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Abstract:- In this paper, we formulate a broad-based 

mathematical model for drug absorption in the intestine 

based on the peristaltic motion of the drug-carrying 

intestinal fluid which is approximately sinusoidal. Using 

the background of Fick’s laws and perturbation methods, 

an initial – boundary value problem is formulated and 

solved and the drug concentration, at a distance

along the intestinal tract at time  determined. In doing 

this, we use the result of drug absorption in the gastro-

intestinal tract for constant velocity of the intestinal fluid 

[14]. The solution is analyzed for various frequencies (or 

wave numbers) of the peristaltic wave for the drug 

indomethacin. The results do not show marked deviations 

for low frequencies; but for large frequencies, it has been 

observed that the absorption is more rapid. Thus, the 

results show that with higher peristaltic wave frequency, 

the drug particles that had diffused into intestinal fluid are 

more in contact with the villi surrounding the intestinal 

lumen and hence absorption is enhanced. 
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I. INTRODUCTION 

 

The study of drug absorption, metabolism and 

distribution in the human system has continuously been of 
paramount importance to the pharmaceutical and medical 

sciences. Drugs act as supplements to food particularly where 

there is deficiency in the required nutrients for body building 

and growth. Like food, drugs are digested through enzymatic 

action into substances which can be absorbed and assimilated 

by the body. The routes of penetration of drugs or other 

substances into the organism can be enteral or parenteral. 

In this paper, we shall concentrate on the enteral 
administration and in particular, the oral administration. This 

is vital because most drugs are commonly ingested orally, 

even though more rapid therapeutic effect is obtained through 

parenteral administration [1].We shall consider the digestive 

process which modifies food or drugs and enables them to be 

absorbed into the bloodstream for distribution throughout the 

body. We shall consider the mechanical movements of the 

gastro-intestinal tract and their role in moving the intestinal 

contents along, to be acted upon successively by a series of 

enzyme and then the churning movements which expose all 

parts of the semi-liquid mass to the large absorbing surface of 

the intestine for absorption. 

The small intestine which forms the greater portion of 

the gastro-intestinal tract measures just over 5 metres long in 

an adult as given by Ross and Wilson ([2], [3]) and a host of 
other sources. Further, they give the diameter as about 2.5cm 

and that of the large intestine as more than twice as wide in 

parts. In this work we shall use the generally accepted length 

of about 5 metres for the small intestine. The small intestine 

consists of three sections – the upper part which connects it to 

the stomach, called the duodenum which is about 25cm long; 

the middle part, called jejunum which measures about 2 

metres, and the lower part, the ileum, which links the large 

intestine through the ileocaecal valve. It is of length about 3 

metres [2]. The small intestine has three main functions: 

 

 To complete the digestion of food or nutrients 

 To absorb the digested material 

 To move the chyme through it from one end to another. 
 

It has an extended absorption area of about 300 square 

metres [3]. Its mucosa is covered by finger-like projections 

called villi which constitute the anatomical and function unit 

that ensures intestinal absorption of nutrients and drugs. 

In the large intestine, which measures about 1.5 metres 

in an adult, there occur both peristalsis and churning 

movements somewhat like those of the small intestine [9]. It is 

designed to absorb most of the water from the remaining 

chyme. 

II. GASTRO-INTESTINAL RHYTHMS 
 

Spontaneous rhythms occur in all parts of the digestive 

tract right from the oesophagus which moves the food 

materials to the stomach by the process of peristalsis [4]. 

These rhythms are commonly called “slow waves”. The 

frequency and wave shapes of these waves vary considerably 

between the organ and species being studied. For example, 

Linkens [5] states that the canine stomach has narrow pulse-

like waves of about 0.08Hz, while the human stomach 

produces square-like waves of about 0.05Hz.  

The commonest rhythmic movement displayed in the 

alimentary canal is called peristalsis. The word peristalsis, 

according to Fung and Yih[6], stems from the Greek word 

“peristaltikos” which means clasping and compressing. In 
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physiology it may be described as a progressive wave of 

contraction seen in tubes provided with longitudinal and 
transverse muscular fibres. Nancy Roper [7] defines it as the 

characteristic movement of the intestines by which the 

contents are moved along the lumen. It consists in a narrowing 

and transverse shortening of a portion of the tube, which then 

relaxes while a lower portion becomes shortened and 

narrowed. Kapur[8] defines peristaltic flow as the motion 

generated in the fluid contained in a distensible tube when a 

progressive wave of area contraction and expansion travels 

along the wall of the tube. 

In man, peristalsis occurs in the oesophagus, stomach, 

small and large intestines and rectum in the alimentary canal 

[9]. Some worms use peristaltic motion as a means of 

locomotion. The ureter passes urine from the kidney to the 

bladder by peristalsis. Some biomedical instruments such as 

some heart-lung machines are designed to use peristaltic 

motion to pump blood or other fluids. Throughout the length 

of the small intestine rhythmic movements are of two main 

kinds, namely, peristaltic waves and the churning movements 

called rhythmic segmentation. Peristaltic waves occur slowly 

moving the digested materials onward. 

Fung and Yih[6] investigated the phenomenon of 

peristalsis for arbitrary wavelengths and small amplitudes 

while Shapiro, et al[10] considered peristaltic pumping in a 

tube under long wavelength approximation and for very small 

Reynolds number. These studies showed that the average flux 

over a time period is increased by increasing the amplitude of 

the peristaltic wave. On their own part, 
Radhakrishnamacharya, et al[11] presented a model to study 

the peristaltic transport of a Newtonian fluid through a circular 

tube of varying cross-section and having two mild 

constrictions. Their result showed that the pressure rise over a 

wavelength and the shear stress on constrictions increase as 

the amplitude of the peristaltic wave and the thickness of the 

constrictions are increased. 

III. MODEL FORMULATION 
 

We shall set out to determine the concentration of a drug 

which diffuses through the intestinal fluid, is absorbed into the 

walls of the gastro-intestinal tract and is carried by the fluid 

flow which moves according to the pattern prescribed by the 

peristaltic motion of the walls of the tract. We shall 

concentrate on the absorption within the small intestine. We 

make the following assumptions for the formulation of our 

model. 

 The physical and chemical properties of the drug including 

its extent of solubility, ionization state and molecular size 

and shape are accounted for by diffusion, D. 

 The rate of absorption is assumed constant for any 

particular drug. The intestine is anatomically adapted for 

absorption of drugs and other substances due t the presence 

of a large number of villi covering a surface area of over 

300 m2. Wagman[12]and other medical experts confirm 

that absorption or assimilation of foods is almost 
completed before the substance leaves the small intestine. 

 Since the small intestine is extremely long relative to its 

width and other organs and the rate of flow of the intestinal 

fluid, we assume that 𝑥 lies between zero and infinity. 

 The time when the drug crosses the stomach through the 

pyloric sphincter into the duodenum shall be taken as 

initial time while the time it leaves for the large intestine 

shall be taken as infinity due to the length of the small 

intestine.  

 From experimental results we can assume that the 

concentration of drug decreases exponentially due to 

diffusion and absorption, so that   𝑄(∞, 𝑡) = 0  and at 

initial time, no drug is expected in the compartment under 

discussion, so that  𝑄(𝑥, 0) = 0. 

 

However, at  𝑥 = 0,  
 

         𝑄(𝑥, 𝑡) = 𝑄𝑎𝑒
−𝛼𝑡   (3.1) 

 

Where 𝛼 > 0  and is related to the rate of stomach 

emptying or drug release, and 𝑄𝑎 is the initial 

concentration of the drug in the stomach. 

 

 The velocity 𝑈 of fluid flow is modified from its constant 

nature, by the effect of peristalsis to assume a sinusoidal 

form. During the peristaltic motion of the walls of the 

intestine, its contents including the fluid are carried along 

in the direction of motion.  

Hence the velocity can be represented in wave-form as  

𝑈 = 𝑈0 {1 + 𝜀 𝑐𝑜𝑠
2𝜋

𝜆
(𝑥 − 𝜎𝑡)} , 𝜀 ≪ 1  (3.2) 

(in accordance with Schlichting[13] and Kapur[8]), where 𝑈0 

is the velocity at the unperturbed flow which is constant. Thus 

a progressive wave of amplitude 𝑈0𝜀 , velocity 𝜎 and the 

wavelength 𝜆 passes along the tube in the positive 𝑥- 

direction. If𝜎 = 0, the wall of the tube becomes a fixed cosine 

wave, so that 

  𝑈 = 𝑈0 {1 + 𝜀 𝑐𝑜𝑠
2𝜋

𝜆
𝑥} , 𝜀 ≪ 1               (3.3) 

accounts for the perturbation on the flow which produces 

the peristaltic wave motion. Since  is small, the resulting 

amplitude of the wave is small. By nature of the peristalsis the 

wavelength is small as compared to the distance between 

the walls, resulting in the wave number, 

 
Considering the boundary conditions:  𝑄(𝑥, 0) =

𝑄(∞, 𝑡) = 0  and since 0 ≤ 𝑥 ≤ 𝐿, where L represents the 

length of the intestine, without loss of generality, we can 

assume that  

 






.
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n
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        (3.4) 

where is the wave number. Thus, by non-dimensional zing we obtain 

       (3.5) 

 

The case 𝑘 = 0 yields a constant velocity. We can then write (3.3) as 

 

 𝑈 = 𝑈0{1 + 𝜀 cos𝑛′𝑋}, 𝜀 ≪ 1       (3.6) 

 

If we let the drug concentration be , the rate of drug release 𝛼′, the rate of absorption 𝜈′ and diffusion constant 𝐷′, we 

can formulate the absorption model from the above considerations with the given velocity profile in relation (3.6) as 

 

𝑈0{1 + 𝜀 cos𝑛′𝑋}      (3.7) 

 

with boundary conditions 

 

      (3.8) 

Where is the initial concentration of the drug. This is the formulation we now need to solve. 

 

IV. SOLUTION OF MODEL PROBLEM 

 

We shall now analyze the model (3.7) with (3.8) and solve the resulting problem. Laplace transform methods will be used on the 

resulting second order differential equation. First of all we introduce non-dimensional quantities. 

 

        (4.1) 

 

Where 𝐿 is the length of the intestine. Using (4.1) we write (3.7) in non-dimensional form as 

 

    

And since  we have 

      (4.2) 
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where  and the initial and boundary conditions (3.8) become 

             (4.3) 

 

For uniform flow, that is, when in (4.2) we obtain 

              (4.4) 

Where is the concentration when . The conditions (4.3) are also applicable here since they have no term in . 

 

 

We now solve (4.4) with (4.3) using Laplace transforms since the conditions for this method are fulfilled. We obtain 

             (4.5) 

 

which on inversion becomes 

{ + 

                     (4.6) 

 

Where   𝑒𝑟𝑓𝑐[𝑧 ] is the complementary error function of z defined by 𝑒𝑟𝑓𝑐[𝑧] =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

∞

𝑧
. In order to solve the case of 

peristalsis, we seek solution for 𝜀 ≠ 0.A series expansion of in 𝜀 representing a small perturbation on the steady solution 

yields 

 ...                   (4.7) 

 

Substituting in (4.2) and equating coefficients of like powers of yields the following equations: 

                       (4.8) 

 

                       (4.9) 

 

                     (4.10) 

etc. 

since (4.8) has already been solved we now need to  solve (4.9), together with initial and boundary conditions 

 

                                     (4.11) 

 

again, using the Laplace transform methods. After a rigorous analysis, we finally obtain a simplified form of the result for as 
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{
 

 
×

𝑒
−𝑥√1+4𝐷(𝜈−𝛼)

2𝐷 𝑒𝑟𝑓𝑐 (
𝑥

2√𝐷𝑡
− √(

1

4𝐷
+ 𝜈 − 𝛼) 𝑡)+ [𝐷𝑠𝑖𝑛(𝑛𝑥) +

1

𝑛2+
1

𝐷2
+
4(𝜈−𝛼

𝐷

((
1

𝐷
√ + 𝑛2𝐷)sin(𝑛𝑥) + 𝑛 (√1+ 4𝐷(𝜈 − 𝛼) +

1)(cos(𝑛𝑥) − 1))]𝑒
𝑥√1+4𝐷(𝜈−𝛼)

2𝐷 𝑒𝑟𝑓𝑐 (
𝑥

2√𝐷𝑡
+√(

1

4𝐷
+ 𝜈 − 𝛼)𝑡)   +  

+ 
𝑒

𝑥
2𝐷

−(
1
4𝐷

+𝜈+
𝑛2𝐷
4

)𝑡

𝐷(𝑛2+
1

𝐷2
+
4(𝜈−𝛼)

𝐷
)
𝑠𝑖𝑛 (

𝑛𝑥

2
) [(𝑛𝐷 − 𝑖)𝑒𝑟𝑓𝑐 (

𝑥

2√𝐷𝑡
+

𝑖𝑛

2
√𝐷𝑡)+ (𝑛𝐷 + 𝑖)𝑒𝑟𝑓𝑐 (

𝑥

2√𝐷𝑡
−

𝑖𝑛

2
√𝐷𝑡)]                (4.12) 

 

We observe that for 𝑡 = 0, 𝑒𝑟𝑓𝑐 (
𝑥

2√𝐷𝑡
± √(

1

4𝐷
+ 𝜈 − 𝛼) 𝑡) = 0 and  𝑒𝑟𝑓𝑐 (

𝑥

2√𝐷𝑡
±

𝑖𝑛

2
√𝐷𝑡) = 0 and hence 𝑄1(𝑥, 0).  Substitution of 

𝑥 = 0 for 𝑡 ≠ 0 yields 𝑄1(0, 𝑡) trivially. For the case 𝑥 → ∞, 𝑡 > 0, 𝑒𝑟𝑓𝑐 (
𝑥

2√𝐷𝑡
±√(

1

4𝐷
+ 𝜈 − 𝛼) 𝑡) → 0 and 𝑒

𝑥(1−√1+4𝐷(𝜈−𝛼))

2𝐷 → 0  

since   1 − √1 + 4𝐷(𝜈 − 𝛼) < 0.   However, 𝑒
𝑥(1+√1+4𝐷(𝜈−𝛼))

2𝐷 𝑒𝑟𝑓𝑐 (
𝑥

2√𝐷𝑡
+ √(

1

4𝐷
+ 𝜈 − 𝛼) 𝑡) → 0  𝑎𝑠 𝑥 → ∞  since the second term 

𝑒𝑟𝑓𝑐( ) → 0 faster than the exponential goes to ∞. Other terms of (4.12) behave similarly and hence 𝑄1(𝑥, 𝑡) → 0 as 𝑥 → ∞, fulfilling 

the conditions  (4.3). 
 

Since𝑄(𝑥, 𝑡; 𝜀) = 𝑄0(𝑥, 𝑡) + 𝜀𝑄1(𝑥, 𝑡) + 𝜀
2𝑄2(𝑥, 𝑡)+ .  .  . 𝜀 ≪ 1,   we obtain the first two terms of this expansion as 

𝑄(𝑥, 𝑡) =
1

2
𝑒

𝑥

2𝐷 
−𝛼𝑡 [𝑒

−𝑥√1+4𝐷(𝜈−𝛼)

2𝐷  𝑒𝑟𝑓𝑐(
𝑥

2√𝐷𝑡
−√(

1

4𝐷
+ 𝜈 − 𝛼) 𝑡)+ 𝑒

𝑥√1+4𝐷(𝜈−𝛼)

2𝐷  𝑒𝑟𝑓𝑐(
𝑥

2√𝐷𝑡
+ √(

1

4𝐷
+ 𝜈 − 𝛼) 𝑡)] +  

 

+𝜀
𝑒
𝑥
2𝐷

−𝛼𝑡

4𝑛𝐷
{[𝐷𝑠𝑖𝑛(𝑛𝑥) −

1

𝑛2+
1

𝐷2
+
4(𝜈−𝛼)

𝐷

((
1

𝐷
√1+ 4𝐷(𝜈 − 𝛼) + 𝑛2𝐷)sin(𝑛𝑥) + 𝑛 (√1+ 4𝐷(𝜈 − 𝛼) − 1) (𝑐𝑜𝑠𝑛𝑥 − 1))] 𝑒

−𝑥√1+4𝐷(𝜈−𝛼)

2𝐷  𝑒𝑟𝑓𝑐 (
𝑥

2√𝐷𝑡
−

√(
1

4𝐷
+ 𝜈 − 𝛼)𝑡) + [𝐷𝑠𝑖𝑛(𝑛𝑥) +

1

𝑛2+
1

𝐷2
+
4(𝜈−𝛼)

𝐷

((
1

𝐷
√1+ 4𝐷(𝜈 − 𝛼) − 𝑛2𝐷)sin(𝑛𝑥) + 𝑛 (√1 + 4𝐷(𝜈 − 𝛼) + 1)(𝑐𝑜𝑠𝑛𝑥 −

1))] 𝑒
𝑥√1+4𝐷(𝜈−𝛼)

2𝐷  𝑒𝑟𝑓𝑐 (
𝑥

2√𝐷𝑡
+ √(

1

4𝐷
+ 𝜈 − 𝛼) 𝑡)}+

𝜀

𝐷

𝑒

𝑥
2𝐷

−(
1
4𝐷

+𝜈+
𝑛2 𝐷
4

)𝑡

𝑛2+
1

𝐷2
+
4(𝜈−𝛼)

𝐷

𝑠𝑖𝑛(
𝑛𝑥

2
) × 

  

× [(𝑛𝐷 − 𝑖)𝑒𝑟𝑓𝑐 (
𝑥

2√𝐷𝑡
+

𝑖𝑛

2
√𝐷𝑡)+ (𝑛𝐷 + 𝑖)𝑒𝑟𝑓𝑐 (

𝑥

2√𝐷𝑡
−

𝑖𝑛

2
√𝐷𝑡)] +  𝑂(𝜀2)                                (4.13) 

 

(4.13) gives a two-term population approximation to the solution of the model problem and can be used to predict the 

concentration, 𝑄(𝑥, 𝑡), of the drug at any point, 𝑥, along the lumen and at any time, 𝑡. 

V. DISCUSSION OF RESULTS AND CONCLUSION 
 

As earlier mentioned, the result obtained in (4.13) can be 

used to predict the absorption of drugs in the intestinal tract. 

This we can do by considering special cases regarding the 

drug, indomethacin. The results do not show marked 
deviations for low frequencies; but for large frequencies, it has 

been observed that the absorption is more rapid. Thus, the 

results show that with higher peristaltic wave frequency, the 

drug particles that had diffused into intestinal fluid are more in 

contact with the villi surrounding the intestinal lumen and 

hence absorption is enhanced. 

REFERENCES 

 

[1] Olinescu, R. (1977). Pharmacokinetic Aspects. In Voicu, 

V and Olinescu, R. EnzymaticMechanisms and 

Pharmacodynamics. Kent, England: Abacus Press. 

[2] Ross, J. S. and Wilson, Kathleen (1981). Foundations of 

Anatomy and Philsiology (5th edition). London: Churchill 

Livingstone and ELBS. 

[3] Labaune, Jean-Pierre (1989). Handbook of 

Pharmacokinetics. Chichester, England: Ellis Horwood 

Ltd. 





nD

e
txQ

t
D

x

4
),(

2

1






































)1))(cos(1)(41()sin()(41

11
)sin( 2

)(412
2

nxDnnxDnD
Dn

nxD
DD




)(41   D

 

http://www.ijisrt.com/


Volume 3, Issue 7, July – 2018                                                      International Journal of Innovative Science and Research Technology                                                                   

                                                                                                                                ISSN No:-2456-2165 

 

IJISRT18JL170                                  www.ijisrt.com                                                                408 

[4] Cheesbrough, Monica (1987). Medical Laboratory 

Manual for Tropical Countries, Vol.1(2ndedn.) 
[5] Linkens, D. A. (ed.) (1987). Modelling of Gastro-

intestinal Electrical Rhythms. In Biological Systems, 

Modelling and Control. London: Peter Peregrinus Ltd. 

[6] Fung, Y. C. and Yih, C. S. (1968). Peristaltic Transport. J. 

Applied Mech.,(Trans. ASME). 669-675. 

[7] Roper, Nancy (ed.) (1987). Churchill Livingstone Pocket 

Medical Dictionary (14thedn.). Edinburgh: Harcourt Brace 

& Co. 

[8] Kapur, J. N. (1986). Mathematical Models in Biology and 

Medicine. New Delhi: Affiliated East-West Press (Pvt) 

Ltd.  

[9] Carlson, A. J. and Johnson, V. (1947). The Machinery of 
the Body. Chicago: Univ. of Chicago Press. 

[10] Shapiro, A. H., Jaffrin, M. Y. and Weinberg, S. L. (1969). 

Persitaltic Pumping with long Wavelengths at Low 

Reynolds Number. J. Fluid Mech. 37: 799 – 825. 

[11] Radhakrishnamacharya, G., Shulka, J. B., Chandra, P. an 

Sharma, R. (1989). Effect of Multiple Constrictions on 

Peristaltic Transport of a Fluid through a Tube of Non-

uniform Cross-section. In Sahay, K. B. and Saxena, R. K. 

(ed.) Biomechanics. New Delhi: Wiley Eastern Ltd. 

[12] Wagman, R. J. (ed.) (1996). The Medical and Health 

Encyclopedia. Chicago, Illinois: J. G. Ferguson Pub. Co. 
[13] Schlichting, H. (1960). Boundary Layer Theory. New 

York: Mc-Graw Hill Book Co. Inc. 

[14] Joshua, E. E. (2008). Drug Absorption in the Gastro- 

Intestinal Tract: A Mathematical Model. J.Nig Math. 

Soc.,27,109-122. 

http://www.ijisrt.com/

