
Volume 3, Issue 3, March– 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18MA175 www.ijisrt.com 200

A Critical Analysis of Performance and Efficiency of

Minimization Algorithms for Deterministic Finite

Automata

Shweta

B.Tech

Department of Computer Science and Engineering

SRM Institute of Science and Technology

Chennai, Kattankulathur-603203

INDIA

K.Senthil Kumar

Asst. Prof(S.G)

Department of Computer Science and Engineering

SRM Institute of Science and Technology

Chennai, Kattankulathur-603203

INDIA

Abstract—This paper deals with the problem of

minimization of Deterministic Finite Automata. There are

various approaches available for converting the DFA into

its minimized DFA for the given input strings. The most

efficient algorithm for doing the minimization is the

Hopcroft’s Minimization Algorithm which aims at

removing all the states which are unreachable i.e. which

cannot lead to the goal state with the given set of input

symbols. Thereafter, removing or merging all the

equivalent states such that the resultant automaton will

only have distinguishable states and this automaton would

be the minimized automaton for the given input

deterministic finite automata. Any two deterministic finite

automata will have the same minimized DFA if they

represent the same regular language. Here in this project I

have attempted to implement the Hopcroft’s algorithm

with some parallelism in C language keeping the average

time complexity to be logarithmic.

Keywords:- Deterministic finite Automata, NFA, compiler,

transition function, equivalent states, distinguishable states.

I. INTRODUCTION

 In compiler design, there are two types of automata

which are used to accept strings which are accepted by a

particular regular language NFAs (or) Non-Deterministic

Finite Automata and DFAs (or) Deterministic Finite

Automata. NFAs are not widely used because they can have

multiple states to move to for a given state and same input

symbol and hence they might not lead to the goal state for the

input string. On the other hand, we have DFAs which have

only single transition from a given state to the next state for

the given input symbol, and hence they are unambiguous and
give reliable output for the regular language accepted by them.

Also, DFAs are very useful in some of the real world

implementations such as doing lexical analysis, pattern

matching, traffic sensitive traffic lights, vending machines,

compiler design, logic optimization of various programs,

verification of protocols etc. Therefore, to find a minimum

DFA from a given DFA is very useful as they make the

implementation of automata in real world more efficient.

DFAs can be defined by five tuples: <Q, Σ, δ, Qo, F>

Q: finite set of all states present in the language

Σ: finite set of all input symbols which could be accepted

by the language

δ: transition function (δ=Q* Σ → Q)

Qo: start state of the automata

 F: finite set of all goal\accepting states (F ⊆ Q)

 Equivalent States: the states which have same transition

from one state to the next state for all strings.

 Distinguishable States: the set of states which have

different transition from current state to the next state for

the given set of inputs and thus are considered as different
state. A DFA with only set of all distinguishable states is

considered as minimized DFA.

 Partition: The set which comprises of subsets of all

equivalent states as one subset which can be later merged

to a single state to minimize the DFA with further

refinement of the partition based on the backward depth

information.

Example: Regular Expression with its equivalent NFA,

DFA and Transition diagram.

 Regular Expression: (a\b)*abb

 Equivalent NFA:

Fig. 1:-NFA for (a\b)*abb

http://www.ijisrt.com/

Volume 3, Issue 3, March– 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18MA175 www.ijisrt.com 201

 Equivalent DFA:

Fig. 2:- DFA for (a/b)*abb

State a b

->q0 q1 q0

 q1 q1 q2

 q2 q1 q3

 *q3 q1 q0

 Table 1: Transition Table for (a/b)*abb for DFA

 The above example gives a brief about the

construction of Non-Deterministic Finite Automata (fig-1),

Deterministic Finite Automata (fig-2) and the transition table

for the DFA (table-1). In the case of NFA there arises an

ambiguity in state ‘q0’ on the input symbol ‘a’ if whether to

stay in the same state or to move to the next state that is ‘q1’.

While, there is no such ambiguity in the case of Deterministic
Finite Automata.

This paper is arranged in the following order i.e Section-II

enlists some of the real-life implementations of Deterministic

Finite Automata, Section-III discusses some of the

implemented methods of DFA minimization while Section-IV

gives the analysis of various existing algorithms based upon

the above mentioned DFA minimization techniques.

II. APPLICATIONS OF DFAS

 Verification of protocols.

 Recognition of patterns.

 Searching for viruses

 Recognition of speech.

 CPU controllers.

 Text Parsing etc.

III. VARIOUS TECHNIQUES AVAILABLE FOR

MINIMIZING A DFA INTO ITS MINIMIZED DFA

There are various methods available which are used to

convert a DFA into its Minimized DFA. Any of the methods

can be chosen based upon the application and type of DFA to

be used.

A. Partition of sets method:

In this method there are two properties which are

associated with the DFA i.e. states and their equivalence. This

is an iterative approach in which the partition is refined each

time

such that the states belonging to the same set in the final

iteration are considered to be equivalent states and can be

replaced by a single state.

Suppose there are two states (p,q), they will be considered
as equivalent and can be replaced by a single state in the DFA

if:

δ(p,w) ∈ F => δ (q,w) ∈ F (1)

and,

δ (p,w) ∉ F => δ (q,w) ∉ F (2)

where, w ∈ Σ

if |w|=0, then (p,q) are said to be 0 equivalent similarly, |w|=n,

then (p,q) are said to be n equivalent where n=1,2,3,..

 The zero equivalent state puts the final states in one
state and all the non-final states in one set. After which every

state is checked for its equivalency if for any input string, it

goes to a state belonging to a different set. If yes, they are

considered to be distinguishable states and are partitioned into

different states

Otherwise, they are considered as equivalent states and can be

replaced by a single state. The minimized DFA is finally

constructed after removing all the unreachable and replacing

all the equivalent states by a single state.

B. Table filling method:

This procedure constructs a minimized DFA based

upon the table which is drawn for all pairs of states. Then all

the pairs are marked where p ∈ F and q ∉ F. If there are any

pairs (p,q) left such that [δ(p,w) and δ(q,w)] is marked, then

mark [p,q]; where, w ∈ Σ. This step is repeated until there are

no more pairs left to be marked in the table. The pairs which

are not marked still are considered as equivalent states and can

be replaced by a single state. After replacing all the unmarked
states in the table by a single state minimized DFA is

constructed.

C. A parallel DFA minimization method:

 This is one more minimization method which

provides a simpler implementation of the Moore’s Algorithm.

It makes use of O(n\logn) processors to obtain the average

time complexity of O(log n), where n denotes the number of

http://www.ijisrt.com/

Volume 3, Issue 3, March– 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18MA175 www.ijisrt.com 202

states in the DFA to be minimized. In this method, the inner

for loop is parallelized which iterates over the set of states.
The labels which are obtained by this loop are hashed using a

parallel algorithm for obtaining new block numbers for the

states.

D. Minimized DFA construction based upon Backward

Depth Information- A hybrid approach:

 This a hybrid approach for DFA minimization based

upon the backward depth information and hash tables. This

method is divided into two phases: (i) backward depth

information is built by partitioning the state set of DFA into

different blocks, then (ii) hash tables are used for the
refinement of the state set.

This method also has a naïve time complexity of O(n2), but

this method provides a greater generality because it is

independent of the topological complexity of the Deterministic

Finite Automata. It is also faster than Hopcroft’s Algorithm

and provides greater scalability.

IV. ALGORITHMS BASED UPON THE ABOVE

TECHNIQUES

 There are various algorithms based upon the above
mentioned techniques. This section provides a detailed

analysis of these algorithms and their performance comparison

for different types of DFAs is given below:

A. Hopcroft’s Algorithm

 Hopcroft’s algorithm is based upon the refinement of

partition of sets. It is the most widely used algorithm because

of its worst case time complexity of O(n log n), where n:

number of states in the DFA. It is based upon the successive

refinement of sets which finally lead to the set of subsets

comprising of distinguishable states which can be considered
as the states of the minimized DFA. The only disadvantage

with this algorithm is that it is not yet extended to deal with

incomplete DFAs.

B. Moore’s Algorithm

This algorithm is similar to Hopcroft’s algorithm but

it is easier to implement. It is also based upon the refinement

of partition and terminates when no further refinement is

possible. It starts with removing all the unreachable states and

then starts constructing partition with set of 0 equivalent
states. But the disadvantage of using this algorithm is that it

has its worst case time complexity of O(n2) where, n is the

number of states. This complexity is much higher than that of

Hopcroft’s Algorithm.

C. Brzozowski’s Algorithm

This Algorithm is based upon the power-set construction

method. In this algorithm, the edges if the DFA are reversed

which produces a Non-deterministic Finite Automata for the

original regular language after which only the reachable states

are considered which leads to a minimal Deterministic Finite

Automata. This algorithm works in the order of

D(R(D(R(A)))) (3)

D(R(D(R(A))))(3

Where,

A- Automata to be minimized

D(A)- Determination of A by subset construction method

R(A)- Reversal of A

D. Revuz’s Algorithm

This algorithm is applicable only for acyclic DFAs with
linear average time complexity. This algorithm comprises of

two steps namely: pseudo-minimization after which the actual

minimization follows. This algorithm mainly focuses on

finding a path taking help from the previous word suffix and

tries to find the longest matching substring if the end of the

string is not reached else it will clear the path if the end of the

string is reached.

V. COMPARISON

The algorithms available to us can be used based upon their

advantages for different types of automata. The performance
of these algorithms towards DFA minimization in terms of

average time complexity and the level of complexity for

implementing that algorithm can be tabularised as below:

Algorithm Avg. Time Implementation Complexity

 Complexity

Hopcroft’s O(n log n) complex

Algorithm

Moore’s O(n2) easier

Algorithm

Brzozowski’s Exponential complex

Algorithm

Revuz’s Linear complex

Algorithm

Table 2: comparison of various established algorithms for

DFA minimization

http://www.ijisrt.com/

Volume 3, Issue 3, March– 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18MA175 www.ijisrt.com 203

VI. CONCLUSION

 There are various algorithms discussed in this paper

which gets us to the conclusion that Hopcroft’s Algorithm is

the most efficient Algorithm in terms of lowest time

complexity and is applicable for most of the Deterministic

Finite Automata, its only disadvantage is that it is complex to

implement whereas Moore’s algorithm is simpler to

implement than Hopcroft’s Algorithm but with exponential

time complexity. Revuz’s Algorithm and Brzozowski’s

Algorithm are two other algorithms which have better time

complexity for some acyclic automata but they are not

efficient for all different kinds of automata. So, the most

efficient algorithm for the DFA minimization in terms of
lowest time complexity is the Hopcroft’s Algorithm.

REFERENCES

[1]. Introduction to the Theory of Computation-Textbook

by Michael Sipserin the year 2017

[2]. G Efficient Deterministic Finite Automata

Minimization Based on Backward Depth Information by

Desheng Liu ,Zhiping Huang, Yimeng Zhang, Xiaojun

Guo, Shaojing Su in the year 2016.

[3]. Weak minimization of DFA—an algorithm and
applications by B.Ravikumara and G.Eismanb in the year

2004.

[4]. A Parallel DFA Minimization Algorithm by Ambuj

Tewari, Utkarsh Srivastava, and P. GuptaDepartment of

Computer Science & Engineering Indian Institute of

Technology Kanpur 208016, INDIA, 2002.

[5]. Theory of Computation | Minimization of DFA by

Geeks for Geeks at url

https://www.geeksforgeeks.org/theorycomputationminimizatio

n- dfa.

[6]. DFA minimization: from Brzozowski to Hopcroft

Pedro Garc´ıa, Dami´an L´opez and Manuel V´azquez de
Parga Y in the year 2013.

[7]. Introduction to Theory of Computation Anil

Maheshwari Michiel Smid School of Computer Science

Carleton University Ottawa Canada in the year 2017.

[8]. Introduction to Automata Theory, Languages, and

Computation 3rdEdition (English, Paperback, John E.

Hopcroft, Rajeev Motwani, Jeffrey D Ullman)

[9]. Theory Of Computation ,Introduction to TOC, DFA,

minimization of DFA- tutorials by Ravindra Babu Ravula at

url: https://www.youtube.com/watch?v=eqCkkC9A0Q4.

[10]. Incremental algorithm for sorted data, described in:
Jan Daciuk, Stoyan Mihov, Bruce Watson, and Richard

Watson, Incremental Construction of Minimal Acyclic

Finite State Automata, Computational Linguistics, 26(1),

March 2000.

[11]. C. Incremental Construction and Maintenance of

Minimal Finite State Automata Rafael Carrasco∗ Mikel L.

Forcada in the year 2000.

http://www.ijisrt.com/
https://www.geeksforgeeks.org/theory-computation-minimization-dfa/
https://www.geeksforgeeks.org/theory-computation-minimization-dfa/

