
Volume 3, Issue 4, April – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18AP143 www.ijisrt.com 400

Improving Efficiency of Distributed File System

using Map-Reduce Model with Rebalancing Model in

Cloud Platform
B.Sabarish, S.Suriya, Suyash Shukla, T.pirithivi Raj, M.Narendran

B.Tech (IV) Year Student , Department of Computer Science and Engineering

SRM Institute of Science and Technology, Chennai, India

Assistant Professor, Department of Computer Science and Technology

SRM Institute of Science and Technology, Chennai, India

Abstract:- A Distributed file system or commonly known

as dfs is said to be a major part for setting up and making

cloud computing applications. In such file systems such as

dfs, nodes continuously working on computing functions

and storage facilities and functions; then a file is

Partitioned (divided into equal number of parts of equal

size)into a number of chunks allocated in different nodes

so that Map Reduce algorithm tasks can be applied over

the nodes in parallel. However, in a environment such as a

cloud computing environment, failure is very evident and

often avoided, and nodes in such environment can be

enhanced, replaced, or can be added to the current existing

system.

 Other functions that can be done with files is that

they can be created, deleted, and appended dynamically.

This leads towards uneven distribution of load that is

imbalance problem in a distributed file system; that is, the

file parts(Chunks) are not divided between the nodes as

uniformly as it should be divided in an ideal state . The

present distributed file systems strongly depends upon a

central node for reallocating the chunk parts to different

nodes. This type of dependence is not considered as good in

a large-scale and failure-prone environment as this here

because the central load balancer is put under large

amount of workload that is linearly scaled with the size of

the system, and may cause the performance bottleneck and

might become single point of failure. In this paper,

technique is presented for improving efficiency of

distributed file system using map-reduce model with

rebalancing model in cloud platform is presented to deal

with the load imbalance problem.

 Our algorithm when analyzed with the current

approach in production systems and a solution is presented

in the literature. The results show and illustrate that our

algorithm is comparable with the current existing

centralized load rebalancing algorithm and is considerably

better than the previous distributed algorithms in factors

of load imbalance, movement cost.

I. INTRODUCTION

 Clients, data center and distributed servers this are the

elements comes under cloud; but there might be some of the
issues like fault tolerance, high availability and many more, in

between these issues is the establishment of an effective load

balancing algorithm. The load can be considered as a load of

CPU/network, capacity of the memory. Balancing the node

load is to simply distributing the load among sub servers to

improve utilization of the resources and response time of the

assigned job and to minimize the chances of load imbalance

issues. The load balancing technique was mentioned within the

existing system. Maintaining and process such a large amount

of jobs within the cloud environment is a very tedious task

whereas cloud computing are often thought of as a scalable

and much more efficient technology therefore it receiving

much attention for researchers. Capacities of each node is

totally different than alternative every node and also the

patterns of job arrival is additionally not predictable because
of this load balancing problem work control is incredibly

crucial to enhance the performance of the system and to take

care of the stability of system. Load balancing algorithms

looking on whether or not the system dynamics can be either

static or dynamic. Static algorithms don’tuse the system

information and are less complex and simple on the other hand

dynamic algorithms can prove costly for the system however

modification will be done because the system status changes.

A dynamic algorithm is used here because of it’s flexibility.

The load balancing is done on centralized node so that load

can be minimized, with the help of load balancing algorithm

the weighted nodes load is balanced because of this
movement cost is cut down to a minimum. It leads to load

asymmetry problem in distributed filing system. To overcome

this load inequality problem, distributed Load rebalancing

algorithm and map-reduce technique has been applied. Load

rebalancing has the more efficiency that makes system more

efficient. For load imbalance we use a secure map reduce load

rebalancing algorithm that merges with the MD5 with DES

Encryption algorithm.

II. LITERATURE SURVEY

A. Iqbalance: https://code.google.com/p/irqbalance

 The current present solutions forbalancing load in

DHTs leads to a high loss in form of routing state and in form

of load movement created by nodes joining the system or

leaving the system. In this paper, we present a techniques and

use them to introduce set of rules based on Chord, called X0,

that can provide load balancing of nodes with minimal

incurred loss taking a general assumption that the load is

evenly distributed in the memory.

 We try to prove that X0 can reach find near to

optimal solution for our given problem, while moving little

load to maintain the balance and increase the size of the

http://www.ijisrt.com/
https://code.google.com/p/irqbalance

Volume 3, Issue 4, April – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18AP143 www.ijisrt.com 401

routing tables by atmost a constant factor. By performing

practical's based upon real-world and user defined scenario,

we show that X0 lessens the load imbalance of Chord from

O(log n) to a less than 3.6s along with maintaining the

number of contact that a node needs to have. we study that the

consequences of heterogeneity is reflected, average route

length is also reduced as node capacities become more and

 more heterogeneous. For a real-world of case node

capacities, the route length in X0 is asymptotically less than

half the path length that as seen in the case of a homogeneous

system.

B. Chord: A Scalable Peer-to-peer Lookup Protocol for

Internet Applications

 A very basic problem that is encountered in a peer-to-

peer application is that of the properand correct position of the

nodes that stores user data . This paper brings up the concept

of Chord, a distributed search technique that resolves the

aboveproblem. Chord gives solution for just one problem and

the solution is: given a key, it maps the key onto a node.

 Data location can be used along with Chord by

allocating a key with each data part, and storing the key-data

pair in the node to which the key points in the memory. Chord

adjusts as nodes joins or leaves the system, and can return data

foruser-queries given that the system is continuously

changing. Results from a written point of view and

experiments show that Chord is scalable i.e as wanted by user

and as much wanted by user : communication cost and the

state of the system is maintained by scaling each node

logarithmically with the number of Chord nodes.

C. Scaling in the linux networking stack. Linux Kernel

Document.

 The Map Reduce model is a programming model and

an method of implementation for processing and producing

huge amount of data. Users tell a map function to manipulate

the data and generate a key/data pair to generate a set of in-

between key/data pairs, and a reduce function that joins all in-

between values that have relationship with the same in-

between key. Many real world tasks can be expressed and

represented using this above model.

 Programs written in this way of style are parallelized

and run on a large cluster of user systems automatically. The

system performing the processing and data manipulation

makes note of the splitting up of the input data, performing the

program's running across a number of systems, dealing with

system failures problem, and managing the as given inter-

system communication. This gives an upper-hand to

programmers without any prior knowledge in parallel and

distributed systems to easily use the resources of a large

distributed system.

 Our implementation of Map Reduce algorithm works

upon on a large cluster of systems and is scalable(as required

by user or organization),a general Map Reduce data

manipulation deals with and manipulates many terabytes of

data on many systems. Programmers find this system as easy

to use and work on, as many Map Reduce programs have been

already running and more over immense number of Map

Reduce jobs are executed on Google's clusters every day.

 System architecture

Fig 1:- Overview

 The load of each server is stable over time, when load

balancing process is performed.

D. Hardware Requirments

● Processor : >2GHz

● RAM : 512 MB

● Hard Disk : 80 GB

E. Software Requirements

● Operating System : Windows 10

● Language Used : Java 7

● Tools : NetBeans IDE, MYSQL Server

III. MODULES

A. Chunk Creation

 A file is divided into a number of pieces known as

chunks situated in different nodes so that Map Reduce

operations and functions can be performed upon them

simultaneously over the nodes. The load upon a node depends

upon the number of chunks the node has kept with itself

because the files in a cloud can be created, deleted, and

appended by any anonymous user and nodes can be enhanced,

changed and increased in the current environment, the file

parts may not be divided as uniformly as expected among the

nodes .Here our objective is to distribute the chunks as

uniformly as can be done among the nodes such that no node

has extra or less chunks.

B. DHT Formulation

 The nodes performing storage operations are kept

near one another as a network based upon distributed hash

tables (DHTs), like, finding a file part can simply imply to

quick key search in DHTs, provided that a unique name (or

identifier) is given to each file part. DHTs gives capability to

http://www.ijisrt.com/

Volume 3, Issue 4, April – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18AP143 www.ijisrt.com 402

nodes to self-organize and self-repair along with offering

search facility in nodes without a stop, simplifying the

administration and management. The chunk-servers(servers

that stores file parts i.e chunks) in our rebalancing method are

kept together as a DHT network. DHTs provides a assurance

that if a node leaves the environment, then its locally

contained chunks are moved to the node which replaces it; if a

node joins the system, then it gives the chunks IDs of node

immediately to the joining node from its successor to deal

with.

C. Load Balancing Algorithm

 Our proposed algorithm, takes each one of the chunk-

server nodes and it first calculates if it is light-loaded or over-

loaded without the information about the system state. A node

is said to be light-loaded if the number of file-parts it contains

is less than the ideal load that a node can take that is threshold

value of load. to be precise, each node gets in touch with

randomly selected nodes in the system and creates a vector . A

vector is the one that contains entries, and each of this entry

has the ID, network address and load status of a randomly

selected node.

D. Replica Management

 Generally in distributed file systems like Google GFS

and Hadoop HDFS, a specific number of duplicate of each

chunk is kept in different nodes to have better file availability

in any mishappening or if any node failures occurs or any node

leaves the system. Our current load balancing algorithm does

not sees the duplicates as unique. It is rare that two or more

duplicates are kept in a similar node because of the unknowing

nature of our here presented load rebalancing method. More

over, each light-loaded node checks a number of nodes, each

node is selected with a probability of 1/n, for sharing their

loads (where n is the total number of nodes that provides

storage facility).

IV. CONCLUSION

 The load balancing is a very crucial work in a Cloud

Computing environment to get maximum output from the

existing system resources. We discussed load balancing

schemes along with the Map-Reduce Model for improving

efficiency of distributed file systems.

On one side the existing load balancing Model provide easiest
performance monitoring of file system environment, but it is a

difficult task to model the heterogeneous nature of clouds. On

the other side, dynamic load re-balancing algorithms are

complex to perform but are preferred in a heterogeneous

system of cloud.

REFERENCES

[1]. Irqbalance: https://code.google.com/p/irqbalance.

[2]. lookbusy–asyntheticload

generator:http://www.devin.com/lookbusy/.

[3]. Scaling in the linux networking stack. Linux Kernel

Document.

[4]. STREAM bechmark: https://www.cs.virginia.edu/stream/.

[5]. Xen’s Credit Scheduler:

[6]. http://wiki.xen.org/wiki/credit scheduler.

http://www.ijisrt.com/
https://www.cs.virginia.edu/stream/

	Improving Efficiency of Distributed File System using Map-Reduce Model with Rebalancing Model in Cloud Platform
	B.Sabarish, S.Suriya, Suyash Shukla, T.pirithivi Raj, M.Narendran
	B.Tech (IV) Year Student , Department of Computer Science and Engineering
	SRM Institute of Science and Technology, Chennai, India
	Assistant Professor, Department of Computer Science and Technology
	SRM Institute of Science and Technology, Chennai, India (1)
	Abstract:- A Distributed file system or commonly known as dfs is said to be a major part for setting up and making cloud computing applications. In such file systems such as dfs, nodes continuously working on computing functions and storage facilities...
	Other functions that can be done with files is that they can be created, deleted, and appended dynamically. This leads towards uneven distribution of load that is imbalance problem in a distributed file system; that is, the file parts(Chunks) are no...
	Our algorithm when analyzed with the current approach in production systems and a solution is presented in the literature. The results show and illustrate that our algorithm is comparable with the current existing centralized load rebalancing algori...
	I. INTRODUCTION
	Clients, data center and distributed servers this are the elements comes under cloud; but there might be some of the issues like fault tolerance, high availability and many more, in between these issues is the establishment of an effective load bala...
	II. LITERATURE SURVEY
	A. Iqbalance: https://code.google.com/p/irqbalance

	The current present solutions forbalancing load in DHTs leads to a high loss in form of routing state and in form of load movement created by nodes joining the system or leaving the system. In this paper, we present a techniques and use them to intro...
	We try to prove that X0 can reach find near to optimal solution for our given problem, while moving little load to maintain the balance and increase the size of the routing tables by atmost a constant factor. By performing practical's based upon real...
	B. Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications

	A very basic problem that is encountered in a peer-to-peer application is that of the properand correct position of the nodes that stores user data . This paper brings up the concept of Chord, a distributed search technique that resolves the abovepr...
	Data location can be used along with Chord by allocating a key with each data part, and storing the key-data pair in the node to which the key points in the memory. Chord adjusts as nodes joins or leaves the system, and can return data foruser-queri...
	C. Scaling in the linux networking stack. Linux Kernel Document.

	The Map Reduce model is a programming model and an method of implementation for processing and producing huge amount of data. Users tell a map function to manipulate the data and generate a key/data pair to generate a set of in-between key/data pai...
	Programs written in this way of style are parallelized and run on a large cluster of user systems automatically. The system performing the processing and data manipulation makes note of the splitting up of the input data, performing the program's r...
	Our implementation of Map Reduce algorithm works upon on a large cluster of systems and is scalable(as required by user or organization),a general Map Reduce data manipulation deals with and manipulates many terabytes of data on many systems. Program...
	 System architecture
	Fig 1:- Overview
	The load of each server is stable over time, when load balancing process is performed.
	D. Hardware Requirments

	● Processor : >2GHz
	● RAM : 512 MB
	● Hard Disk : 80 GB
	E. Software Requirements

	● Operating System : Windows 10
	● Language Used : Java 7
	● Tools : NetBeans IDE, MYSQL Server
	III. MODULES
	A. Chunk Creation

	A file is divided into a number of pieces known as chunks situated in different nodes so that Map Reduce operations and functions can be performed upon them simultaneously over the nodes. The load upon a node depends upon the number of chunks the no...
	B. DHT Formulation
	The nodes performing storage operations are kept near one another as a network based upon distributed hash tables (DHTs), like, finding a file part can simply imply to quick key search in DHTs, provided that a unique name (or identifier) is given to ...
	C. Load Balancing Algorithm
	Our proposed algorithm, takes each one of the chunk-server nodes and it first calculates if it is light-loaded or over-loaded without the information about the system state. A node is said to be light-loaded if the number of file-parts it contains is...
	D. Replica Management
	Generally in distributed file systems like Google GFS and Hadoop HDFS, a specific number of duplicate of each chunk is kept in different nodes to have better file availability in any mishappening or if any node failures occurs or any node leaves the...
	IV. CONCLUSION
	On one side the existing load balancing Model provide easiest performance monitoring of file system environment, but it is a difficult task to model the heterogeneous nature of clouds. On the other side, dynamic load re-balancing algorithms are comple...
	REFERENCES

	[1]. Irqbalance: https://code.google.com/p/irqbalance.
	[2]. lookbusy–asyntheticload generator:http://www.devin.com/lookbusy/.
	[3]. Scaling in the linux networking stack. Linux Kernel Document.
	[4]. STREAM bechmark: https://www.cs.virginia.edu/stream/.
	[5]. Xen’s Credit Scheduler:
	[6]. http://wiki.xen.org/wiki/credit scheduler.

