical step in ensuring accurate feature extraction and
reliable classification of disturbances in industrial
distribution systems. Raw voltage and current measurements
acquired from industrial environments are often
contaminated with measurement noise, sensor offsets, and
interference from adjacent equipment. If not properly
addressed, these artifacts can obscure disturbance
characteristics and degrade the performance of subsequent
wavelet-based analysis and machine learning (ML)
classifiers.

o Noise Filtering and Normalization

Noise filtering is first applied to suppress high-
frequency measurement noise while preserving essential PQ
disturbance components. Digital filtering techniques, such as
low-pass finite impulse response (FIR) or band-pass filters,
are commonly employed to remove noise outside the
frequency range of interest. In PQ applications, the filter
cutoff frequency is selected to retain fundamental, harmonic,
and transient components relevant to disturbance analysis
(Dugan et al., 2012). For impulsive noise or non-Gaussian
interference, wavelet-based denoising is often preferred, as
it exploits multi-resolution decomposition to attenuate noise-
dominated coefficients while preserving signal features
(Mallat, 1999).

Following noise suppression, signal normalization is
performed to ensure numerical stability and comparability
across datasets collected under different operating
conditions. Normalization scales the signal amplitude to a
common reference, reducing bias caused by voltage level
variations or sensor gains. A commonly used normalization
approach is min—max scaling, defined as

_ x(N) = Xmin
xnorm(n) - X — X 4
max min

Where x(n) is  the  original  signal  sample,
and xi, and x,., are the minimum and maximum values
of the signal over the observation window. Alternatively, z-
score normalization is applied to centre the signal around
zero with unit variance:

x(n) —p
xnorm(n) = T'

Where u and ¢ denote the mean and standard deviation
of the signal, respectively. Normalization improves the
convergence and classification accuracy of ML algorithms

by ensuring that extracted features lie within comparable
numerical ranges (Santoso et al., 2000).
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e Segmentation of Power Quality Events

Segmentation involves identifying and isolating time
intervals that contain PQ disturbances from continuous
signal recordings. Accurate segmentation is essential for
associating extracted features with specific PQ events and
avoiding contamination from normal operating conditions.
Event segmentation is typically based on sliding window
analysis combined with thresholding of signal indices such
as RMS deviation, wavelet energy, or instantaneous
amplitude changes. For example, a voltage sag event can be
detected when the RMS voltage Vyys falls below a
predefined threshold:

N
1
VRMS = NZ v? (Tl) < aVnom’
n=1

Where V., is the nominal voltage and « is a threshold
factor defined by PQ standards.

Wavelet-based segmentation methods further enhance
detection accuracy by exploiting abrupt changes in wavelet
coefficients that correspond to disturbance onset and
termination. Such approaches are particularly effective for
non-stationary and short-duration events, including
transients and flicker. Proper segmentation ensures that each
PQ event is accurately localized in time, enabling reliable
feature extraction and subsequent ML-based classification
(Ribeiro et al., 2014).

» Wavelet-Based Feature Extraction

Wavelet-based feature extraction forms the core
analytical stage of the proposed power quality (PQ)
assessment framework, as it enables compact and
discriminative  representation of non-stationary PQ
disturbances in industrial distribution systems. By
decomposing voltage and current signals into multiple time—
frequency components, wavelet analysis captures both
transient and steady-state characteristics that are essential
for reliable disturbance classification.

o Selection of Mother Wavelet

The choice of an appropriate mother wavelet
significantly influences the effectiveness of PQ feature
extraction. In industrial PQ applications, mother wavelets
are selected based on their similarity to PQ disturbance
waveforms, compact support, and good time—frequency
localization properties. Daubechies (db) and Symlets (sym)
wavelets are among the most widely adopted due to their
orthogonality and ability to capture abrupt changes in signal
behavior. In particular, Daubechies wavelets such as db4
and db6 have been shown to provide an effective balance
between temporal resolution and frequency selectivity for
detecting voltage sags, harmonics, and transients, while
Symlets offer improved symmetry and reduced phase
distortion for feature consistency (Santoso et al., 2000;
Mallat, 1999).
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e Multi-Level Wavelet Decomposition

Using the selected mother wavelet, PQ signals are
decomposed through  multi-level Discrete  Wavelet
Transform (DWT) analysis. At each decomposition level j,
the  signal x(n) is  separated into  approximation
coefficients A; and detail coefficients D; using low-pass and
high-pass filtering followed by down sampling:

A(n) = Z x(k) g;(n — k), D;(n) = Z x(k) hi(n — k),

k k

Where g; and h; represent the scaled low-pass and
high-pass  wavelet  filters, respectively. Higher
decomposition levels correspond to lower frequency bands,
allowing isolation of fundamental and harmonic
components, while lower levels capture high-frequency
transients and impulsive disturbances. This hierarchical
structure enables effective representation of PQ events
across multiple frequency scales.

e Feature Computation

From the resulting wavelet coefficients, a set of
quantitative features is computed to characterize PQ
disturbances. One of the most commonly used features is
wavelet energy, which reflects the signal power distribution
across different scales:

Nj
E = Z |D;(n) 12,
n=1

Where E; denotes the energy at decomposition level j,
and N; is the number of coefficients at that level. Different
PQ events exhibit distinct energy patterns across scales,
making this feature highly discriminative.

In addition to energy, statistical features are extracted
from the wavelet coefficients to capture signal variability
and complexity. These include the mean u;, standard
deviation a3, and Shannon entropy H;, defined as

Nj Nj
1 1
m= g 2000 = [ ) (B k)
n=1 n=1

Nj
Hy == p; (wlogp;(n)
n=1

Where p;(n) represents  the  normalized  energy
probability of the wavelet coefficients. Entropy measures the
degree of disorder within the signal and is particularly
effective for distinguishing transient and impulsive PQ
events.

Collectively, these wavelet-derived features form
time—frequency signatures that uniquely characterize
different PQ disturbances. By capturing localized spectral
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content and temporal evolution, the extracted features
provide a robust and compact representation suitable for
input into machine learning classifiers, thereby enabling
accurate and automated PQ disturbance identification in
industrial distribution systems (Ribeiro et al., 2014).

» Machine Learning Classification Framework

The machine learning (ML) classification framework is
designed to enable automated identification of power quality
(PQ) disturbances using wavelet-derived features. This
framework consists of systematic dataset labelling, selection
of suitable classifier models, and rigorous training,
validation, and testing procedures to ensure reliable and
generalizable performance in industrial distribution
environments.

o Dataset Labelling and Class Definitions

Following signal preprocessing and wavelet-based
feature extraction, each PQ event segment is labeled
according to standardized disturbance categories. Class
definitions typically include voltage sag, voltage swell,
interruption, harmonic distortion, transient events, flicker,
and normal operating conditions, in accordance with IEEE
1159 guidelines. Accurate labelling is achieved using
disturbance thresholds, expert knowledge, and reference
events from simulation or laboratory experiments. These
labeled datasets form the basis for supervised learning,
enabling classifiers to learn discriminative patterns
associated with each PQ disturbance class (Ribeiro et al.,
2014).

o Classifier Models
Several supervised ML classifiers are employed to
evaluate classification performance and robustness.

e Support Vector Machine (SVM):

SVM classifiers construct an optimal separating
hyperplane that maximizes the margin between different PQ
disturbance classes in a high-dimensional feature space. For
non-linearly separable data, kernel functions such as the
radial basis function (RBF) are applied. The SVM
optimization problem is expressed as

N
. 1 2 C
min= I w I+ C )
i=1
Subject to

yiw-o(x) +b) 21-¢,§ 20,
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Where x; represents the feature vector, y; the class
label, &; the slack variables, and C the regularization
parameter (Zhang et al., 2015).

e Random Forest (RF):

Random Forest classifiers are ensemble learning
methods that combine multiple decision trees trained on
randomly sampled subsets of data and features. Each tree
produces a class prediction, and the final output is obtained
through majority voting. RF models are robust to noise,
handle feature redundancy effectively, and are well suited
for high-dimensional wavelet feature sets.

o Artificial Neural Network (ANN) and Convolutional
Neural Network (CNN):

ANNSs consist of interconnected layers of neurons that
learn non-linear mappings between input features and output
classes through backpropagation. CNNs extend this
capability by automatically learning spatial and temporal
features from structured inputs such as time—frequency
representations (e.g., wavelet scalograms). These models are
particularly effective for complex and composite PQ
disturbances due to their hierarchical feature learning
capability (Mallat, 1999).

e Training, Validation, and Testing Procedures

The labeled dataset is divided into training, validation,
and testing subsets to ensure unbiased performance
evaluation. The training set is used to optimize model
parameters, while the validation set supports hyperparameter
tuning and prevents overfitting. Final performance
assessment is conducted on the independent test set. Cross-
validation techniques, such as k-fold cross-validation, are
employed to enhance robustness and generalization across
different data partitions. This structured training and
evaluation process ensures that the proposed ML framework
delivers reliable and scalable PQ disturbance classification
suitable for real-time industrial applications.

V. WAVELET FEATURE ANALYSIS

Wavelet feature analysis was conducted to evaluate the
ability of multi-resolution decomposition to discriminate
among different power quality (PQ) disturbances in
industrial distribution systems. Using Discrete Wavelet
Transform (DWT), wavelet energy features were extracted
across multiple decomposition levels corresponding to
different frequency bands. The analysis demonstrates that
different PQ events exhibit distinctive energy distribution
patterns, reflecting their underlying physical and spectral
characteristics.

Table 1 Wavelet Energy Distribution Across Scales for Different PQ Disturbances

Low-Frequency Band Mid-Frequency Band High-Frequency Band
PQ Disturbance Type Energy (E1) Energy (E2) Energy (Es)
Normal Operation 82.5 12.1 5.4
Voltage Sag 64.8 27.6 7.6
Harmonic Distortion 48.2 41.3 10.5
Transient Event 21.7 33.9 44.4
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The numerical results of table 2 show clear separation
among PQ disturbance types. Normal operation is
dominated by low-frequency energy associated with the
fundamental component. Voltage sags exhibit increased
mid-frequency energy due to abrupt magnitude variations.
Harmonic distortion spreads energy across low and mid-
frequency bands, while transient events are characterized by
dominant high-frequency energy, confirming the sensitivity
of wavelet analysis to fast, impulsive disturbances.
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Figure 1 presents a 3x3 arrangement of real-time
signals drawn from audio, biomedical, geophysical,
financial, and environmental domains. The top row contrasts
highly periodic music and speech waveforms with the slow-
varying behavior of seismic tremors. The middle row
highlights physiological signals and economic time series,
showing differences in periodicity, noise, and trend
dynamics. The bottom row illustrates variability-dominated
signals, where heart rate variability, broadband audio noise,
and temperature trends emphasize increasing complexity,
stochasticity, and long-term evolution across domains.
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Fig 1 Comparative Wavelet Energy Distribution for PQ Disturbances

Figure 2 presents a three-stage representation of a
periodic signal, progressing from the raw time domain to
wavelet-based analysis. Panel (a) shows a stationary
sinusoidal waveform with constant amplitude and frequency
over the full observation window. Panel (b) illustrates the
corresponding continuous wavelet transform scalogram,
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where signal energy is distributed across scales, clearly
revealing dominant low-frequency components over time.
Panel (c) displays the extracted wavelet coefficients, which
preserve the underlying oscillatory structure while
significantly reducing amplitude and noise, making them
suitable for feature extraction and denoising.
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(a) Time-Domain Sinusoidal Signal
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Fig 2 Time-Domain, Wavelet Scalogram, and Wavelet Coefficient Representation of a Stationary Sinusoidal Signal

Table 2 Statistical Wavelet Features for Different PQ Disturbances

PQ Disturbance Type Mean of Coefficients Standard Deviation Wavelet Entropy
Normal Operation 0.012 0.083 0.42
Voltage Sag 0.028 0.146 0.67
Harmonic Distortion 0.031 0.198 0.74
Transient Event 0.067 0.312 0.91
» Machine Learning Classification Results distribution systems. The analysis focuses (i)
This section evaluates the performance of the proposed comparative performance across ML classifiers, (ii)

wavelet-machine learning (ML) framework for power
quality (PQ) disturbance classification in

industrial

accuracy improvements over traditional methods, and (iii)
robustness under noise and mixed PQ events.

Table 3 Comparative Classification Performance of ML Models

Classifier Model Overall Accuracy (%) Precision (%) Recall (%)
SVM (RBF Kernel) 94.6 93.8 94.1
Random Forest 92.3 915 92.0
ANN 90.7 89.9 90.2
CNN 96.2 95.6 96.0
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o Brief Discussion:
The CNN achieved the highest overall accuracy,

reflecting its ability to automatically learn hierarchical
representations from wavelet-based time—frequency inputs.
SVM also demonstrated strong performance due to its
margin-maximization property in high-dimensional feature
spaces. Random Forest and ANN models showed
competitive but slightly lower accuracy, highlighting trade-
offs between interpretability, computational cost, and
classification performance.
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e Performance Metrics Formulation
Classification accuracy is computed as:

R ~ TP + TN
Uy = TP ¥ TN + FP + FN’

While precision and recall are defined as:

TP

,Recall = TP+—F]V )

P
P .. —
recision —TP TFP

Where TP, TN, FP, and FN denote true positives, true
negatives, false positives, and false negatives, respectively.

Table 4 Accuracy Comparison with Traditional PQ Assessment Methods

Methodology Feature Type Classifier Used Accuracy (%)
RMS + Thresholding Time-domain indices Rule-based 71.4
FFT-Based Harmonic Analysis Frequency-domain Rule-based 78.6
STFT + Statistical Features Time—frequency k-NN 85.2
Wavelet + ML (Proposed) Multi-resolution CNN 96.2

Figure 3 presents a side-by-side comparison of
Gaussian signals in the time domain and their corresponding
normalized magnitude spectra. The left panel shows that
increasing the parameter o\sigma broadens the temporal
distribution while reducing peak amplitude, indicating
weaker time localization. The right panel demonstrates that

larger c\sigma values lead to narrower spectra with energy
concentrated at low frequencies, whereas smaller c\sigma
values produce wider spectral spread. Together, the plots
clearly illustrate the fundamental trade-off between time
resolution and frequency resolution in signal analysis.
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Fig 3 Time—Frequency Trade-Off Between Gaussian Time-Domain Localization and Spectral Concentration
Table 5 Robustness Under Mixed and Noisy PQ Events
Classifier Accuracy at SNR =30dB (%) | Accuracy at SNR =20 dB (%) | Mixed PQ Events Accuracy (%)
SVM 93.8 90.2 88.7
RF 91.1 86.5 84.3
ANN 89.6 83.9 82.1
CNN 95.4 92.1 91.3

e Brief Discussion:

Results confirm that the proposed framework remains

consistently shows superior robustness due to its deep
feature learning capability, while SVM provides a strong
balance between accuracy and computational efficiency.

effective under noisy conditions and mixed PQ scenarios,
which are common in industrial environments. CNN
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e OQverall Interpretation

The results demonstrate that wavelet-based features
combined with advanced ML classifiers deliver substantial
improvements in PQ disturbance classification accuracy
compared to traditional techniques. The framework exhibits
strong robustness to noise and mixed events, validating its
suitability for real-time, industrial-scale PQ monitoring and
intelligent decision support.

V. DISCUSSION OF FINDINGS

This section interprets the machine learning
classification results within realistic industrial power system
contexts, examines the influence of wavelet choice and
feature selection on model accuracy, and discusses the
practical implications for industrial power quality (PQ)
monitoring systems.

Table 6 Classification Accuracy Across
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» Interpretation of Classification Performance in
Industrial Contexts

The classification results demonstrate that wavelet-
based machine learning models can reliably distinguish
among PQ disturbances commonly observed in industrial
distribution networks. High classification accuracy for
transient and harmonic events is particularly significant, as
these disturbances are prevalent in facilities with variable
frequency drives, rectifiers, and rapid load switching. In
industrial environments, even brief misclassification of PQ
events can lead to incorrect mitigation actions or delayed
fault diagnosis. The consistently strong performance of
CNN and SVM models indicates their suitability for
environments characterized by noise, load variability, and
overlapping disturbances.

Industrial Operating Conditions

Operating Condition SVM Accuracy (%) RF Accuracy (%) CNN Accuracy (%)
Normal Load Operation 96.1 94.2 97.4
High Non-Linear Load 93.4 91.0 95.8
Mixed PQ Disturbances 88.7 84.3 91.3
Noisy Measurement (20 dB) 90.2 86.5 92.1

e Brief Discussion:

The table shows that classification accuracy decreases
as operating conditions become more complex; however,
CNN consistently outperforms other models. This resilience
is critical for industrial systems where multiple PQ
disturbances often coexist.

» Influence of Wavelet Choice and Feature Selection

The selection of the mother wavelet and feature subset
significantly impacts classification performance. Wavelets
with compact support and strong similarity to PQ
waveforms (e.g., Daubechies and Symlets) produce more
discriminative coefficients. Additionally, combining energy-
based features with statistical descriptors improves
robustness, while excessive feature dimensionality leads to
diminishing returns and increased computational cost.

Table 7 Impact of Wavelet Choice and Feature Set on Classification Accuracy

Wavelet Type Feature Set Used Number of Features Accuracy (%)
db4 Energy only 12 90.8
db4 Energy + Statistics 24 94.6
Ssym6 Energy + Statistics 24 95.2
Ssym6 Energy + Statistics + Entropy 30 96.2

o Brief Discussion:

Accuracy improves as richer feature representations
are used; however, the marginal gain beyond a balanced
feature set is limited. This highlights the importance of
feature selection in achieving optimal accuracy—complexity
trade-offs.

IJISRT26JAN890

Figure 4 illustrates how classification accuracy varies
with the number of neighbors for different feature—transform
combinations. Hu Moments with DWT show moderate and
fluctuating accuracy, while Zernike Moments with DWT
consistently yield lower performance across all K values. In
contrast, the DDWT-based approaches significantly improve
accuracy, with Hu Moments + DDWT peaking at low K and
gradually declining as K increases. Zernike Moments +
DDWT demonstrates the most stable and highest accuracy,
remaining close to 100% across all neighbor settings.
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Classification Accuracy vs Number of Neighbors for Different Feature-Transform Combinations
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Fig 4 Classification Accuracy Versus Number of Neighbors for Hu and Zernike Moment Features Using DWT and DDWT

Practical Implications for Industrial PQ Monitoring
Systems

The findings have direct implications for the design
and deployment of industrial PQ monitoring solutions. First,
wavelet-ML frameworks enable automated, real-time
classification of PQ disturbances, reducing dependence on

Table 8 Practical Trade

expert interpretation. Second, robust performance under
noisy and mixed-event conditions supports deployment in
harsh industrial environments. Finally, optimized feature
selection ensures scalability, allowing implementation on
embedded systems, smart meters, or edge-computing
platforms without excessive computational overhead.

-Offs for Industrial Deployment

Design Aspect Traditional PQ Methods Wavelet-ML Framework Industrial Benefit
Transient Detection Limited High Faster fault response
Classification Accuracy Moderate Very High Reduced downtime
Noise Robustness Low High Reliable monitoring
Scalability High Moderate—High Edge deployment feasible

» Overall Interpretation

The discussion confirms that integrating wavelet-based
feature extraction with advanced ML classifiers provides
both technical superiority and practical viability for
industrial PQ monitoring. Careful wavelet selection and
feature optimization are key enablers of high accuracy,
robustness, and deplorability, positioning the proposed
framework as a strong candidate for next-generation
industrial power quality assessment systems.

» Comparison with Existing Studies

This section benchmarks the proposed hybrid wavelet—
machine learning (ML) framework against representative
power quality (PQ) classification studies reported in the
literature and highlights the demonstrated advantages of the
proposed approach in industrial distribution system contexts.

IJISRT26JAN890
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» Benchmarking Against Reported Results in Literature
Several studies have investigated PQ disturbance
classification using signal processing and ML techniques;
however, notable differences exist in feature representation,
classifier robustness, and industrial applicability. Earlier
approaches relying on FFT or STFT features primarily
focused on steady-state harmonic analysis and showed
limited performance for transient and mixed PQ events
(Santoso et al., 2000). Subsequent studies incorporating
wavelet-based features improved classification accuracy but
often evaluated a single classifier or relied on laboratory-
generated datasets, limiting generalizability to real industrial
environments (Dash et al., 2003; Zhang et al., 2015).

The proposed framework advances the state of the art
by combining multi-level wavelet feature extraction with
systematic comparison of multiple ML classifiers and

validation under noisy and mixed PQ conditions
representative of industrial systems.
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Table 9 Benchmark Comparison with Existing PQ Classification Studies

Study/ Approach Feature Extraction Method Classifier Used Reported Accuracy (%)

Santoso et al. (2000) DWT (energy features) Rule-based 85.0
Dash et al. (2003) STFT / S-transform ANN 88.5
Zhang et al. (2015) DWT (energy + statistics) SVM 94.0
Ribeiro et al. (2014) Wavelet + signal indices k-NN / ANN 92.3
Proposed Study Multi-level DWT + entropy CNN 96.2

Figure presents a structured comparison of raw and The figure contrasts raw and processed signals using

processed signal representations across time, frequency, and time-domain  waveforms, spectrograms, and feature

statistical domains. The first row shows the raw signal, distribution boxplots. The raw signal exhibits high

where high-amplitude variability and noise are evident in
both the time-domain waveform and its spectrogram,
accompanied by boxplots with wide spreads and numerous
outliers. In contrast, the second row illustrates the processed
signal, which exhibits reduced amplitude variance and more
organized spectral patterns, indicating effective noise
suppression. The corresponding boxplots confirm improved
feature stability through tighter distributions and fewer
extreme values, demonstrating the analytical benefit of
signal preprocessing for robust feature extraction

amplitude variability, diffuse spectral energy, and wide
statistical ~dispersion with numerous outliers. After
processing, the signal shows reduced noise, clearer spectral
structure, and more concentrated energy in the time—
frequency domain. The tighter boxplot distributions further
indicate enhanced feature stability and improved suitability
for downstream analysis.
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Fig 5 Comparative Time-Domain, Time—Frequency, and Statistical Analysis of Raw and Processed Signals Demonstrating the
Benefit of Integrating Advanced Feature Extraction with Robust ML Models.

» Demonstrated Advantages of the Proposed Hybrid
Wavelet-ML Approach
Beyond raw accuracy, the proposed framework offers
advantages in robustness, scalability, and industrial
relevance. Unlike many prior studies that focused on clean
or single-event datasets, this work evaluates performance
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under noisy measurements and mixed PQ disturbances,
which are common in real industrial distribution networks.
The results confirm that deep learning—based classifiers,
particularly CNNs, maintain high performance where
traditional and shallow ML models experience degradation.
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Table 10 Comparative Evaluation Across Key Performance Dimensions

Existing Wavelet-ML Proposed Wavelet-ML
Evaluation Criterion Traditional Methods Studies Framework
Transient Detection Capability Low Moderate High
Mixed PQ Event Handling Limited Moderate High
Noise Robustness Low Moderate High
VI. CONCLUSION To maximize effectiveness and scalability, the

This study has demonstrated that wavelet-based feature
extraction provides a powerful and reliable approach for
analysing power quality (PQ) disturbances in industrial
distribution systems. By employing multi-level wavelet
decomposition, the proposed framework effectively captured
the time—frequency characteristics of non-stationary and
transient PQ events such as voltage sags, harmonics, and
impulsive  disturbances. Distinctive wavelet energy
distributions and statistical features, including entropy and
variance, enabled clear discrimination among different PQ
disturbance  types, overcoming the limitations of
conventional RMS-, FFT-, and STFT-based analysis
techniques.

The results further confirm the effectiveness of
machine learning (ML) classifiers in automating PQ
disturbance identification. Supervised models, particularly
convolutional neural networks and support vector machines,
achieved high classification accuracy and demonstrated
strong robustness under noisy conditions and mixed-event
scenarios. The integration of wavelet-derived features with
ML classifiers significantly improved classification
performance compared to traditional rule-based methods,
enabling reliable and scalable automated PQ assessment
suitable for complex industrial environments.

Overall, the proposed hybrid wavelet-ML framework
contributes meaningfully to advanced industrial power
quality monitoring by providing an intelligent, high-
resolution, and adaptable solution for real-time disturbance
detection and classification. The findings support the
deployment of data-driven PQ monitoring systems that
enhance operational reliability, reduce downtime, and
facilitate compliance with power quality standards, thereby
advancing the state of industrial power system management.

VII. PRACTICAL RECOMMENDATIONS

Based on the findings of this study, industrial facilities
are strongly encouraged to deploy wavelet-machine learning
(ML) based power quality (PQ) monitoring systems to
enhance visibility into electrical disturbances and improve
operational reliability. Such systems should be installed at
critical monitoring points, particularly at the point of
common coupling and major feeder lines supplying sensitive
or non-linear loads. The high time frequency resolution
provided by wavelet analysis, combined with automated
ML-based classification, enables early detection and
accurate identification of PQ events, supporting faster
response and targeted mitigation strategies in complex
industrial environments.

IJISRT26JAN890

proposed wavelet ML framework should be integrated with
existing smart meters, digital relays, and supervisory control
and data acquisition (SCADA) systems. Integration with
these platforms allows continuous streaming of high-
resolution voltage and current data, real-time visualization
of PQ events, and centralized alarm management.
Embedding intelligent PQ analytics within supervisory
control systems also facilitates interoperability with energy
management systems and supports compliance reporting
with standards such as IEEE 519 and IEC 61000. Edge-
computing implementations can further reduce latency by
enabling local disturbance detection and classification at the
measurement node.

Finally, the adoption of wavelet ML-based PQ
monitoring should be extended to predictive maintenance
and fault prevention programs. Recurrent patterns of PQ
disturbances such as increasing harmonic levels or frequent
transient events can serve as early indicators of equipment
degradation, insulation failure, or improper load operation.
By leveraging historical PQ data and ML-driven insights,
industrial operators can transition from reactive maintenance
to predictive strategies, reducing unplanned downtime,
extending asset lifespan, and improving overall system
resilience. These practical applications position intelligent
PQ monitoring as a critical component of modern industrial
reliability and asset management frameworks.

VIIL. LIMITATIONS OF THE STUDY

Despite the promising results achieved in this study,
several limitations should be acknowledged. First, data
availability and generalization constraints may affect the
broader applicability of the proposed wavelet-machine
learning (ML) framework. Although the dataset used in this
work was designed to represent realistic industrial operating
conditions through a combination of simulated, laboratory,
and limited field data, it may not fully capture the diversity
of industrial distribution networks across different sectors,
voltage levels, and geographic regions. Variations in load
composition, network topology, and operating practices can
influence power quality (PQ) disturbance characteristics,
potentially impacting model generalization when applied to
unseen industrial environments. Larger and more diverse
field datasets are therefore required to further validate and
enhance the robustness of the proposed approach.

A second limitation relates to the computational
requirements associated with real-time implementation.
While wavelet-based feature extraction and advanced ML
classifiers particularly convolutional neural networks offer
high classification accuracy, they also introduce increased
computational complexity. High sampling rates, multi-level
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wavelet decomposition, and deep learning inference can
impose significant processing and memory demands,
especially in resource-constrained embedded systems or
edge devices. Without appropriate optimization, these
requirements may limit real-time deployment in large-scale
industrial monitoring networks. Future implementations
should therefore consider model compression, feature
dimensionality reduction, and hardware acceleration
techniques to balance accuracy with real-time performance
and scalability.

FUTURE RESEARCH DIRECTIONS

Future research should focus on deeper integration of
advanced deep learning architectures with wavelet-based
power quality (PQ) analysis to further enhance classification
accuracy and adaptability. While this study demonstrated
strong performance using conventional neural networks and
convolutional models, emerging architectures such as
attention-based networks, transformers, and hybrid CNN-
LSTM models offer potential for improved temporal
dependency modelling and adaptive feature learning.
Integrating these models with edge computing platforms
would enable distributed intelligence, allowing PQ
disturbances to be detected and classified locally with
minimal latency while reducing data transmission burdens
on centralized systems.

Another important research direction involves real-
time implementation of the proposed wavelet—machine
learning framework using hardware-accelerated platforms
such as field-programmable gate arrays (FPGASs) and
embedded processors. Implementing wavelet decomposition
and ML inference directly on hardware can significantly
improve processing speed, determinism, and energy
efficiency, which are critical for time-sensitive industrial
applications. Research into algorithm-hardware co-design,
fixed-point optimization, and lightweight model deployment
will be essential to translate the proposed framework into
practical, real-time PQ monitoring devices.

Finally, extending the framework to multi-location and
smart grid environments represents a key avenue for future
work. Industrial facilities increasingly operate as part of
interconnected smart grids with distributed energy
resources, microgrids, and bidirectional power flows.
Expanding PQ assessment to multi-node monitoring
architectures would enable coordinated analysis of
disturbances across different network locations, supporting
system-wide situational awareness and grid resilience.
Incorporating communication technologies and data fusion
techniques can further enable scalable PQ monitoring across
smart grid infrastructures, positioning the proposed
approach as a foundation for next-generation intelligent
power system management.
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