
Volume 2, Issue 10, October– 2017 International Journal of Innovative Science and Research Technology

 ISSN No:-2456 – 2165

IJISRT17OC78 www.ijisrt.com 281

 The Comparative Study of Role of Compilers in

Computer Architecture

Veena . A. More

Bachelor of Computer Application (BCA)

A. S. Patil College of Commerce (Autonomous)

Vijayapur, Karnataka

veenamore1103@gmail.com

Laxmi C. Bagalkot

Bachelor of Computer Application (BCA)

A. S. Patil College of Commerce (Autonomous)

Vijayapur, Karnataka

Abstract:-Computer is a fusion of software and hardware.

Hardware is simply a chunk of computer and its functions

are being controlled by compatible software. Hardware

understands instructions in the form of electronic charge,

which is the counterpart of binary language in software

programming. Binary language has only two alphabets, 0

and 1. To instruct, the hardware codes must be written in

binary format, which is simply a series of 1s and 0s. It

would be a difficult and cumbersome task for computer

programmers to write such codes, which is why we have

compilers to write such codes.

Keywords:-Optimization, Lexemes, Loader, Parser, YACC.

I. INTRODUCTION

Compilers fixes the gap between high-level languages & low

level language that are convenient for us to use, low-level

languages that can be executed efficiently by machines.

Compilers are the most important tool for programmers, and

consequently much effort has been expended since the dawn

of the age of computing to produce high-quality compilers.

The goal of this paper is to explain how the program accepts a

source code and generates machine code computer

architecture. Eventually this should lead to a more in-depth

understanding of compilers. The role of compiler is a well

researched area. Typically, design of the compiler use a parser

generator framework like YACC to construct lexer, scanner,

parser, etc.

A. WHAT IS COMPILER?

A compiler is a program that processes statements written in a

programming language and converts them into machine

language or also known as code that a

computer's processor uses. A programmer writes language

statements using an editor. The file is created that contains

the source statements. The programmer then runs the

compiler, which contains the source statements.

When we run, the compiler first it analyzes the language

statements syntactically one after the other and then, in one or

More successive passes, builds the output code, making sure

those statements that refer to other statements are referred to

correctly in the final code. After compilation the output is

known as object code. Here object code is machine code that

the processor can execute one instruction at a time.

II. LANGUAGE PROCESSING SYSTEM

Before going into the concepts of compilers, we should

understand a few other tools that work closely with

compilers.

A. Preprocessor

It is generally called as a part of compiler. It is a tool that

generates input for compilers. It shares with macro-

processing, augmentation, file inclusion, language extension,

etc.

B. Interpreter

An interpreter translates high-level language into low-level

machine language. It reads a statement from the input,

translates it to an intermediate code, executes it, and then

takes the next statement which is present in sequence. If it

generates error it stops its execution and reports it.

C. Assembler

An assembler converts assembly language programs into

machine code. The output of an assembler is known as object

file, which contains a combination of machine instructions

and data required to place these instructions in memory.

D. Linker

It is a computer program which links and merges various

object files together in able to make an executable file. All

files could have been compiled via separate assemblers. The

major work of a linker is to find and locate referenced

http://www.ijisrt.com/

Volume 2, Issue 10, October– 2017 International Journal of Innovative Science and Research Technology

 ISSN No:-2456 – 2165

IJISRT17OC78 www.ijisrt.com 282

module/routines in a program and to determine the memory

location where these codes will be loaded.

E. Loader

The task of loader is to load all executable files into memory

and execute them. The memory space is created by loader

when it calculates the size of a program (instructions and

data). To initiate execution it initializes various registers.

F. Cross-Compiler

A compiler which runs on one platform, it has the ability to

generate executable code for other platform.

G. Source-to-Source Compiler

A compiler which takes the source code of one programming

language and translates it into the source code of another

programming language

Figure 1: Language Processing System

III. COMPILER ARCHITECTURE

A compiler can be divided into two phases based on the way

they compile.

A. Analysis Phase

The analysis phase which is known as the front end of the

compiler reads the source program, splits it into parts and

then verifies for lexical, grammar and syntax errors. The

analysis phase creates an intermediate code representation of

the source program and symbol table as output, but it should

be fed to Synthesis phase as input.

Figure 2: Compiler Architecture

B. Synthesis Phase

The synthesis phase which is known as the back end of the

compiler generates the target program via intermediate

source code representation and symbol table.

C. Phase and Pass of Compiler.

 Pass : compiler traversing the entire program.

 Phase : It is the stage where it takes input from the

prior stage, processes and generates output which can

be used as input for the next stage

IV. CONCLUSION

An effective compiler allows a more efficient execution of

application programs for a given computer architecture, Both

the compiler writer and machine designer have multiple

objectives. When the compiler writer and the machine

designer work on their objectives also having in mind the

objectives of the other then it is possible achieve what they

need to accomplish and also what can be accomplished using

the feature or optimization built by them.

The compiler writer will benefit by having more space to

research on the optimization techniques of the compiler and

http://www.ijisrt.com/

Volume 2, Issue 10, October– 2017 International Journal of Innovative Science and Research Technology

 ISSN No:-2456 – 2165

IJISRT17OC78 www.ijisrt.com 283

the machine designer will profit on the reduced execution time

it takes to implement because of the well structured

architecture that complies with the needs of a compiler writer

and also achieves its primary goals.

REFERENCES

[1]. William A. Wulf, ―Compilers and Computer
Architecture‖ , IEEE 0018-9162.

[2]. John Hennessey and David Patterson, Computer

Architecture – A Quantitative Approach (fifth edition)

[3]. Torben Egidius Mogense, Basics of Compiler Design

[4]. Donavan, John J. Systems Programming. ew ork , D

sseldorf McGraw-Hill, 1972. Print.

[5]. Lee, Gyungho, and Pen-Chung Yew. Interaction between

Compilers and Computer Architectures. Boston: Kluwer

Academic, 2001. Print.

[6]. http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-035-computer-language-engineering-

sma-5502-fall-2005/lecture-notes/14_wrapup.pdf

[7]. Kurt Keutzer , Wayne Wolf Anatomy of a Hardware

Compiler AT&T Bell Laboratories Murray Hill NJ, 1988

ACM O-8979 l-269- l/88/0006/0095.

[8]. Mano, M. Morris. Computer Systems Architecture.

Rockville, Mar.: Computer Science, 1982. Print.

[9]. Hamacher, V. Carl., Zvonko G. Vranesic, and Safwat G.

Zaky. Computer Organization. New York: McGraw-Hill,

1984. Print.

[10]. http://en.wikipedia.org/wiki/Optimizing_compiler#S

pecific_techniques.

[11]. https://www.inkling.com/read/computer-architecture-

hennessy-5th/appendix-a/section-a-8.

[12]. http://www.tkt.cs.tut.fi/tools/public/tutorials/synopsy

s/design_compiler/ gsdc.html#arch_opt

http://www.ijisrt.com/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-035-computer-language-engineering-sma-5502-fall-2005/lecture-notes/14_wrapup.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-035-computer-language-engineering-sma-5502-fall-2005/lecture-notes/14_wrapup.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-035-computer-language-engineering-sma-5502-fall-2005/lecture-notes/14_wrapup.pdf
http://en.wikipedia.org/wiki/Optimizing_compiler#Specific_techniques
http://en.wikipedia.org/wiki/Optimizing_compiler#Specific_techniques
https://www.inkling.com/read/computer-architecture-hennessy-5th/appendix-a/section-a-8
https://www.inkling.com/read/computer-architecture-hennessy-5th/appendix-a/section-a-8

	A. Preprocessor
	B. Interpreter
	C. Assembler
	D. Linker
	E. Loader
	F. Cross-Compiler
	G. Source-to-Source Compiler
	A. Analysis Phase
	B. Synthesis Phase
	 Phase : It is the stage where it takes input from the prior stage, processes and generates output which can be used as input for the next stage

