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I. INTRODUCTION 

 

The work displayed in this paper is an expansion of the 

prior paper [1]. Here the summed up opposite of a lattice is 

connected to models which are not of full rank in 

nature.Different techniques exist for comprehending 

frameworks of concurrent straight condition; some of them 

are: (end strategy, push lessening technique, in reverse 

substitution strategy and so forth). Require that the 

arrangement of direct conditions be straightly autonomous. 
Consider the possibility that the arrangement of conditions is 

straightly needy. Summed up opposite can unravel straightly 

needy and unbalance arrangement of equations.{See Paper[ 

1]} 

 

A framework has a reverse just on the off chance that 

it is square and still, after all that lone on the off chance that 

it is nonsingular. Typically particular and rectangular grids 

don't have opposite. As of late needs have been felt in 

various zones of connected Mathematics for some sort of 

halfway backwards of a network that is solitary or even 

rectangular. Such converse are called summed up reverse. 
The idea of summed up converse was presented first by 

Moore in 1920 and autonomously rediscovered by Penrose 

in 1955. Penrose demonstrated that, for each limited grid A 

(square or rectangular) of Real (or complex) components, 

there is an extraordinary framework X fulfilling the four 

conditions.             AXA=A,           XAX=X,         

 (AX)∗=  AX,             ( XA)∗= XA, 

Where A* denotes the conjugate transpose of A 

A framework has a reverse just on the off chance that 

it is square and still, after all that lone on the off chance that 

it is nonsingular. Typically particular and rectangular grids 

don't have opposite. As of late needs have been felt in 

various zones of connected Mathematics for some sort of 

halfway backwards of a network that is solitary or even 

rectangular. Such converse are called summed up reverse. 
The idea of summed up converse was presented first by 

Moore in 1920 and autonomously rediscovered by Penrose 

in 1955. Penrose demonstrated that, for each limited grid A 

(square or rectangular) of Real (or complex) components, 

there is an extraordinary framework X fulfilling the four 

conditions. 

 

 Historical Background of Genralized Inverse Matrix 

The idea of a summed up opposite appears to have 

been first say in print in 1903 by Fredholm, where a specific 

summed up reverse called by him pseudo converse as a 

necessary administrator was given. A few examinations 
have fretted about the Generalized reverse networks, 

strikingly among them were: Hurwitz (1912), He described 

all pseudo backwards and utilized the limited dimensionality 

of invalid administrators of Fredholm administrators, 

officially certain in Hilbert's discourses in 1904 of summed 

up Green capacities were subsequently considered by 

various creators, specifically, Myller (1906), Westfall 

(1909), Bounitzky (1909), Elliott (1928) , Reid (1931). 

Bjerhanmer (1951), Penrose (1951)Relevant productions are 

the work done by Moore (1920), Siegel (1937), Tseng, 

Murray and Von Neumann (1936), Alkinson (1950), 
Adetunde et al; (2008). 

 

 

II. TESTING OF HYPOTHESIS BY USING GENERALIZED INVERSE OF  MATRICES 

 

The model we shall be dealing with is, y = xb+ c 

 

Where y is an nx1 vector of observations yi 

 
The following assumptions are made 

 

E≈(0,σ2 I ) and Y ≈(Xb,σ2 I ) 

 

y=xb+ E 
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Which can be derived by the least squares method, to get 

 

xTxb= xTy 

 

Example 

 

An experiment is to estimate about the effect on the  type of tree  on its  weight of the cashew fruit on four different cashew 
fruit given the same condition recorded the following weight of its fruit at harvest as 

 

Weight of 10 Type (one) Type(Two) Type(Three) Type(Four) 

tree     

     

 25kg 48 kg 30kg 50 kg 

 30kg 90 kg 32kg  

 28 kg 85 kg   

 45 kg    

Total 128 kg 223 kg 62 kg 50 kg 

 

To calculate  the effect of the type of tree on the weight of fruit we assume that the observation yi,j is the sum of four 

types. 

, ,  i ji j Iy k c  

 

 

Where ,kis the population mean of the weight of plant,  I   is the effect of the type I on weight , ,i jc is the random error 

term. To develop the normal equations, we write down 10 observations in terms of the equation of the model 

11 1125  Iy k c     

12 1230  Iy k c     

13 1328  Iy k c     

14 1445  Iy k c     

21 2148  Iy k c     

22 2290  Iy k c     

23 2385  Iy k c     

31 3130  Iy k c     

32 3232  Iy k c     

41 4150  Iy k c     

This is written in matrix form as 

 

11

12

13

14

21

21

11

11

11

11

25 1 1 0 0 0

30 1 1 0 0 0

28 1 1 0 0 0

45 1 1 0 0 0

48 1 0 1 0 0

90 1 0 1 0 0

85 1 0 1 0 0

30 1 0 0 1 0

32 1 0 0 1 0

50 1 0 0 0 1

y

y

y

y

y

y

y

y

y

y





    
    
    
    
    
    
    

     
    
    
    
    
    
    
        

11

12

13

14

1

21

2

21

3

11

4

11

11

11

c

c

c

c

c

c

c

c

c

c







 
 
 
 

   
   
   
    
   
   
    

 
 
 
    
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We know that ,x=xb+ ccan be derived by least square to give 

 

 

xTxb= xTy 

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 10 4 3 2 1

1 1 0 0 0
1 1 1 1 0 0 0 0 0 0 4 4 0 0 0

1 0 1 0 0
0 0 0 0 1 1 1 0 0 0 3 0 3 0 0

1 0 1 0 0
0 0 0 0 0 0 0 1 1 0 2 0 0 2 0

1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

1 0 0 1 0

1 0 0 1 0

1 0 0 0 1

TX X

 
 
 
 

    
    
    
     
    
    
       

 
 
 
    

 

25

30

28
4631 1 1 1 1 1 1 1 1 1

45
1281 1 1 1 0 0 0 0 0 0

48
2230 0 0 0 1 1 1 0 0 0

90
620 0 0 0 0 0 0 1 1 0

85
500 0 0 0 0 0 0 0 0 1

30

32

50

TX Y

 
 
 
 

    
    
    
    
    
    
       

 
 
 
    

 

Matrix xTx has determinant equal to 0  anddon’t find the  rank, therefore matrix xTxhas does not  unique inverse, hence the 

equation don’t be express as 

 
1(x x) (x y)T Tb   

 

Since
1(x x)T 

 does not exist. 

 

To get one of the solution, we need to find any generalized inverse I of x xT
 and write the corresponding solution as

0   Tb yIx where I is a generalized inverse of xTx . 

 

choosing 

0 0 0 0 0

10 0 0 0
4

10 0 0 0
3

10 0 0 0
2

0 0 0 0 0

I

 
 
 
 

  
 
 
 
    
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1

2

3

4

0 0 0 0 0
463 0

10 0 0 0
4 128 32

10 0 0 0 223 74.3
3

62 3110 0 0 0
2 50 0

0 0 0 0 0











 
      
      
      
       
      
      
           

    
 

The expectation of b0 is given as 

 

   0  TE b Gx xE  

    xE y b  

 0      TE b sx bx   

 0   sE b b  

 

Where S = IxTx hence b0 is an unbiased estimator of sb but not of b 

0 0 0 0 0
10 4 3 2 1 0 0 0 0 0

10 0 0 0
4 4 4 0 0 0 1 1 0 0 0

10 0 0 0 3 0 3 0 0 1 0 1 0 0
3

2 0 0 2 0 1 0 0 1 010 0 0 0
2

1 0 0 0 1 1 0 0 0 1
0 0 0 0 0

S

 
    
    
    
     
    
    
        

  

 

 

 

The variance of b0given  

 0 2      I(Ix y) (y) xxT T T T TVar b Var Va xr I Ix I     

For a full rank model    
1 2

1  xVa b xr


 , by an appropriate choice of I, IxTxITσ2 can reduce further to Iσ2 

 

Estimating E(y) 
 

Corresponding to the vector of observations y, we have the vectors of estimated expected values 

 

Λ 

E( y ). 

 

Λ Λ 

E( y) ≡y=xb0=x IxTy 

 

This vectors is invariant to the choice of whatever generalized inverse of xTxis used for G, because xxT 

 

is invariant. This means that no matter what solution of the normal equations is used for b0 the vector 

Λ 

y = XGX 1Y will always be the same. 
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11

12

13

14

21

21

11

11

11

11

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0
0

1 1 0 0 0
32

1 0 1 0 0
74.3

1 0 1 0 0
31

1 0 1 0 0
0

1 0 0 1 0

1

32

32

32

32

74.3

74.3

74.3

31

310 0 1 0

1 0 0 0 1 0

y

y

y

y

y

y

y

y

y

y

   
   
   
   

    
    
    
     
    
    
      

   
   
   
     









 
 
 
 
 
 
 
 
 
 
 
 
   

 

 

y is the vector of expected values.. 
To demonstrate the invariance of y to the choice of G. Consider 

 

 

1 1 1 1 0

51 1 1 0
4

41 1 1 0
3

31 1 1 0
2

0 0 0 0 0

G

   
 

 
 
  
 
 
 
    

H = GXTX, hence we have  
 

1 1 1 1 0
10 4 3 2 1 1 0 0 0 1

51 1 1 0
4 4 4 0 0 0 0 1 0 0 1

41 1 1 0 3 0 3 0 0 0 1 0 0 1
3

2 0 0 2 0 0 0 0 1 131 1 1 0
2 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0

G

   
    

      
    
      
         
        

  

 

From the above results, it demonstrates that y is always the same no matter the G used. 

 

The sum of squares regression is also invariant to the choice of G 

 

III. PARTITIONING THE TOTALL SUM OF SQUARES 

 

Partitioning the total sum of square for the full rank model is the same for the model not of full rank. The only 

difference is that there is utility in corrected sums of squares and products of the x – variables. 

 

− 2 

 

SST = y1y - N y 

 
    -2 

SSR = (b0)1 x1y - N y 

 

SSE = SST –SSR 

 

http://www.ijisrt.com/


Volume 3, Issue 6, June – 2018                                              International Journal of Innovative Science and Research Technology

                          ISSN No:-2456-2165 

 
IJISRT18JU61               www.ijisrt.com                           94  

 

25

30

28

45

48
 25 30 28 45 48 90 85 303250 23887

90

85

30

32

50

Ty y

 
 
 
 
 
 
 

 
 
 
 
 
 
 







 

 

 23887y y   

_           

  10, y  46.3N    

 
2

 23887 –  10 46.3TSS   
        

  2450TSS   

 

   0

463

128

50 338 16.9 19 0 223 17523.3

62

50

T
Tb X Y

 
 
 
     
 
 
  

 

 

SSR = 17523.3 -49733.5= – 21437 

 

SSR = – 21437 

 

SSR is invariant to the choice of G, to show the invariance of SSR ,  we  consider 
 

   

0

0

0

32

74.3

31

0

463

128

0 32 74.3 31 0 223 22587

62

50

T

T

b

b X Y

 
 
 
 
 
 
  

 
 
 
  
 
 
    

 

ST = 22587 –49733.5 

 

= -27146.5 
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Since SSR is the same, no matter the G used we say that SSR is invariant to G SSE = SST – SSR 

  2450 21437   

 

        =23887 

 

Test the hypothesis 
 

H0 :Xb = 0 

 

H1 :Xb≠ 0 

 

For the full rank model the test hypothesis is 

 

H0 : b = 0 

 

H1 :b≠ 0 

 

But for a model not of full rank b is not estimable, hence the hypothesis H0 : b = 0 
 

H1 : b ≠ 0 

 

Cannot be tested because b is a non-estimable function 

 

ANOVA table 

 

Source Df SS MS F 

Regression 3 – 21437  

 

 

Residual  Total 6 23887 

3981 

272     0.068 

 9 

 2450  

   

 

 

R2 = 2450/23887 = 0.102 

 

The total variation explained by the model is 10.2%, the overall model is not significant, meaning that the weight of the 
cashew fruitdoes not depend on the type of cashew tree. 

 

 

IV. CONCLUSION 

 

In this paper, the technique for summed up backwards 

had been connected on direct models which isn't of full rank. 

Proof has appeared from our outcome that summed up 

backwards can not be disregarded since it assumes an 

imperative part in models not of full rank. In particular, the 

utilization of summed up opposite of a network empowers 
us to unravel frameworks of direct conditions that are 

unbalance and straightly subordinate effortlessly. 
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