
Volume 1 , Issue 6 , September – 2016 International Journal of Innovative Science and Research Technology

ISSN No: - 2456- 2165

IJISRT16SP06 www.ijisrt.com 25

LTE Based High-Performance Mobile-Cloud
Computing

Deepika Sharma
M.Tech Scholar , Computer Science
Jaipur National University , Jaipur
deepika1703.sharma@gmail.com

Sonu Mittal
Professor, Computer Science

Jaipur National University , Jaipur
sonum7772@rediffmail.com

Abstract :- The rise of the mobile-cloud computing
paradigm in recent years has enabled mobile devices with
processing power and battery life limitations to achieve
complex tasks in real-time. While mobile-cloud computing is
promising to overcome the limitations of mobile devices for
real-time computing, the lack of frameworks compatible
with standard technologies and techniques for dynamic
performance estimation and program component relocation
makes it harder to adopt mobile-cloud computing at large.
Most of the available frameworks rely on strong
assumptions such as the availability of a full clone of the
application code and negligible execution time in the cloud.
In the base paper [21] ,they present a dynamic computation
offloading model for mobile-cloud computing, based on
autonomous agents. Their approach does not impose any
requirements on the cloud platform other than providing
isolated execution containers, and it alleviates the
management burden of offloaded code by the mobile
platform using stateful, autonomous application partitions.
They also investigate the effects of different cloud runtime
environment conditions on the performance of mobile-cloud
computing, and present a simple and low-overhead dynamic
make span estimation model integrated into autonomous
agents to enhance them with self performance evaluation in
addition to self-cloning capabilities. In this research , we
present the concept of LTE . LTE (Long-Term Evolution,
commonly marketed as 4G LTE) is a standard
for wireless communication of high-speed data for mobile
phones and data terminals. It is based on
the GSM/EDGE and UMTS/HSPA network technologies,
increasing the capacity and speed using a different radio
interface together with core network improvements. We are
introducing LTE and reducing the execution time of
different cloud runtime environment conditions on the
performance of mobile-cloud computing, and present a
simple and low-overhead dynamic make span estimation
model.

Keywords-Mobile-Cloud Computing; Autonomous Agents;
Context; Performance, LTE.

I. INTRODUCTION

Mobile computing devices have replaced desktops and
mainframes for daily computing needs for the past decade.
Despite the everyday advances in mobile computing technology,

size restrictions impose limitations on the processing power and
battery life of these devices, which limits their capabilities for
soft real-time, computing-intensive applications such as image
processing. Cloud computing offers the ability to fill the gap
between the resource needs of mobile devices and availability of
those resources, through the concept of mobile-cloud computing
(MCC), which partitions mobile applications between mobile
and cloud platforms for execution, by dynamically offloading
parts of mobile computation to cloud hosts.

Achieving high performance with mobile-cloud computing
requires optimal partitioning of the mobile application
components between the mobile and cloud platforms based on
runtime conditions, as well as the dynamic monitoring of the
performance of application components during their execution.
Recent work on this problem has resulted in frameworks with
various partitioning and optimization techniques.

Most of these frameworks impose strict requirements on the
cloud side, such as a full clone of the application code/virtual
machine or special application management software, hindering
wide applicability in public clouds. They are also based on the
assumption that execution time on a cloud platform is negligible
compared to execution on a mobile device, hence do not
monitor the performance of offloaded computation, which may
not hold in the case of multi-tenancy or insufficient resources on
the cloud host.

A. Architecture Of Mobile Cloud Computing
The generic architecture as defined by Dinh et all[1]

basically consists of a mobile device connected to mobile
networks, The mobile networks then transfer the request from
mobile devices to cloud for processing via internet. Figure 1
explains the basic architecture for Mobile cloud.

Fig 1. Basic Architecture of Mobile Cloud

II. RELATED WORK

http://www.ijisrt.com/

Volume 1 , Issue 6 , September – 2016 International Journal of Innovative Science and Research Technology

ISSN No: - 2456- 2165

IJISRT16SP06 www.ijisrt.com 26

Significant research efforts have been put into computation
offloading since the early 1990s. Upgrades in virtualization
innovation, accessibility of high system data transfer capacities
and distributed computing foundations expanded the
achievability of constant calculation offloading from versatile to
cloud stages in the previous decade. Early work in element
versatile distributed computing models incorporates Clone
Cloud [1] and MAUI [2], both of which allotment applications
utilizing a system that consolidates static project investigation
with element program profiling, and streamlines execution time
and vitality utilization on the cell phone utilizing an
improvement solver. The drawback of these methodologies is
that they require a duplicate of the entire application
code/virtual machine at the remote execution site, which is both
a very strict prerequisite for open cloud machines and makes the
application code defenseless against investigation by malevolent
gatherings on the same stage. Yang et al. [3] propose an
apportioning and execution system particularly for versatile
information stream applications. Huang et al. [4] propose a low-
many-sided quality offloading calculation to minimize vitality
utilization on a cell phone, nonetheless they don't give points of
interest of the framework engineering. Park et al. [5] propose an
offloading structure restricted to JavaScript based applications.
The ThinkAir [6] structure gives preferred adaptability and
parallelism highlights over its forerunners, in any case despite
everything it requires the presence of the complete application
code on the cloud server, displaying the drawbacks of
CloneCloud and MAUI. Xian et al. [7] propose a calculation
offloading strategy that does not require the estimation of
makespan for every application segment. They utilize online
measurements of the application makespan, and the calculation
is offloaded to a remote server just in the event that it is not
finished on the gadget by a particular timeout, which may not be
generalizable for various cell phone attributes. Mei et al. [9]
propose a sharing-mindful plan for idleness tolerant instead of
continuous portable cloud applications, where information
sharing over different applications is misused for better
outsourcing execution. Ferber et al. [10] propose a middleware
structure for moving just registering escalated parts of Java
applications to cloud assets, which does not consider dynamic
offloading of other application parcels. Lin et al. [11] present a
model for vitality mindful undertaking planning on cell phones,
where errands are doled out to centers on the gadget or a cloud
asset in view of their priority necessities. Their methodology
offers priority to minimizing vitality utilization instead of
aggregate execution time.

III. MOBILE AGENT AND JADE AGENT
FRAMEWORK

Mobile computing devices have become increasingly
popular during the past decade, replacing desktops and
mainframes for daily computing needs. Many of these devices
have limited processing power, storage and battery compared to
their wall-socket-powered, tethered counterparts, which limits
their capabilities for real-time, computation-intensive
applications such as image processing. Computation offloading

to more powerful servers is the solution to provide these devices
with the resources they need to achieve complex tasks. Cloud
computing, emerging as a new computing paradigm in the
recent years, offers computing resources to users on demand,
obviating the need to actually own those resources. With
increasing popularity and availability, cloud computing has the
potential to fill the gap between the resource needs of mobile
devices and availability of those resources. Cloud computing is
already utilized by many mobile applications today. Current
mobile applications mostly involve an inflexible split of
computation between the mobile and cloud platforms, following
the client-server paradigm with hardcoded interactions with the
server. This inflexibility prevents applications from adapting to
conditions such as high network latency, which could result in
poor performance when cloud resources are preferred over
computation on the device. For applications requiring large data
transfers to the remote server, performing the computation on
the device can have better performance than relying on
processing by the remote server when the device’s Internet
connection is poor.

Achieving high performance with mobile-cloud computing is
contingent upon an optimal partitioning of the mobile
application components between the mobile and cloud platforms
based on runtime conditions. Recent work on this problem has
resulted in frameworks with various partitioning and
optimization techniques. Most of these frameworks impose
strict requirements on the cloud side, such as a full clone of the
application code/virtual machine or special application
management software, hindering wide applicability in public
clouds.

A mobile agent is a software program with mobility, which
can be sent out from a computer into a network and roam among
the computer nodes in the network [13]. It can be executed on
those computers to finish its task on behalf of its owner. When
an application using mobile agents needs to request a service
from a remote server, it gathers the required information and
passes it to the agent’s execution environment. At some point
during its lifetime, the agent executes an instruction for
migration, which results in the following sequence of events
[13]:

∑ The current agent process is suspended or a new child
process is created.

∑ The suspended (or new child) process is converted into
a message including all of its state information (process
state, stack, heap, external references). This message is
addressed to the destination where execution will
continue.

∑ The message is routed to the destination server, which
delivers it to the server’s agent execution environment.

∑ The message is reconstituted to an executable and the
associated process is dispatched.

∑ Execution continues with the next instruction in the
agent program. Upon completion of the agent program
at the remote server, the agent might terminate its

http://www.ijisrt.com/

Volume 1 , Issue 6 , September – 2016 International Journal of Innovative Science and Research Technology

ISSN No: - 2456- 2165

IJISRT16SP06 www.ijisrt.com 27

execution, become resident at the server or migrate
back to the originating client or another server.

Figure 2 demonstrates the difference between the mobile
agent paradigm and the client-server paradigm in terms of the
communication involved upon the request of a client to a data
server. As seen in the figure, while the client has to maintain a
communication link with the service provider for the transfer of
data in the client-server architecture, a mobile agent is shipped
to the service provider and returns to the client only when it has
collected all the requested data in the mobile agent paradigm.

(a) Client / server communication

(b) mobile agent communication
Fig 2. Mobile agent vs. client-server communication [14].

IV. AGENT-BASED COMPUTATION OFFLOADING

Figure 3 shows a high level view of the autonomous agents-
based computation offloading framework, which consists of the
main components described below.

A. Autonomous Application Modules
An autonomous application module is a chunk of application

code packed in an autonomous (mobile) agent that is executable
on a cloud host.

Fig 3. High level view of computation framework.

Autonomy of these application modules provides great
advantages in the context of MCC due to the capability of
transparently moving between mobile and cloud platforms
without requiring management by their caller and self cloning to
different virtual machines. Each mobile application in the
framework consists of a set of autonomous agent-based
application modules that are offloadable to the cloud for
execution, in addition to a set of native application components
that are always executed on the device due to constraints such as
accessing native sensors of the device or providing the user
interface of the application. Partitioning of the application into
these two types of components is performed statically before
installation of the application on the mobile device as described
in [12]. During the offline application partitioning process, any
program partition that is not computation-intensive is not set as
an offloadable component even if it does not have to be pinned
to the device, as this would incur additional runtime processing
overhead for partitions that would likely never be offloaded. In
the framework, these modules are implemented as JADE [13]
agents and they exhibit all features of a mobile agent [14]
including stateful execution, asynchronous communication,
autonomic decision-making and migration capability.

V. PROPOSED METHODOLOGY

Today’s mobile cellular networks are highly centralized and
not optimized for high-volume data applications, which will
evolve with 4G (e.g., LTE) and beyond technologies. Operators
typically use centralized network architectures that lead to very
high bandwidth requirements on core network equipment and
long communication paths between users and servers, which
wastes network resources and increases delay. Shared
distributed mobile network architectures, are needed to avoid
bottlenecks, better utilize available resources, and minimize
delay.

http://www.ijisrt.com/

Volume 1 , Issue 6 , September – 2016 International Journal of Innovative Science and Research Technology

ISSN No: - 2456- 2165

IJISRT16SP06 www.ijisrt.com 28

A. Long Term Evolution(LTE)
Long Term Evolution Background The evolution towards

LTE started as early as 2004 when the 3GPP initiated work on
the LTE radio interface, and by mid-2005 it released a technical
report with the design objectives. Some of the design targets
were: high data rates, low user plane latency, requirements for
normal capacity and also for peak data rates, flexibility in
spectrum usage, and reduced time for state changes. The
motivation for the LTE included the need to ensure
competitiveness of the 3G system for the future, user demand
for higher data rates and quality of service, and low system
complexity among others.

LTE, an abbreviation for Long-Term Evolution, commonly
marketed as 4G LTE,is a standard for wireless communication
of high-speed data for mobile phones and data terminals. It is
based on the GSM/EDGE and UMTS/HSPA network
technologies, increasing the capacity and speed using a different
radio interface together with core network improvements. The
standard is developed by the 3GPP (3rd Generation Partnership
Project).

LTE is the natural upgrade path for carriers with both
GSM/UMTS networks and CDMA2000 networks. The different
LTE frequencies and bands used in different countries will mean
that only multi-band phones will be able to use LTE in all
countries where it is supported. Although marketed as
a 4G wireless service, LTE (as specified in the 3GPP Release 8
and 9 document series) does not satisfy the technical
requirements the 3GPP consortium has adopted for its new
standard generation, and which were originally set forth by
the ITU-R organization in its IMT-Advanced specification.
However, due to marketing pressures and the significant
advancements that WiMAX, HSPA+ and LTE bring to the
original 3G technologies, ITU later decided that LTE together
with the aforementioned technologies can be called 4G
technologies. The LTE Advanced standard formally satisfies
the ITU-R requirements to be considered IMT-Advanced. To
differentiate LTE Advanced and WiMAX-Advanced from
current 4G technologies, ITU has defined them as "True 4G".

LTE stands for Long Term Evolution and is a registered
trademark owned by ETSI (European Telecommunications
Standards Institute) for the wireless data communications
technology and a development of the GSM/UMTS standards.
However other nations and companies do play an active role in
the LTE project. The goal of LTE was to increase the capacity
and speed of wireless data networks using new DSP (digital
signal processing) techniques and modulations that were
developed around the turn of the millennium. A further goal was
the redesign and simplification of the network architecture to
an IP-based system with significantly reduced
transfer latency compared to the 3G architecture. The LTE
wireless interface is incompatible with 2G and 3G networks, so
that it must be operated on a separate radio spectrum.

B. Physical Channel

Fig 4. LTE Physical layer

Fig 5. Resources Block Group

Fig 6. Virtual resources block

VI. RESULTS

The first set of experiments was performed with a face
recognition application based on the program at [16], which
given the picture of a person, identifies the most similar face to
it in a set of pictures. This application assumes that the set of
pictures to compare against is only locally available on the

http://www.ijisrt.com/

Volume 1 , Issue 6 , September – 2016 International Journal of Innovative Science and Research Technology

ISSN No: - 2456- 2165

IJISRT16SP06 www.ijisrt.com 29

mobile device. if the application component processing the
pictures is offloaded, the data for each picture is sent with it too.
The experiments were run using an Android emulator over a
period of 12 hours to capture possible variations in network
conditions and the results reported are the averages for 75 runs
[21] . Figure 7 provides a comparison of executing the
application entirely on the mobile device vs. using the
offloading framework, for different number of pictures (of 75
KB each) to compare against. We see that agent-based
offloading achieves a significant 13 times shorter execution time
than the device-only approach for all picture set sizes.

Fig 7: Execution time vs. number of pictures to compare against
for face recognition application.

Figure 7 shows the effect of the host type on the execution
time of the face recognition application for different number of
pictures to compare against. We observe that the performance of
the application degrades by 50% when a small machine instance
is used instead of a medium instance.

Fig 8. Offloaded execution time of face recognition application
for different EC2 machine instance types.

Figure 8 compares execution times for the multi-threaded
NQueens puzzle solver for different cloud host types in Amazon
EC2. We observe that for 14 and 15 queens, the performance
speed-up is commensurate with the number of cores in the host
machine, with the 2x large machine instance taking 8 times
shorter than the medium instance and 4 times shorter than the
large instance for the same number of queens.

These results suggest that dynamic performance profiling has a
significant effect on the performance of mobile cloud
computing, and relocation to different hosts based on continuous
monitoring could help increase performance.

Fig 9:- Offloaded execution time of multi-threaded NQueens
solver for different EC2 machine instance types.

The performance of the offloading manager was evaluated with
a synthetic application consisting of 6 offloadable modules
obtained from parts of the NQueens puzzle application. Each
module in the application has a different execution time on the
mobile device and different amount of data transfer
requirements for offloading. Figure 10 shows a comparison of
the total execution times of the application for the cases of (a)
monolithic execution on the device, (b) complete offloading to
the cloud, and (c) using the offloading manager to decide which
modules to offload to the cloud, where the device’s available
bandwidth is upper-bounded by the connection speed types on
the x-axis. The experiments were run on a Motorola Atrix 4G
device for each connection speed type [21].

http://www.ijisrt.com/

Volume 1 , Issue 6 , September – 2016 International Journal of Innovative Science and Research Technology

ISSN No: - 2456- 2165

IJISRT16SP06 www.ijisrt.com 30

Fig 10: Comparison of the average execution times for a multi-
module synthetic application in the case of (a) deviceonly

execution, (b) complete offloading and (c) offloading manager-
advised execution for different network speeds.

As seen in figure 10, using the proposed LTE(4G) for execution
platform decisions always achieves low execution time(or same
) as compare to Wi-Fi , Cabel and 3G.

Instance
type

Avg. true
Makespan(ms)

Avg.
absolute

estimation
error (ms)

Absolute
error

percentage
(%)

m1.small 15142 292 1.9
c1.medium 10147 125 1.2
m1.medium 7277 132 1.8

m1.large 7234 75 1.0
LTE

m1.small
11331 133 0.6

LTE
c1.medium

7211 95 0.5

LTE
m1.medium

4351 83 0.7

LTE
m1.large

2561 32 0.3

Table I. summarizes the average of the absolute errors and the
ratio

Table I summarizes the average of the absolute errors and the
ratio of the average absolute error to the average true
makespans. As seen in the table, the average absolute error is
less than or equal to 292 ms, which translates into less than 2%
of the total makespan for all instance types, which is negligible.
We also observe that the error increases slightly on instances
with smaller computing power. These results prove that the
proposed LTE(4G) performance is better for avg. true makespan
, avg. absolute estimation error and absolute error percentage
.All these three parameters gets decrease as we apply LTE.

VII. CONCLUSION

In this paper, we proposed a LTE based mobile-cloud
computing using mobile agent based application partitions,

imposing minimal structural requirements on the cloud.
Experiments performed with two real-world applications
demonstrate that the proposed framework is promising for
improved performance and wide adoption in mobile-cloud
computing. As we can see from the results session , in this
thesis we find to problems for high execution time and high
Avg. absolute estimation error. We have been reduced the
execution time and Avg. absolute estimation error from the
proposed methodology .

REFERENCES

[1] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: Elastic execution between mobile device and
cloud,” in Proceedings of the 6th ACM European Conference on
Computer Systems (EuroSys’11), 2011.
[2] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S.
Saroiu, R. Chandra, and P. Bahl, “Maui: Making smartphones
last longer with code offload,” in Proceedings of the 8th ACM
International Conference on Mobile Systems, Applications, and
Services (MobiSys’10), 2010.
[3] L. Yang, J. Cao, S. Tang, T. Li, and A. T. Chan, “A
framework for partitioning and execution of data stream
applications in mobile cloud computing,” in Proceedings of the
5th IEEE International Conference on Cloud Computing
(CLOUD’12), 2012.
[4] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading
algorithm for mobile computing,” IEEE Transactions on
Wireless Communications, vol. 11, no. 6, pp. 1991–1995, June
2012.
[5] S. Park, Y. Choi, Q. Chen, and H. Y. Yeom, “SOME:
Selective offloading for a mobile computing environment,” in
Proceedings of the IEEE International Conference on Cluster
Computing (CLUSTER’12), 2012.
[6] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang,
“Thinkair: Dynamic resource allocation and parallel execution
in the cloud for mobile code offloading,” in Proceedings of the
31st IEEE International Conference on Computer
Communications (INFOCOM’12), 2012.
[7] C. Xian, Y. H. Lu, and Z. Li, “Adaptive computation
offloading for energy conservation on battery-powered
systems,” in Proceedings of the IEEE International Conference
on Parallel and Distributed Systems, vol. 2, 2007.
[8] X. Li, H. Zhang, and Y. Zhang, “Deploying mobile
computation in cloud service,” in Proceedings of the 1st
International Conference on Cloud Computing (CloudCom’09),
2009.
[9] C. Mei, D. Taylor, C. Wang, A. Chandra, and J. B.
Weissman, “Sharing-aware cloud-based mobile outsourcing,” in
Proceedings of the 5th IEEE International Conference on Cloud
Computing (CLOUD’12). IEEE, 2012.
[10] M. Ferber, T. Rauber, M. H. C. Torres, and T. Holvoet,
“Resource allocation for cloud-assisted mobile applications,” in
Proceedings of the 5th IEEE International Conference on Cloud
Computing (CLOUD’12). IEEE, 2012.

http://www.ijisrt.com/

Volume 1 , Issue 6 , September – 2016 International Journal of Innovative Science and Research Technology

ISSN No: - 2456- 2165

IJISRT16SP06 www.ijisrt.com 31

[11] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Energy and
performance-aware task scheduling in a mobile cloud
computing environment,” in Proceedings of the 7th IEEE
International Conference on Cloud Computing (CLOUD’14).
IEEE, 2014.
[12] P. Angin and B. Bhargava, “An Agent-based Optimization
Framework for Mobile-Cloud Computing,” Journal of Wireless
Mobile Networks, Ubiquitous Computing, and Dependable
Applications, vol. 4, no. 2, pp. 1–17, 2013.
[13] Telecom Italia Lab. Java agent development framework.
http: //jade.tilab.com/. Accessed: 2015-02-18.
[14] D. Chess, C. Harrison, and A. Kershenbaum, “Mobile
agents: Are they a good idea?” in Mobile Object Systems
Towards the Programmable Internet, J. Vitek and C. Tschudin,
Eds. Springer, 1997.
[15] Amazon Web Services Inc. Amazon elastic compute cloud.
http://aws.amazon.com/ec2. Accessed: 2015-02-18.
[16] K. Darnok. http://darnok.org/programming/face-
recognition. Accessed: 2015-02-18.
[17] Motorola Mobility LLC. Motorola Atrix 4G. http:
//www.motorola.com/us/consumers/Motorola-ATRIX-4G/
72112,en US,pd.html. Accessed: 2015-02-18.
[18] Amazon EC2 instances. http://aws.amazon.com/ec2/
previous-generation/. Accessed: 2015-02-18.
[19] I. Bate, G. Bernat, G. Murphy, and P. Puschner, “Low level
analysis of a portable Java byte code WCET analysis
framework,” in Proceedings of the 7th IEEE International
Conference on Real-Time Computing Systems and Applications,
2000.
[20] AspectJ. http://eclipse.org/aspectj/. Accessed: 2015-02-18.

[21] Pelin Angin, Bharat Bhargava, Zhongjun Jin," A Self-
Cloning Agents Based Model for High-Performance Mobile-
Cloud Computing".

http://www.ijisrt.com/

