
Volume 1 , Issue 3 , June – 2016 International Journal of Innovative Science and Research Technology

ISSN No: - 2456- 2165

IJISRT16JU14 www.ijisrt.com 43

Review of COCOMO and BAT-COCOMO Model

H.John, Department of Electrical And Computer Engineering,

Niger State, Nigeria.

Abstract – Nowadays there are many models for software

development cost estimation, providing project managers

with helpful information to make the right decisions. One

of such well known mathematical models is the COCOMO

model. To estimate costs and time, this model uses

coefficients, which were determined in 1981 by means of

the regression analysis of statistical data based on 63

different types of project data. Using these coefficients for

a modern project, the appraisal may not be accurate;

therefore, the aim of this paper is to optimize the model

coefficients with genetic algorithms. Genetic algorithms

are evolutionary methods for optimization. To evaluate

population, the genetic algorithm will use a set of

descriptive attributes of several software development

projects. These attributes are the number of lines of a

code, costs and implementation time of a project. Project

costs estimated by means of the COCOMO model will be

compared with the real ones, this way evaluating the

fitness of an individual in the population of possible

solutions.

Keywords – COCOMO model, genetic algorithm, and

software cost estimation.

I. INTRODUCTION

Software cost estimation is essential for software project

management. Accurate software estimation can provide good

support for the decision-making process like the accurate

assessment of costs can help the organization to better analyse

the project and effectively manage the software development

process, thus significantly reducing the risk. Once the

planning is too pessimistic, it may lose business opportunities,

but too optimistic planning can cause significant loss. There

are several software cost estimation models to help project

managers to make the right decisions. One of such models is

the COCOMO model (Constructive Cost Model). It was

introduced in 1981 by Barry Boehm – the famous scientist

who contributed to the development of software project

management by creating a scientific approach. The COCOMO

model is based on 63 different types of statistical data analysis

project. The actual number of lines of code, amount of effort

and time were estimated and some coefficients, which depend

on the software project, were developed and identified during

the regression analysis phase.

Today's project evaluation based on old coefficients may not

match the required accuracy; therefore, the aim of this

research is to optimize the model coefficients [4]. The

COCOMO model has three modes, depending on the size of

the project and the project team size. The model has three

levels. The accuracy of the base level is lower than in the

intermediate level and detailed level because the estimation of

effort uses only actual amount and information about the mode

and does not use cost drivers, which include a subjective

judgment of the product, project, personnel and hardware

characteristics. Thus, in this article a basic level of COCOMO

model will be discussed [4], [6].

Genetic algorithms are optimization algorithms in

evolutionary computing techniques, proposed in 1975 by a

scientist Holland. It is a natural heuristic algorithm that is used

to find the exact and approximate solutions. Algorithm is

based on the iterative improvement of the current solution, but

a solution set is used instead of one solution. Most genetic

algorithm applications are linked to a large-scale information

processing and the development of prediction models [3].

II.BACKGROUND

A brief description of the classic COCOMO model is given in

the present section.

Fig 1. COCOMO Model

www.ijisrt.com

Volume 1 , Issue 3 , June – 2016 International Journal of Innovative Science and Research Technology

ISSN No: - 2456- 2165

IJISRT16JU14 www.ijisrt.com 44

A. COCOMO Model

The COCOMO model has three modes to classify complexity

of the system. The COCOMO model has three levels,

providing increase of accuracy in each subsequent level. To

calculate the effort at the base level, the equation (1) is used. It

shows that effort is linearly dependant on the project size and

rapidly changes if there is another mode [7], [9]. To evaluate

project development time, the equation (2) is used.

E = a . KLOCb

a, b – the COCOMO model coefficients;

KLOC – the kilo-lines of code;

E – the effort (man-months)

II. BAT ALGORITHM

In this algorithm search is motivated by social behavior of bats

and phenomenon of echolocation. It is a novel meta-heuristic

technique for global numerical optimization problems. BA is

used to optimize the weights of the parameters. These

optimized weights can then be used for test effort estimation

of new projects of a similar kind. In Bat algorithm, the spot of

each bat is defined by and velocity, frequency, intensity, and

the emission pulse rate in a D-dimensional search space. The

two factors loudness and rate of pulse emission, i.e., A, r are

also initialized with a constant value of 0 and 0.63 while Fmin

and Fmax initialize by the 0.3292 and 0.9843.The value of α

and β depend on the effort estimation and measure effort while

the value of γ can be initialize by the 1.45.

The loudness is inversely proportional to the solution and the

rate of pulse emission is directly proportional. Generate local

solutions Y (t) and velocities V (t) at time step t by

F = Fmin (Fmax – Fmin)

V(t) = V(t-1) + (Y(t) – Y*)

Y(t) =Y(t-1) + V(t)

III. ESTIMATION METHODS

All the cost estimation methods are based upon some form of

analogy: Historical Analogy, Expert Judgment, Models, etc.,

the role these methods play in generating an estimate depends

upon where one is in the overall life-cycle.

Historical analogy estimation methods are based upon using

the software size, cost or effort of a comparable project from

the past. When the term analogy is used in this document, the

comparison is made using measures or data that has been

recorded from completed software projects. Analogical

estimates can be made at high levels using total software

project size and/or cost for individual Work Breakdown

Structure (WBS) categories in the process of developing the

main software cost estimate. Generally, it is necessary to

adjust the size or cost of the historical project, as there is

rarely a perfect analogy. This is especially true for high-level

analogies. [10]Analogy models are the simplest type of

estimating models. They are used to estimate cost by

comparing one program with a similar past program or

programs, thereby avoiding issues with expert judgment bias.

The advantage of the analogy method is that it is based on

experience. However, the method is limited because, in most

instances, similar programs do not exist. 8The steps using

estimating by analogy are, Characterizing the proposed

project; Selecting the most similar completed projects whose

characteristics have been stored in the historical data base’

Deriving the estimate for the proposed project from the most

similar completed projects by analogy.

The main advantages of this method are, The estimation are

based on actual project characteristic data; The estimator's past

experience and knowledge can be used which is not easy to be

quantified; The differences between the completed and the

proposed project can be identified and impacts estimated.

Using this method, we have to determine how best to describe

projects. The choice of variables must be restricted to

information that is available at the point that the prediction

required. Possibilities include the type of application domain,

the number of inputs, the number of distinct entities

referenced, the number of screens and so forth.

Even once we have characterized the project, we have to

determine the similarity and how much confidence can we

place in the analogies. Too few analogies might lead to

maverick projects being used; too many might lead to the

dilution of the effect of the closest analogies. Finally, we have

to derive an estimate for the new project by using known

effort values from the analogous projects. Possibilities include

means and weighted means which will give more influence to

the closer analogies.

Expert judgment: The [5] majority of research work carried out

in the software cost estimation field has been devoted to

algorithmic models. However, by an overwhelming majority,

expert judgment is the most commonly used estimation

method. In its crudest form the expert judgment method

involves consultation with one or more local experts who are

knowledgeable about the development environment or

application domain to estimate the effort required to complete

a software project.

The method relies heavily on the experience of their

knowledge in similar development environments and

historically maintained databases on completed projects and

the accuracy of theses past projects. The advantages of this

method are, The experts can factor in differences between past

project experience and requirements of the proposed project;

The experts can factor in project impacts caused by new

technologies, architectures, applications and languages

involved in the future project and can also factor in

exceptional personnel characteristics and interactions, etc. The

www.ijisrt.com

Volume 1 , Issue 3 , June – 2016 International Journal of Innovative Science and Research Technology

ISSN No: - 2456- 2165

IJISRT16JU14 www.ijisrt.com 45

disadvantages include, This method cannot be quantified; It is

hard to document the factors used by the experts or experts-

group; Expert may be some biased, optimistic, and

pessimistic, even though they have been decreased by the

group consensus; The expert judgment method always

compliments the other cost estimating methods such as

algorithmic method.

Delphi Approach or Wideband Delphi technique attempts to

gather the opinions of a group of experts with the aim of

producing an accurate unbiased estimate. It is a structured

technique of expert judgment and is essentially a form based

technique involving a multistep procedure: Experts are issued

the specification and estimation form by the coordinator.

a. A group meeting is held to discuss the product and

estimation issues.

b. Experts produce an independent estimate.

c. Estimates are returned indicating the median estimate and

the expert’s personal estimate.

d. Another group meeting is held to discuss results.

e. Experts prepare a revised independent estimate.

f. Steps 3-6 are repeated until a consensus is reached by the

panel of experts.

Advantages of the Delphi Estimation Process:
a. 12Free of social pressure, personality influence, and

individual dominance

b. Allows sharing of information and reasoning among

participants

c. Conducive to independent thinking and gradual formulation

d. Respondent panel provides broad analytical perspective on

problems and issues

e. Can be used to reach consensus among groups hostile

towards each other

Disadvantages of the Delphi Estimation Process:
a. Judgments are those of a selected group, and may not

represent prevailing opinion

b. Tendency to eliminate extreme positions and force middle-

of-the-road consensus

c. More time-consuming than nominal group process

d. Requires skill in written communication

e. Requires adequate time and participant commitment (may

require 30 to 45 days to complete entire process)

Algorithmic Method: The algorithmic method is designed to

provide some mathematical equations to perform software

estimation. These mathematical equations are based on

research and historical data and use inputs such as Source

Lines of Code (SLOC), number of functions to perform, and

other cost drivers such as language, design methodology, skill-

levels, risk assessments, etc. The algorithmic methods have

been largely studied and there are a lot of models have been

developed, such as COCOMO models, Putnam model, and

function points based models. General advantages of methods

are, it is able to generate repeatable estimations; It is easy to

modify input data, refine and customize formulas; It is

efficient and able to support a family of estimations or a

sensitivity analysis; It is objectively calibrated to previous

experience. General disadvantages are, It is unable to deal

with exceptional conditions, such as exceptional personnel in

any software cost estimating exercises, exceptional teamwork,

and an exceptional match between skill-levels and tasks; Poor

sizing inputs and inaccurate cost driver rating will result in

inaccurate estimation; Some experience and factors cannot be

easily quantified.

Bottom-up approach, each component of the software system

is separately estimated and the results aggregated to produce

an estimate for the overall system. The requirement for this

approach is that an initial design must be in place that

indicates how the system is decomposed into different

components. The advantages of this methods are, It permits

the software group to handle an estimate in an almost

traditional fashion and to handle estimate components for

which the group has a feel; It is more stable because the

estimation errors in the various components have a chance to

balance out. The disadvantages are, It may overlook many of

the system-level costs (integration, configuration management,

quality assurance, etc.) associated with software development;

It may be inaccurate because the necessary information may

not available in the early phase. It tends to be more time-

consuming; It may not be feasible when either time and

personnel are limited.

Top-down approach is the opposite of the bottom-up method.

An overall cost estimate for the system is derived from global

properties, using either algorithmic or non-algorithmic

methods. The total cost can then be split up among the various

components. This approach is more suitable for cost

estimation at the early stage. The advantages of this method

are, It focuses on system-level activities such as integration,

documentation, configuration management, etc., many of

which may be ignored in other estimating methods and it will

not miss the cost of system-level functions; It requires

minimal project detail, and it is usually faster, easier to

implement. The disadvantages are, It often does not identify

difficult low-level problems that are likely to escalate costs

and sometime tends to overlook low-level components; It

provides no detailed basis for justifying decisions or estimates.

COCOMO (Constructive Cost Model) models[4] cost and

schedule estimation model was originally published in

[Boehm 1981]. It became one of most popular parametric cost

estimation models of the 1980s. But COCOMO '81 along with

its 1987 Ada update experienced difficulties in estimating the

costs of software developed to new life-cycle processes and

capabilities. The COCOMO II research effort was started in

1994 at USC to address the issues on non sequential and rapid

development process models, reengineering, reuse driven

approaches, object oriented approaches etc. COCOMO II was

initially published in the Annals of Software Engineering in

www.ijisrt.com

Volume 1 , Issue 3 , June – 2016 International Journal of Innovative Science and Research Technology

ISSN No: - 2456- 2165

IJISRT16JU14 www.ijisrt.com 46

1995 [Boehm et al. 1995]. The model has three sub models,

Applications Composition, Early Design and Post-

Architecture, which can be combined in various ways to deal

with the current and likely future software practices

marketplace. A primary attraction of the COCOMO models is

their fully-available internal equations and parameter values.

Over a dozen commercial COCOMO '81 implementations are

available.

The models have been widely accepted in practice. In the

COCOMOs, the code-size S is given in thousand LOC

(KLOC) and Effort is in person-month. The basic COCOMO

model is simple and easy to use. As many cost factors are not

considered, it can only be used as a rough estimate.

COCOMO model is a regression model. It is based on the

analysis of 63 selected projects. The primary input is KDSI.

[11]The problems are: In early phase of system life-cycle, the

size is estimated with great uncertainty value. So, the accurate

cost estimate cannot be arrived at; For this reason, the

recalibration is necessary.

IV. SOFTWARE ESTIMATION

Software project plans include estimates of cost, resources,

product size, schedules, staffing levels, and key milestones.

The software estimation process is discussed in the following

steps for developing software estimates. Establishing this

process early in the life-cycle will result in greater accuracy

and credibility of estimates and a clearer understanding of the

factors that influence software development costs. This

process also provides methods for project personnel to identify

and monitor cost and schedule risk factors. The estimation

method described is based upon the use of:

a. Multiple estimates

b. Data-driven estimates from historical experience

c. Risk and uncertainty impacts on estimates

d. [8]Different estimation methods may use different data.

This results in better coverage of the knowledge base for the

estimation process. It can help to identify cost components

that cannot be dealt with or were overlooked in one of the

methods

e. Different viewpoints and biases can be taken into account

and reconciled. A competitive contract bid, a high business

priority to keep costs down, or a small market window with

the resulting tight deadlines tends to have optimistic estimates.

A production schedule established by the developers is usually

more on the pessimistic side to avoid committing to a schedule

and budget one cannot meet.

V. CONCLUSION

Software cost estimation is simple in concept, but difficult and

complex in reality. The difficulty and complexity required for

successful estimates exceed the capabilities of most software

project managers. Manual estimates are not sufficient for large

applications. This paper has presented an overview of some

software estimation techniques, providing an overview of

several popular estimation models currently available. The

important lesson to take from this paper is that no one method

or model should be preferred over all others. The search for

reliable, accurate and low cost estimation methods must

continue. Also, more studies are needed to improve the

accuracy of cost estimate for maintenance projects. The

conclusion is that no single technique is best for all situations,

and that a careful comparison of the results of several

approaches is most likely to produce realistic estimates.

References

[1]. “Handbook for Software Cost Estimation”, Prepared by Karen

Lum, Michael Bramble, Jairus Hihn, John Hackney, Mori

Khorrami and Erik.

[2]. http://www.ceh.nasa.gov/downloadfiles/ Web%20

Links/cost_hb_public-6-5.pdf.

[3]. "Software Cost Estimation” by Hareton Leung and Zhang Fan.

[4]. “Software Development Cost Estimation Approaches – A

Survey”, Barry Boehm, Chris Abts, Sunita Chulani.

[5]. http://www.ecfc.u-net.com/cost/index.htm

[6]. http://www.cs.odu.edu/~zeil/cs451/ Lectures/

04mgmt/costest/costest_htsu3.html#subsubsect:parkinson

[7]. Software Cost Estimation in 2002, Capers Jones, Software

Productivity Research Inc., Artemis Management Systems.

[8]. http://www.computing.dcu.ie/~renaat/ca421/ LWu1.html.

[9]. http://www.levela.com/software_cost_

estimating_swdoc.htm

[10]. Software Development Cost Estimating Guidebook,

Software Technology Support Center Cost Analysis

Group.

[11]. The Comparison of the Software Cost Estimating

Methods, Liming W.

[12]. http://www.cs.uwf.edu/~wilde/gump/ delphi.htm

[13]. http://www.compapp.dcu.ie/~renaat/ ca421/LWu1.html

www.ijisrt.com

