Volume 2, Issue 7, July — 2017

International Journal of Innovative Science and Research Technology

ISSN No: - 2456 — 2165

Vibration Analysis of Beam with Varying Crack
Location by Finite Element Method

Khilesh Kolhe,

PG Scholar ,
Mechanical engineering,
J.T.Mahajan college of engg,
Faizpur(Maharashtra),INDIA
khileshkolhe@outlook.com

Abstract :- Crack Location and depth are very
important consideration in the vibration analysis of
beam. The crack present in the beam or structure
changes the physical nature of beam and dynamic
response. In the present study vibration analysis of
cantilever beam using aluminium material with and
without crack. Here Ansys is used to finding the natural
frequencys and amplitude of beam with and without
crack and compare this result for different boundary
condition. The natural frequencies of free vibration of
the beam with multiple cracks are computed. It is
observed that with increase in number of cracks, the
natural frequency decreases. The effect of cracks is more
pronounced when the cracks are near to the fixed end
than free end.

l. INTRODUCTION

Cracks may appear on structures due to the
corrosion, fatigue and other reasons, and the vibration
characteristics of structures will be altered. The frequencies
of the cracked structures may be close to the frequencies of
exciting forces, which will cause significant increment of
the amplitude of structure vibration and even damage the
equipment. Therefore, the investigation of frequency
changes due to the crack should be performed for the safe
operation of equipment.

Many different methods have been developed in
the area of crack identification and repair. Generally these
methods can be categorized into frequency domain and time
domain methods. These groups may be subdivided into
different areas depending on the parameters used or method
performed in the damage detection process.

A. Crack

A crack in a structural member introduces local
flexibility that would affect vibration response of the
structure. This property may be used to detect existence of a
crack together its location and depth in the structural
member. The presence of a crack in a structural member
alters the local compliance that would affect the vibration
response under external loads.

Based on geometries , cracks can be broadly classified as
follows,
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e Transverse crack : These are cracks perpendicular
to beam axis. These are the most common and most
serious as they reduces the cross section as by
weaken the beam. They introduce a local flexibility
in the stiffness of the beam due to strain energy
concentration in the vicinity or crack tip.

e Longitudinal cracks : These are cracks parallel to
beam axis. They are not that common but they pose
danger when the tensile load is applied at right
angles to the crack direction i.e perpendicular to
beam axis.

e Open cracks : These cracks always remain open.
They are more correctly called “notches”. Open
cracks are easy to do in laboratory environment and
hence most experimental work is focused on this
type of crack.

e Breathing crack : These are cracks those open
when the affected part of material is subjected to
tensile stress and close when the stress is reversed .
The component is most influenced when under
tension. The breathing of crack results in
non-linearity in the vibration behavior of the beam.
Most theoretical research efforts are concentrated
on “transverse breathing” cracks due to their direct
practical relevance.

e Slant cracks : These are cracks at an angle to the
beam axis , but are not very common. There effect
on lateral vibration is less than that of transverse
cracks of comparable severity.

e Surface cracks : These are the cracks that open on
the surface. They can normally be detected by
dye-penetrates or visual inspection.

e Subsurface cracks : Cracks that do not show on
the surface are called subsurface cracks. Special
techniques such as ultrasonic , magnetic particle ,
radiography or shaft voltage drop are needed to
detect them.

B. Smart Materials

Smart materials are defined as materials that are
capable of automatically and inherently sensing or detecting
changes in their environment and responding to those
changes with some kind of actuation or actions. These
characteristics provide several possible applications for
these materials in aerospace, manufacturing, civil
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infrastructure systems, and biomechanics. Active vibration
and acoustic transmission control, active shape control, and
active damage control are some of the areas that have found
innovative applications for smart materials and structures.
Examples of specific applications is micro positioning,
vibration isolation, fast acting valves and nozzles,
transducers, luxury car shock absorbers, and active engine
mounts in aircraft. Some of the benefits of using smart
materials are system integration, reduction of mass and
energy requirements, elimination of moving parts in
actuators, and collocation between actuator and sensor.
There are four types of smart materials that have been
described as below.

1. LITERTURE SURVEY

K.B.Waghulde and Dr. Bimlesh Kumar,[2011]have studied
the smart structures and smart materials. These materials has
been an emerging area of research for last few decades. A
smart structure would be able to sense the vibration and
generate a controlled actuation to it, so the vibration can be
minimized. For this purpose, smart materials are used as
actuators and sensors. In this paper, some literature review is
given about smart structure and smart material. Piezoelectric
material is used as smart material and cantilever beam is
considered as a smart structure. Different positions are
considered for the model analysis. In this case, the modal
analysis are found out by using ANSY'S and MATLAB.

K.B.Waghulde and Dr. Bimlesh Kumar,[2012] have
studied, the locations of actuators and sensors over a
structure determine the effectiveness of the controller in
controlling vibrations. If we need to control a particular
vibration mode, we have to place actuators and sensors in
locations with high control. In many cases of vibration
control, low frequency modes are considered to be
important. Hence, we only need to consider a certain
number of modes in the placement of actuators and sensors.
We extended the methodology for finding optimal
placement of general actuators and sensors over a flexible
structure. For vibration analysis ANSYS software is used.
Experimentation is done for control vibration and to find
optimal position of piezoelectric actuator/sensor over a thin
plate. To obtain frequency response from PZT actuators and
sensors, Spectra plus software is used.

K. Hari Prasad, Dr.M.Senthil Kumar, [2009], investigates
the accuracy of predicting the dynamic response by finite
element modeling of structures with cracks. Steel and
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composite materials are widely used in various construction
elements and composites in particular have increased
substantially over the past few years. These materials are
subjected to various types of damage, mostly cracks. These
result in local changes of the stiffness of elements from such
materials and consequently their dynamic characteristics are
altered. The cracks are modeled as such in case of stress
analysis to study the stress pattern at those local regions of
crack, while in case of dynamic analysis an equivalent
model is built with many assumptions. While there are many
literatures available on these, there is literally none that has
investigated the effect on the results of the analysis with
such models.

L. Rubio, [2009],developed an effective crack identification
procedure based on the dynamic behavior of a Euler—
Bernoulli cracked beam. It is very well known that the
presence of a crack in a structure produces a change in its
frequency response that can be used to determine the crack
properties (position and size) solving what is called an
inverse problem. In this work, such an inverse problem has
been solved by the use of the classical optimization
technique of minimizing the least square criterion applied to
the closed-form expression for the frequencies obtained
through the perturbation method. The advantage of this
method with respect to the ones derived previously is that
the knowledge of the material and its properties (Young’s
modulus and mass density) is not necessary, not even the
behavior of the uncracked element. The methodology has
been successfully applied to a simply supported Euler—
Bernoulli beam.

1. FINITE ELEMENT METHOD (FEM)

Finite element method can be said to be a
numerical method to solve different equation. The
engineering problem are analyzed by forming differential
equation for different processes and solving the same by
applying suitable boundary condition. Finite element
method are used in vibration analysis to getting the natural
frequencies, resonant frequencies and dynamic response of
system to time varying load. A straight beam element with
uniform cross section is shown in Figure. 3.1. The Euler-
Bernoulli beam theory is used for constituting the finite
element matrices. The longitudinal axis of the element lies
along the x axis. The element has a constant moment of
inertia I, modulus of elasticity E, density r and length I. Two
degrees of freedom per node, translation along y-axis (y1, y2)
and rotation about z-axis (yi'y.") are considered.

elementi
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L
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Fig. 3.1 Straight Beam Element
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Table 3.1 Material Properties and Dimensions of Aluminum Beam

Dimensions/Properties Aluminum Piezoelectric
actuator
Length 0.5m 0.0762 m
Width 0.04 m 0.0254 m
Thickness 0.006 m 0.5x10°m
Density 2700 kg/m?® 7600 kg/m?
Young modulus 70 Gpa 76 GPa
Poisson’s ratio 03 | e
- 12
Piezoelectric Stain Constant | --------- 247 x 10
m/V
V. IMPLEMENTATION OF FINITE ELEMENT rotational. Figure 3.2 shows mode shapes for the healthy
METHOD model for beam. Table 3.2 shows the natural frequencies for
The model is prepared by using commercial FE healthy beam. Figure 3.3, 3.4, 3.5 shows the mode shape at
software ANSYS. In ANSYS, the beam is modeled with a 2- 125mm location for Imm, 2mm and 3mm depth. Similarly
D elastic beam element. Material properties are taken from Figure 3.6, 3.7, 3.8 shows the mode shape at 125mm and
the Table 3.1. A unit step force is applied in the positive 250mm location for 1mm, 2mm and 3mm depth. Similarly
vertical direction at the tip of the beam. The Beam is Figure 3.9, 3.10, 3.11 shows the mode shape at 125mm for
considered to have three DOF, two translational and one 1mm, 2mm and 3mm depth.
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Fig. 3.2 Mode Shapes for Uncracked Cantilever Beam Model
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Fig. 3.3 Mode Shapes for 1mm crack for Cantilever Beam Model(L=125mm)
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Fig. 3.4 Mode Shapes for 2mm crack for Cantilever Beam Model(L=125mm)
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Fig. 3.5 Mode Shapes for 3mm crack for Cantilever Beam Model(L=125mm)
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Fig. 3.6 Mode Shapes for 1mm crack for Cantilever Beam Model(L=125and 250mm)
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Fig. 3.7 Mode Shapes for 2 mm crack for Cantilever Beam Model(L=125and 250mm)
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Fig. 3.8 Mode Shapes for 3 mm crack for Cantilever Beam Model(L=125and 250mm)
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Fig. 3.9 Mode Shapes for 1 mm crack for Cantilever Beam Model(L=125,250 and 375mm)
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Fig. 3.10 Mode Shapes for 2 mm crack for Cantilever Beam Model(L=125,250 and 375mm)
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Fig. 3.11 Mode Shapes for 3 mm crack for Cantilever Beam Model(L=125,250 and 375mm

Table-3.2 Natural Frequencies for Uncracked Beam by FEM

NATURAL FREQUENCY
CRACK 3rd
POSITION DEPTH 1st mode | 2nd mode mode 4th mode | 5th mode
AnNsys Ansys Ansys Ansys Ansys
Sl omm 2168 | 13581 | 380.08 | 74432 | 12296
CRACKED ' ' ' ' '

Table-3.3 Natural Frequencies for different Crack Depth at L;=125mm by FEM

NATURAL FREQUENCY
ngﬁﬁg\l DEPTH 1st mode 2nd mode rr?gge 4th mode | 5th mode
Ansys Ansys Ansys Ansys Ansys
1mm 35.25 222.60 621.83 1219.71 1990.54
125mm 2mm 34.60 220.64 611.24 1204.1 1971.01
3mm 34.37 224.58 613.54 1197.61 1996.71

Table-3.4 Natural Frequencies for different Crack Depth at L,=125 and 250mm by FEM
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NATURAL FREQUENCY
PSEGCIHO(N DEPTH 1st mode | 2nd mode rr?c:ge 4th mode | 5th mode
Ansys Ansys Ansys Ansys Ansys
Imm 35.59 222.82 619.66 1218.75 1971.88
125&250mm 2mm 34.65 218.36 611.33 1190.45 | 1990.86
3mm 34.25 215.88 609.90 1150.59 1977.7

Table-3.5 Natural Frequencies for different Crack Depth at L;=125 ,250 and 375mm

by FEM
NATURAL FREQUENCY
CRACK 3rd
POSITION DEPTH 1st mode | 2nd mode mode 4th mode | 5th mode
Ansys Ansys AnNsys Ansys Ansys
1mm 35.37 225.76 627.28 1227.68 1999.45
125mm &
250mm & 2mm 34.47 219.58 610.29 1183.02 1977.62
375mm
3mm 34.25 216.32 594.75 1120.6 1996.37
700
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& 400
g / ==fr=125mm2mm Ansy
o
% 300 == 125mm2mmExp
E ;/ == 125mm3mm Ansy
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/ mm3mm Exp
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[-/ uncracked Exp
0
model mode?2 mode3
No of modes

Fig. 3.12 Comparison for Natural Frequencies for uncracked Beam
with Crack Beam L =125mm
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Fig. 3.13 Comparison for Natural Frequencies for uncracked Beam
with Crack Beam L = 125mm&250mm
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Fig. 3.14 Comparison for Natural Frequencies for uncracked Beam
with Crack Beam L=125,250&375mm

The natural frequency obtained Experimentally
compared with FEM both the results was with close
agreement. The variation between ANSYS results and
Experimental results are due to different crack depth and
crack distance. The fundamental mode shapes for vibration
of cracked and un-cracked beams are plotted. The results
obtained from the Experimental and FEA analysis are

IJISRT17JL72

presented in graphical form. The first to fifth natural
frequencies corresponding to various crack locations and
depths are obtained. The lowest frequency was in mode 1.
The frequency was increasing with each subsequent mode of
vibration. The percentage of error was also decreasing as
frequency is increasing. Results show that there is an
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appreciable variation between natural frequency of cracked
and un-cracked cantilever beam.

V. CONCLUSION

The difference in deflection value is found to be

maximum at the crack section and this information may
therefore be used to detect the resistance of a crack
including its location and the severity of the crack. The
proposed method is simple and easy to implement as it
entails only static effect measurements. Repair is carried out
by placing a small piezoelectric patch directly under the
crack so as to induce a local moment upon application of a
suitable voltage to the piezoelectric actuators.
The vibration analysis of a structure holds a lot of
significance in its designing and performance over a period
of time. In aluminum cantilever beam with one end fixed
and one end free, it was seen that the results were in good
co-ordinance with FEA by ANSYS and Experimental by
spectra plus software values. It is seen that the natural
frequency changes substantially due to the presence of
cracks. The changes depending upon the location and depth
of cracks. In the FEA and Experimental setup, crack depth
and crack location are taken as the input and the structural
natural frequencies are taken as output. From the both
methods, it is observed that the first natural frequency
increases as the crack location moves from the clamped end
to the free end when the crack depth is kept constant.
Whereas, the second to fifth natural frequencies decreases as
the crack depth increases.
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