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Abstract—This paper deals with the problem of 

minimization of Deterministic Finite Automata. There are 

various approaches available for converting the DFA into 

its minimized DFA for the given input strings. The most 

efficient algorithm for doing the minimization is the 

Hopcroft’s Minimization Algorithm which aims at 

removing all the states which are unreachable i.e. which 

cannot lead to the goal state with the given set of input 

symbols. Thereafter, removing or merging all the 

equivalent states such that the resultant automaton will 

only have distinguishable states and this automaton would 

be the minimized automaton for the given input 

deterministic finite automata. Any two deterministic finite 

automata will have the same minimized DFA if they 

represent the same regular language. Here in this project I 

have attempted to implement the Hopcroft’s algorithm 

with some parallelism in C language keeping the average 

time complexity to be logarithmic. 
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I. INTRODUCTION 

 

 In compiler design, there are two types of automata 

which are used to accept strings which are accepted by a 

particular regular language NFAs (or) Non-Deterministic 

Finite Automata and DFAs (or) Deterministic Finite 

Automata. NFAs are not widely used because they can have 

multiple states to move to for a given state and same input 

symbol and hence they might not lead to the goal state for the 

input string. On the other hand, we have DFAs which have 

only single transition from a given state to the next state for 

the given input symbol, and hence they are unambiguous and 
give reliable output for the regular language accepted by them. 

Also, DFAs are very useful in some of the real world 

implementations such as doing lexical analysis, pattern 

matching, traffic sensitive traffic lights, vending machines, 

compiler design, logic optimization of various programs, 

verification of protocols etc. Therefore, to find a minimum 

DFA from a given DFA is very useful as they make the 

implementation of automata in real world more efficient. 

 

DFAs can be defined by five tuples: <Q, Σ, δ, Qo, F> 

 

Q: finite set of all states present in the language 

 

Σ: finite set of all input symbols which could be accepted 

by the language 

 

δ: transition function (δ=Q* Σ → Q) 
 

Qo: start state of the automata 

 

 F: finite set of all goal\accepting states (F ⊆ Q) 

 

 Equivalent States: the states which have same transition 

from one state to the next state for all strings. 

 

 Distinguishable States: the set of states which have 

different transition from current state to the next state for 

the given set of inputs and thus are considered as different 
state. A DFA with only set of all distinguishable states is 

considered as minimized DFA. 

 Partition: The set which comprises of subsets of all 

equivalent states as one subset which can be later merged 

to a single state to minimize the DFA with further 

refinement of the partition based on the backward depth 

information. 

 

Example: Regular Expression with its equivalent NFA, 

DFA and Transition diagram. 

 Regular Expression: (a\b)*abb 

 Equivalent NFA: 

 

 
 

Fig. 1:-NFA for (a\b)*abb 
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 Equivalent DFA: 
 

 

Fig. 2:- DFA for (a/b)*abb 

 

 

State a b 

   
->q0 q1 q0 

   q1 q1 q2 

   q2 q1 q3 

   *q3 q1 q0 

   Table 1: Transition Table for (a/b)*abb for DFA 

 

 The above example gives a brief about the 

construction of Non-Deterministic Finite Automata (fig-1), 

Deterministic Finite Automata (fig-2) and the transition table 

for the DFA (table-1). In the case of NFA there arises an 

ambiguity in state ‘q0’ on the input symbol ‘a’ if whether to 

stay in the same state or to move to the next state that is ‘q1’. 

While, there is no such ambiguity in the case of Deterministic 
Finite Automata. 

 

This paper is arranged in the following order i.e Section-II 

enlists some of the real-life implementations of Deterministic 

Finite Automata, Section-III discusses some of the 

implemented methods of DFA minimization while Section-IV 

gives the analysis of various existing algorithms based upon 

the above mentioned DFA minimization techniques. 

 

II. APPLICATIONS OF DFAS 

 

 Verification of protocols. 

 Recognition of patterns. 

 Searching for viruses 

 Recognition of speech. 

 CPU controllers. 

 Text Parsing etc. 

 

III.   VARIOUS TECHNIQUES AVAILABLE FOR 

MINIMIZING A DFA INTO ITS MINIMIZED DFA 

 

There are various methods available which are used to 

convert a DFA into its Minimized DFA. Any of the methods 

can be chosen based upon the application and type of DFA to 

be used. 
 

A.  Partition of sets method: 

 

In this method there are two properties which are 

associated with the DFA i.e. states and their equivalence. This 

is an iterative approach in which the partition is refined each 

time 

such that the states belonging to the same set in the final 

iteration are considered to be equivalent states and can be 

replaced by a single state. 

 

Suppose there are two states (p,q), they will be considered 
as equivalent and can be replaced by a single state in the DFA 

if: 

δ(p,w) ∈ F => δ (q,w) ∈ F        (1) 

and,  

δ (p,w) ∉ F => δ (q,w) ∉ F           (2) 

where, w ∈  Σ 

if |w|=0, then (p,q) are said to be 0 equivalent similarly, |w|=n, 

then (p,q) are said to be n equivalent where n=1,2,3,.. 

 

 The zero equivalent state puts the final states in one 
state and all the non-final states in one set. After which every 

state is checked for its equivalency if for any input string, it 

goes to a state belonging to a different set. If yes, they are 

considered to be distinguishable states and are partitioned into 

different states 

 

Otherwise, they are considered as equivalent states and can be 

replaced by a single state. The minimized DFA is finally 

constructed after removing all the unreachable and replacing 

all the equivalent states by a single state. 

 
B.  Table filling method: 

 

This procedure constructs a minimized DFA based 

upon the table which is drawn for all pairs of states. Then all 

the pairs are marked where p ∈ F and q ∉ F. If there are any 

pairs (p,q) left such that [δ(p,w) and δ(q,w)] is marked, then 

mark [p,q]; where, w ∈ Σ. This step is repeated until there are 

no more pairs left to be marked in the table. The pairs which 

are not marked still are considered as equivalent states and can 

be replaced by a single state. After replacing all the unmarked 
states in the table by a single state minimized DFA is 

constructed. 

 

C.  A parallel DFA minimization method: 

 

 This is one more minimization method which 

provides a simpler implementation of the Moore’s Algorithm. 

It makes use of O(n\logn) processors to obtain the average 

time complexity of O(log n), where n denotes the number of 
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states in the DFA to be minimized. In this method, the inner 

for loop is parallelized which iterates over the set of states. 
The labels which are obtained by this loop are hashed using a 

parallel algorithm for obtaining new block numbers for the 

states. 

 

D. Minimized DFA construction based upon Backward 

Depth Information- A hybrid approach: 

 

 This a hybrid approach for DFA minimization based 

upon the backward depth information and hash tables. This 

method is divided into two phases: (i) backward depth 

information is built by partitioning the state set of DFA into 

different blocks, then (ii) hash tables are used for the 
refinement of the state set. 

This method also has a naïve time complexity of O(n2), but 

this method provides a greater generality because it is 

independent of the topological complexity of the Deterministic 

Finite Automata. It is also faster than Hopcroft’s Algorithm 

and provides greater scalability. 

 

IV. ALGORITHMS BASED UPON THE ABOVE 

TECHNIQUES 

 

 There are various algorithms based upon the above 
mentioned techniques. This section provides a detailed 

analysis of these algorithms and their performance comparison 

for different types of DFAs is given below: 

 

A. Hopcroft’s Algorithm 

 

 Hopcroft’s algorithm is based upon the refinement of 

partition of sets. It is the most widely used algorithm because 

of its worst case time complexity of O(n log n), where n: 

number of states in the DFA. It is based upon the successive 

refinement of sets which finally lead to the set of subsets 

comprising of distinguishable states which can be considered 
as the states of the minimized DFA. The only disadvantage 

with this algorithm is that it is not yet extended to deal with 

incomplete DFAs. 

 

B. Moore’s Algorithm 

 

This algorithm is similar to Hopcroft’s algorithm but 

it is easier to implement. It is also based upon the refinement 

of partition and terminates when no further refinement is 

possible. It starts with removing all the unreachable states and 

then starts constructing partition with set of 0 equivalent 
states. But the disadvantage of using this algorithm is that it 

has its worst case time complexity of O(n2) where, n is the 

number of states. This complexity is much higher than that of 

Hopcroft’s Algorithm. 

 

 

 

 

C. Brzozowski’s Algorithm 

 
This Algorithm is based upon the power-set construction 

method. In this algorithm, the edges if the DFA are reversed 

which produces a Non-deterministic Finite Automata for the 

original regular language after which only the reachable states 

are considered which leads to a minimal Deterministic Finite 

Automata. This algorithm works in the order of 

 

D(R(D(R(A)))) (3) 

D(R(D(R(A))))(3 

Where,  

A- Automata to be minimized 

 

D(A)- Determination of A by subset construction method 

 

R(A)- Reversal of A 

 

D. Revuz’s Algorithm 

 

This algorithm is applicable only for acyclic DFAs with 
linear average time complexity. This algorithm comprises of 

two steps namely: pseudo-minimization after which the actual 

minimization follows. This algorithm mainly focuses on 

finding a path taking help from the previous word suffix and 

tries to find the longest matching substring if the end of the 

string is not reached else it will clear the path if the end of the 

string is reached. 

 

V. COMPARISON 

 

The algorithms available to us can be used based upon their 

advantages for different types of automata. The performance 
of these algorithms towards DFA minimization in terms of 

average time complexity and the level of complexity for 

implementing that algorithm can be tabularised as below: 

 

Algorithm Avg. Time Implementation Complexity 

 Complexity  

Hopcroft’s O(n log n) complex 

Algorithm   

Moore’s O(n2) easier 

Algorithm   

Brzozowski’s Exponential complex 

Algorithm   

Revuz’s Linear complex 

Algorithm   

 

Table 2: comparison of various established algorithms for 

DFA minimization 
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VI. CONCLUSION 

 
 There are various algorithms discussed in this paper 

which gets us to the conclusion that Hopcroft’s Algorithm is 

the most efficient Algorithm in terms of lowest time 

complexity and is applicable for most of the Deterministic 

Finite Automata, its only disadvantage is that it is complex to 

implement whereas Moore’s algorithm is simpler to 

implement than Hopcroft’s Algorithm but with exponential 

time complexity. Revuz’s Algorithm and Brzozowski’s 

Algorithm are two other algorithms which have better time 

complexity for some acyclic automata but they are not 

efficient for all different kinds of automata. So, the most 

efficient algorithm for the DFA minimization in terms of 
lowest time complexity is the Hopcroft’s Algorithm. 
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