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Abstract:-This paper presents a comparison between the 

moving average and the LULU smoothing techniques for 

time series analysis under the Autoregressive(AR) and the 

Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH) models.. Different methods are being used for 

smoothing time series data and other smoothing purposes. 

These methods include moving average, weighted moving 

average, exponential smoothing, double exponential 

smoothing, Kernel smoothers, median smoothers, non-

linear state space approach and LULU smoothers among 

others. The comparison between the moving average and 

the LULU smoothing methods in this paper is performed 

using monthly inflation data in Ghana from 2008 to 2013 

under the AR modeling and the GARCH modeling 

procedures. The results showed that ARLU (1, 2) model 

was optimal. This is an indication that the LULU 

smoothing of order 2 is more accurate in smoothing 

inflation rates as compared to the moving average 

smoothing method. It also revealed that the ARLU (1, 2) 

modelis the best for modeling and forecasting monthly 

inflation rates in Ghana over the study period. A one year 

out of sample forecast for the year 2014 by the ARLU (1, 

2) model showed that in the short term there would be a 

consistent increase in the monthly inflation rates in Ghana 

for the year 2014. 

Keywords:-LULU smoothers, Moving average, AR model, 

GARCH model, Inflation rates, Ghana. 

I. INTRODUCTION 

Most time series data have high frequency fluctuations which 

need to be removed in order that reliable modeling and 

forecasting can be performed. These fluctuations are removed 

or reduced by smoothing the data. Smoothing is important in 

many data analysis. It is an operation which removes high 

frequency fluctuations from a signal. Smoothing methods used 

in time series analysis can be classified as linear or non-linear. 

The most common linear smoothing techniques often used in 

data analysis include moving average, weighted moving 

average, exponential smoothing and double exponential 

smoothing among others. Rasmussen (2004) used the 

exponential smoothing techniques to smooth the data in time 

series analysis. Also the local regression and Kernel 

smoothing techniques were employed by Loader (2004) for 

smoothing data in time series analysis.Usually the smoothing 

techniques are to remove fluctuations from a time series with 

the purpose of uncovering patterns in the series, with a 

minimum of preconceptions and assumptions as to what these 

patterns should be.  In the process of smoothing, the random 

error is reduced, thus making the variance of the smoothed 

sequence small relative to the variance of the original 

sequence (Anderson, 1971). 

The median smoothers and the state space approach to 

smoothing data are some of the non-linear smoothing 

techniques used for smoothing data. Kitagawa (1991) 

developed a non-linear state space approach to smoothing time 

series data. Recently, a class of non-linear smoothers known 

as LULU smoothers was introduced by (Rohwer, 1989). 

LULU smoothing is a non-linear mathematical technique for 

removing impulsive noise from a data sequence such as time 

series.LULU smoothers are compared in detail to median 

smoothers by Conradie, det Wet and Jankowitz (2006) and 

found to be superior in some aspects, particularly in 

mathematical properties like idempotence and co-

idempotence. Idempotence means that there is no “noise” left 

in the smoothed data whilst co-idempotence means there is no 

“signal” left in the residual. In this thesis, both the linear 

smoothing (moving average) and non-linear smoothing 

(LULU) techniques are used in smoothing the data to compare 

their accuracies. The smoothing techniques were performed on 

economic time series data, that is monthly inflation rates in 

Ghana. Inflation is one economic factor that affects all other 

levels of the economy and the aim of every country or 

government is to control inflation rates. Due to the fact that 
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inflation levels affect other levels of the economy especially 

the business community, it is important to model and forecast 

or estimate the value of inflation in the future so that such 

values are incorporated in policy formulation in the country. 

Several researches have been done in the area of inflation 

modeling and forecasting in Ghana. One of such researches 

was done by Suleman and Sarpong (2012). 

There exist many models used for time series modeling. A 

common approach for modelingunivariate time series is the 

autoregressive (AR) model. Autoregressive models are 

commonly used in economic data. Autoregressive models 

including AR, periodic AR and periodic VARhave been used 

by Osburn and Jeremy (1989) on seasonal U.K. consumption. 

Also, Franses and Richard (1994) used periodic AR model on 

several quarterly U.K. macroeconomic data. Time series 

models like the AR, MA, ARMA, ARIMA and several others 

assume a constant conditional variance. However, most 

economic and financial series often exhibit non- constant 

conditional variance, a condition known as Heteroscedasticity 

and hence these time series models do not perform well when 

used to model such time series. Therefore models such as the 

Autoregressive Conditional Heteroscedastic (ARCH) and by 

extension the Generalized ARCH (GARCH) and other related 

models have therefore been used to model such time series. 

The ARCH model was introduced by Engle (1982) and was 

later modified by Bollerslev (1986) to the Generalized ARCH 

(GARCH) model which has been widely used for modeling 

time-varying volatility and has a much more flexible lag 

structure compared with the ARCH model. These among other 

models are used in modeling various time series forecasting. 

All over the world researchers have modeled different types of 

time series data using various statistical models.Bayram and 

Yuksel (2005) found the GARCH (1, 1) model to be the best 

for modeling the volatility in the stock market in Turkey. 

Nandini (2006) concluded that the ARIMA (4, 2, 5) model 

was best in time series forecasting in India. The financial 

volatility in China was examined by (Su, 2010). The results 

showed that the EGARCH model fits the sample data better 

than the GARCH model in modeling the volatility of Chinese 

stock returns. 

The study conducted by Amos (2010) revealed that the 

SARIMA (1, 1, 0)×(0, 1, 1)12 was the best fitting model from 

the ARIMA family models while the GARCH (1, 1) was best 

from the ARCH family of models in modeling inflation data 

for South Africa. The GARCH (1, 1) model was superior to 

the SARIMA (1, 1, 0)×(0, 1, 1)12 model. Chinwuba and 

Ibrahim (2013) found ARIMA (2, 2, 3) model to be the most 

appropriate model for short term forecasting of Nigeria 

inflation.Olajide et al (2012) sought to forecast inflation rates 

in Nigeria using Box-Jenkins approach. They identified 

ARIMA (1, 1, 1) model as the most appropriate for forecasting 

inflation rates. 

Nortey (2002) used the Box-Jenkins approach to model and 

forecast the catch of fish in Ghana. The study showed that 

SARIMA (2, 0, 0)×(1, 0. 0)12 and SARIMA (1, 0, 0)×(0, 0, 

1)12 models were appropriate for modeling and forecasting the 

data on SardinellaAurita and DentexSpp species respectively 

while ARIMA (1, 0, 1) model was best for modeling and 

forecasting SardinellaMaderensis and Sparidae species.Appiah 

and Adetunde (2011) found that ARIMA (1, 1, 1) model was 

suitable for modeling and forecasting future monthly exchange 

rates between Ghana Cedi and the U S Dollar.Mbeah-Baiden 

(2013) modeled inflation in Ghana using the ARCH type 

models. The EGARCH (2, 1) model was adjudged the most 

appropriate. 

Previous studies have analyzed time series data using various 

data smoothing methods under different types of time series 

models. However, not many studies had been done in the area 

of comparing the linear and non-linear smoothing methods in 

modeling and forecasting monthly inflation rates in Ghana 

under the AR and the GARCH models. It is against this 

background that this study seeks to investigate the accuracy of 

the linear and non-linear smoothing techniques under the AR 

and the GARCH models in modeling and forecasting inflation 

in Ghana. 

II. MATERIALS AND METHODS 

 

The paper used sample monthly inflation data from January 

2008 to December 2013. The data were obtained from the 

Ghana Statistical Service (GSS) as published on their official 

website [www.statsghana.gov.gh.] The data smoothing 

method was done with the aid of the EXCEL software whilst 

the modeling processes were conducted using EVIEWS 7.0 

and MINITAB 16.0 statistical software. The methods used in 

this paper are briefly described below: 

A.   Differencing Process 

Most time series data are nonstationary in nature. Stationarity 

is the foundation of time series analysis.One of the possible 

remedial measures to make a series tX  stationary is by 

differencing tX  to remove the trend and/or 

seasonality.Differencing of time series data can be done once 

or twice since over differencing also affects specification error 

of the model (Nortey, 2002). In this paper the differencing was 

done once as follows; 

1t t td x x    
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 B.   Moving Average Smoothing Techniques 

Moving averages rank among the most popular techniques for 

the preprocessing of time series. They are used to filter 

random "white noise" from the data, to make the time series 

smoother or even to emphasize certain informational 

components contained in the time series. According to 

Velleman&Hoaglin (1981) the most common smoothing 

technique is the moving average.A moving average is obtained 

by calculating a series of averages of different subsets of the 

full data set. A moving average of order n, MA (n) is obtained 

as follows; 

1 1( ... )t t t n
t

x x x
M

n

    
  

OR 

1 2
1

( ... )t t t n
t

x x x
M

n

  


  
  

C.   Non-Linear Smoothing Techniques 

Non-linear smoothers based on the extreme selectors have 

been developed as a class of smoothing method with very 

powerful properties and ideally suitable for application to data 

having impulsive noise, the type of data that often occur in the 

engineering and financial fields. Some of their properties 

make them ideally suitable as a basis for data smoothing. They 

systematically, measurably and monotonically “peel off” 

variation until one has a sufficiently smooth result (de Wet 

&Conradie, 2006). In this paper a class of non-linear 

smoothers known as LULU smoothers was one of the 

smoothing techniques used.LULU smoothers is a class of non-

linear smoothers introduced by Rohwer (1989), based on 

extreme selectors within moving windows. They are a class of 

non-linear smoothers based on compositions of minima and 

maxima over different window sizes. Let 

3 2 1 0 1 2 3{..., , , , , , , ,...}x x x x x x x x  
be a numerical sequence. LULU smoothers are compositions 

of the following two basic rank selectors operating on x . A 

forward operator 
n  is defined as              

( ) ( ,..., )n

i i i nx Max x x    

and a backward operator 
n  as  

( ) ( ,..., )n

i i n ix Min x x   

 Sequences of consecutive upward and downward impulses of 

length n will be removed by 
n n  or

n n  . These 

compositions give rise to half smoothers which are as 

illustrated below; 

 

OR 

 

 

D.   Autoregressive (AR) Model 

 

The autoregressive (AR) model uses past values of the 

dependent variable to explain the current value. According to 

Hamilton (1994) AR model is the most ordinary 

autoregressive models used in time series analysis. Let 

{ | }t t T  be a white noise process with mean zero and 

variance
2 . A process { | }tx t T  is said to be an 

autoregressive time series of order p (denoted AR (p)) if 

0 1 1 2 2 ....t t t p t p td x x x           

 

 0

1

p

t i t i t

i

d x  



   ; 

where 0  is a constant, i  are parameters of the model and 

t is white noise with zero mean and constant variance 

2  

A model with a combination of autoregressive terms and 

moving average terms is known as mixed autoregressive 

moving average model. We use notation ARMA (p, q) to 

represent these models for our convenience, where p is the 

order of the autoregressive part and q is the order of the 

moving average part. The orders of autoregressive and moving 

average terms in an ARMA model are determined from the 

pattern of sample autocorrelation and partial autocorrelations. 

A model for the series X t  can be an AR (p) model or an MA 

(q) model or a combination of both the AR (p) and the MA (q) 

models. The latter model is known as an autoregressive 

moving average of order (p, q), denoted by ARMA (p, q), and 

is given by 
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0 1 1 1 1... ...t t p t p t q t q td x x                 

 , where 1 1,..., , ,...p q      are model parameters to be 

estimated, and t   is a series of random errors each with zero 

mean and constant variance 
2   (Box, 1976). 

E.  Generalized Autoregressive Conditional Heteroscedastic 

(GARCH) model 

Bollerslev (1986) proposed the Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) model as an 

extension of the Autoregressive Conditional Heteroscedastic 

(ARCH) model much in the same way as the Autoregressive 

Moving Average (ARMA) model is an extension of the 

Autoregressive (AR) model. The generalized autoregressive 

conditional heteroscedasticity (GARCH) model is by far the 

most popular model for analyzing volatility in financial 

context. Let t t tx r u   be the mean corrected return, where 

tr  is the return of an asset and tu  the conditional mean of tx  

.Then the process { }tx  is a GARCH (p, q) model if   

t t td    

where
2 2 2 2 2 2 2

0 1 1 2 2 1 1 2 2... ...t t t p t p t t q t qx x x                      

 

2 2 2

0

1 1

p q

t i t i j t j

i j

x     

 

    ,   

t is a Gaussian white noise given as ~ (0,1)t iid ; 0i 

, 0,1,...,i p ,  

0j  , 1, 2,...j q  are parameters of the model and  

1
( ) 1

w

i ii
 


  , where max( , )w p q  , 0i   for 

i p  and 0j   for j q The constraints on i i   

suggests that the unconditional variance of tx  is finite, whilst 

its conditional variance 
2

t  evolves over time. Allmodel 

estimations are performed on the differenced series. 

 

 

III. RESULTS AND DISCUSSION 

It is clear from Figure 1 that both the mean and variance are 

changing over time. The changing mean and variance over 

time is an indication of the non-stationarity of the monthly 

inflation rates. Alsofrom the plots of the ACF and PACF 

shown by Figure 2a and Figure 2b, it is evident that there 

exists a correlation in the monthly inflation rates. The ACF 

plots did not show an exponential decay implying that the 

inflation series is non-stationary. On this basis we need to 

transform the data to make it stationary by taking the first 

difference of the series. The inflation series was therefore 

differenced once.The ACF plots of the differenced series 

exhibits an exponential decaying and the PACF plots cutoff to 

zero after the first lag. This means that there is no significant 

correlation in the first difference monthly inflation rates 

indicating that the differenced data is stationary. From the 

ACF and PACF plots of the first difference data in Figure 3a 

and Figure 3b, the ACF tails off at lag 2 whilst the PACF 

spike at lag 1. To confirm the stationarity of data after the first 

differencing was performed; the Augmented Dickey-Fuller 

(ADF) test was performed to ascertain the stationarity or 

otherwise of the first differenced monthly inflation rates. From 

table 1 the computed ADF test statistic (-3.986613) is smaller 

than the critical values (-3.527045, -2.903566, -2.589227) at 

1%, 5% and 10% respectively. This means that we can reject 

the null hypothesis that the first differenced inflation series has 

a unit root implying that the series is stationary at 1%, 5% and 

10% significant levels. 

Tentative ARMA (p, q) models are fitted using the first 

differenced inflation data to ascertain the true order(s) of p and 

q respectively. The most appropriate model was selected based 

on the Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC)significance tests. The criterion is 

that the smaller the AIC and the BIC values the better the 

model. Table 2 shows the various suggested models for 

ARMA after the first differenced inflation data with their 

respective fit statistics. The ARMA (1, 2) model was the most 

appropriate. This showed that an AR (1) model is the best 

model under the moving average smoothing of order 2.In 

fitting the AR (1) model on the LULU smoothed data the 

length of the LULU smoothing was used as the order of the 

LULU much in the same way as the order of the moving 

average smoothing.  Since the order of the moving average as 

per above was 2, a length of 2 (i. e order 2) of the LULU 

smoothing was considered. Table 3 gives the ARLU (1, 2) 

model with its fit statistics. The AR (1) models under the 

moving average smoothing and the LULU smoothing methods 

expressed as ARMA (1, 2) and ARLU (1, 2) respectively are 

then compared in table 4 to determine the accuracy of the 

smoothing methods. The lesser the AIC and the BIC values 

the better the model and the more accurate the smoothing 

method. The results from table 4 showed that the LULU 

smoothing is more accurate under the AR (1) model. 
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On the bases of the ARMA (1, 2) model, the tentative 

GARCH (p, q) ) models were built around AR (1) and MA 

(2). Thus AR (1) implies ARCH (1) and MA (2) means 

GARCH (2). Table 5 gives the GARCH (p, q) models. 

GARCH (1, 3) turn out as the best among the GARCH 

models, this gives a moving average of order 3. Hence the 

LULU smoothing with a length of 3 (i e order 3) was 

performed on the data. Thus we fitted GARCH (1, 0) on the 

LULU smoothed data and named it ARCHLU (1, 3) model 

since the LULU is of order 3 as seen in table 6. The GARCH 

(1, 3) under the moving average smoothing and the ARCHLU 

(1, 3) under the LULU smoothing methods are compared to 

find out the most appropriate model and  the more accurate 

smoothing method. This is showed in table 7. ARCHLU (1, 3) 

model has the least AIC and BIC values as compared with the 

GARCH (1, 3) model. This means that the LULU smoothing 

method is proven one more time to be more accurate since it 

produced a good model as compared to the moving average 

smoothing method. Based on the model output of the ARMA 

(1, 2), ARLU (1, 2), GARCH (1,3) and ARCHLU (1, 3) 

models, ARMA (1, 2), ARLU (1, 2) and ARCHLU (1, 3) were 

selected. Based on the model diagnostics and adequacy checks 

performed on the ARMA (1, 2), ARLU (1, 2) and ARCHLU 

(1, 3) models, it was realized that all the three models 

represent the data adequately. Thus to select the most 

appropriate model among these models we observed the AIC 

and the BIC values of these models. Table 8 gives the AIC and 

BIC values of the aforementioned models. The ARLU (1, 2) 

stood out as the most appropriate model. The forecasting 

evaluation and accuracy criteria were also used for the 

selection of the most appropriate model. The models were 

evaluated in terms of their forecasting ability of future 

monthly inflation rates. This is showed in table 9. The results 

from table 9 again show that the ARLU (1, 2) is the optimal 

model. This is indeed a confirmation that the LULU 

smoothing is superior to the moving average method. Figure 4 

also confirmed that the LULU smoothers outperformed the 

moving average smoothing method. Table 10 gives the 

estimates of the coefficients of the ARLU (1, 2) model. 

 

A one year out of sample forecast for 2014 monthly inflation 

rates was obtained by ARLU (1, 2) model as showed in table 

11. The ARLU (1, 2) model was to forecast inflation values 

close to the actual monthly inflation rates for January, 

February, March and April 2014 since these are the only 

published inflation figures obtained from the official website 

of Ghana Statistical Service (GSS). Comparing the actual rates 

for January, February, March and April 2014 Published as 

13.80, 14.00, 14.50 and 14.70 respectively to the forecast rates 

for the same period obtained from the model gives an average 

absolute percentage error of about 0.87. This is an indication 

that the ARLU (1, 2) is a good model.  The forecast however 

showed an upward trend implying that Ghana would 

experience a monotonic increase in the monthly inflation rates 

for the year 2014 in the short term. 

 

IV. CONCLUSION 

 

In this paper we compared the moving average and the LULU 

smoothing techniques in smoothing time series data, 

specifically monthly inflation rates in Ghana from 2008-2013 

under the AR and the GARCH models. The obtained results 

showed that the LULU smoothers always performed better 

than the moving average smoothers. The AR and the GARCH 

models were also compared. The results showed that the 

ARLU (1, 2) model is the most appropriate for modeling and 

forecasting monthly inflation rates in Ghana for the study 

period. A one year out of sample forecast of the monthly 

inflation rates for 2014 from the optimal model provide close 

figures as compared to the actual inflation figures published 

by GSS at the time this paper is being prepared. The forecast 

produced an error margin of about 0.87 implying that the 

model is a good one. 
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Table 1: Augmented Dickey-Fuller (ADF) Unit Test for the First Difference Monthly Inflation Rates in Ghana (2008-2013) 

          t- Statistic Prob 

    

Augmented 

Dickey- Fuller 

test statistic     -3.9866 0.0026 

  

Test Critical 

values: 

 

1% -3.5270 

 

    

5% -2.9036 

         10% -2.5892   

         

Table 2: Comparison of Suggested ARMA (p, q) Model with fit Statistics on the first Differenced inflation Data 

 

Model 

                                   

AIC            BIC 

ARMA (1, 2)                    1.571             1.699 

ARMA (1, 3)                    1.593             1.754 

ARMA (2, 2)                    1.557             1.719 

ARMA (2, 3)                    1.586            1.780 

 

 

Table 3: ARLU (1, 2) Model with Fit Statistics 

 

Model AIC                                BIC 

ARLU (1, 2) 1.213                              1.278 

 

 

Table 4: Comparison of ARMA (1, 2) and ARLU (1, 2) Models with Fit Statistics 

 

Model AIC BIC 

ARMA (1, 2) 1.571 1.699 

ARLU (1, 2) 1.213 1.278 
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Table 5: Comparison of Suggested GARCH (p, q) Models with fit Statistics on the First Differenced Data 

 

Model AIC BIC 

GARCH (1, 2) 1.729 1.888 

GARCH (1, 3) 1.687 1.878 

GARCH (2, 2) 1.763 1.954 

GARCH (2, 3) 1.738 1.961 

 

 

Table 6: ARCHLU (1, 3) Model with fit Statistics 

 

Model AIC BIC 

ARCHLU (1, 3) 1.277 1.375 

 

 

Table 7: Comparison of GARCH (1, 3) and ARCHLU (1, 3) Models with Fit Statistics 

 

Model AIC BIC 

GARCH (1, 3) 1.687 1.878 

ARCHLU (1, 3) 1.277 1.375 

 

 

Table 8: Selected Models with fit Statistics 

 

Model AIC BIC 

ARMA (1, 2) 1.571 1.699 

ARLU (1, 2) 1.213 1.278 

ARCHLU (1, 3) 1.277 1.375 
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Table 9: Forecast Performance of Selected Models 

Measure ARMA (1, 2) ARLU (1, 2) ARCHLU (1, 3) 

Root Mean Square Error (RMSE) 0.61 0.57 0.58 

Mean Absolute Error (MAE) 0.45 0.40 0.40 

Mean Abs Percent Error (MAPE) 130.15% 106.63% 119.16% 

Theil's Inequality Coefficient (TIC) 0.76 0.83 0.82 

Rank 3 1 2 

 

 

Table 10: Estimates of ARLU (1, 2) Model 

 

Variable Coefficient Std-Error t-Statistic Prob 

 

 
 

0.0534 0.1725 0.3095 0.7579 

 

  

 

0.6924 0.0881 7.8614 0.0000 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

1
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Table 11:   One year out of Sample Forecast of Monthly inflation Rates for 2014 From the ARLU (1, 2) Model 

Month Observed % (2013) Forecast % (2014) Forecast error % 

Jan 8.80 13.76 4.96 

Feb 10.00 14.06 4.06 

Mar 10.40 14.30 3.90 

Apr 10.60 14.51 3.91 

May 10.90 14.71 3.81 

Jun 11.20 14.91 3.71 

Jul 11.80 15.09 3.29 

Aug 11.50 15.28 3.78 

Sep 11.90 15.46 3.56 

Oct 13.10 15.64 2.54 

Nov 13.20 15.81 2.61 

Dec 13.50 15.99 2.49 
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Figure1: Time Series of Monthly inflation Rates in Ghana (2008-2013) 
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Figure 2a: Autocorrelation Function (ACF) Plots of Monthly inflation Rates in Ghana (2008-2013) 
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Figure 2b: Partial Autocorrelation Function (PACF) Plots of Monthly inflation Rates in Ghana (2008-2013) 
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Figure 3a: Autocorrelation Function (ACF) Plots of First Differenced Monthly Inflation Rates in Ghana (2008-2013) 

 

18161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

P
a

rt
ia

l 
A

u
to

c
o

rr
e

la
ti

o
n

 

Figure 3b: Partial Autocorrelation Function (PACF) Plots of First Differenced of Monthly inflation Rates in Ghana (2008-2013) 
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Figure 4: Plots Moving Average Smoothed Data, LULU Smoothed Data and Original Data 
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