
Volume 3, Issue 7, July – 2018                         International Journal of Innovative Science and Research Technology                                                                   

                      ISSN No:-2456-2165 

 

IJISRT18JL173                                     www.ijisrt.com                                     521 

Implementation of Cryptography Algorithms in Field 

Programmable Gate Array 
 

Michal Hulič 
 Dept. of Computers and Informatics, FEEI TU of Košice, 

Letná 9, Košice, Slovak Republic 

 

Norbert Ádám 
Dept. of Computers and Informatics, FEEI TU of Košice, 

Letná 9, Košice, Slovak Republic 

Abstract:- This paper is handling the problematics of 

implementation of selected cryptography algorithms in 

symmetric and asymmetric category, specifically RSA in 

symmetric and DES in asymmetric field. The 

implementation is focused on representation of computer 

unit, which is decelerated as hardware accelerator. 

Chapters are divided from the introduction to 

problematics to description of algorithms DES and RSA, 

that are the part of computer security field, the tested 

FPGA device is described in its own chapter, the design 

and completed solution and the results of systematic tests 

has presence at the end of this document. 

 

Keywords:- RSA; Computer Security; DES; Hardware 

Description Language; FPGA; VHDL. 

 

I. INTRODUCTION 

 

This document in general is handling mostly with two 

parts, cryptography and hardware computing. The first part is 
defined according the literature, that cryptography has 

characteristic feature. The cryptography should be based on 

unidirectional mathematical function that secures the process 

called transformation of message or raw data to encrypted set 

of data. This transformation called encryption process should 

be fast and as secure as possible that guarantees that input data 

in process of encryption will be in best cases computationally 

impossible to decrypt using mathematical feature of 

unidirectional functions. The computational difficulty of 

decryption process should be as high as possible to hide the 

information of data. For our case we have chosen two 
encryption algorithms, specifically the asymmetric RSA  and 

the symmetric DES encryption algorithm.  

The principle of symmetric ciphers is pretty simple. The 

symmetric encryption uses only one key that shares both 

sender and receiver of message. This encryption is find as less 

secure than asymmetric encryption algorithms due to 

simplicity of computational process and the possibility of 

unwanted share of the key. The DES algorithm was declared 

as broken in 1993 [1], but we can also find the application of 

this algorithms these days [2][3], also in hardware 

implementations [4][5]. 

The principle of asymmetric ciphers is far more difficult. 
The RSA algorithm is among the most popular encryption 

algorithms nowadays [6]. The abbreviation is derivated from 

the surnames of its inventors Rivest, Shamir and Adleman, 

who created this algorithm in 1977 [6]. The RSA algorithm is 

widely spared in application for data encryption and for 

securing digital signatures [7]. The process of computation is 

presented in chapter II. The key which has less than 1024 bits 

is now considered as not safe anymore.  

There are many applications of RSA implementation, 

e.g. RSA implementation in securing electronic passport and 

many others that are present in following literature [7-14]. 

This document contains our implementation of DES and 

RSA algorithm using specific FPGA device. The evaluation  

of the proposed modules are shown at the end of this 

publication.  

 

II. THE RSA ALGORITHM 

 

The RSA algorithm belongs to group of asymmetric 

cipher algorithms [7]. For RSA algorithm is process of 

encryption as follows. If person X wants to send a private 
message M to person Y, first person X encrypts the message 

by public key of person Y, and for the person Y is possible to 

decrypt the message using its own private key.  

A. Creating public and private keys is presented as follows 

 Two big different prime numbers p, q are chosen from 

random generated numbers 

 Compute 

q p=n                                      (1) 

 Compute 

1)-1)(q-(p=)(n                              (2) 

 Next step represent selection of random integer 

1=))((e, GCD  where)( <e<1 nn              (3) 

 Compute 

))( (mod 1 ed  where)( <d<1 nn               (4) 

 The (n, e) pair represents the public key and the (n, d) pair 

designates the private key. 

It is crucially important, mainly for safety reasons, that 

integers p, q are randomly generated. Numbers should be 

random, different and sufficiently big prime numbers for the 
attempts of subsequent factoring [12]. It is also necessary to 

perform the test if the numbers are prime numbers according 

to the respective algorithm. In the literature [12], Solovay-

Strassen or Fermatov, Miller-Rabin, Frobenius tests are 

usually in use to persuade if the numbers are prime as the 

primary numbers tests. The encryption/decryption process is 

presented below.  

http://www.ijisrt.com/


Volume 3, Issue 7, July – 2018                         International Journal of Innovative Science and Research Technology                                                                   

                      ISSN No:-2456-2165 

 

IJISRT18JL173                                     www.ijisrt.com                                     522 

 

According the equation (4), as follows the private key 

exponent is computed.  

 Message M need to be selected and encrypted. 

 Next step is to find public key, the person N, by using 

which we are going to encrypt the message M and the  (n, e) 

key is representation of it. 

 The message is representation as integer among 0 to n-1. 

Blocks of messages are used if the message is too large. Each 

block is also representation as integer as the same range [0, (n-

1)]. 

 The final computation called encryption is represented as 

follows 

      n) (mod MC e                            (5) 

 Using public key (n,e) of person to who we are going to 

send the encrypted data are send using secure channel. 

 Using the private key (n, d) we are going to perform a 

decryption process which belongs to the first person. The 

decryption process is computed as follows 

n) (mod CM d                            (6) 

III. THE DES ALGORITHM 

 

DES algorithm is abbreviation of Data Encryption 

Standard. This algorithm belongs to group of symmetric 

ciphers [19]. 

DES algorithm also belongs to group of archetypal block 

ciphers. It is actually an algorithm with fixed length string 

(Fig. 1) of plaintext bits and inputs in transformation through a 

series of complicated operations (Fig. 2) that result is cipher 

text bit string of the same length. DES algorithm has 

specifically length of block of data and also the key length is 
strictly limited to 64 bits. However, only 56 bits are used in 

encryption/decryption. The remaining 8 bits are used for 

checking parity that are thereafter discarded [14].  

The encryption/decryption process is based on the Feistel 

function [15]. 

 

Fig 1:- Basic DES layout of encryption and decryption [13] 

 

 
Fig 2:- Block of 16 rounds of DES algorithm [16] 

 

IV. THE HARDWARE ENVIRONMENT FOR 

DEVELOPING AND EVALUATING DESIGNS 

 

The two mentioned cryptography algorithm were 

implemented on Xilinx Kintex-7 KC705 development board 
(Fig. 3). The board provides a hardware environment for 

developing and evaluating the proposed DES and RSA 

modules. The key components of the board are XC7K325T-

2FFG900C FPGA chip (Tab. 1), 1 GB DDR3 SODIMM 800 

MHz/1600 Mbps memory, USB JTAG connector, SD 

connector, PCI Express interface, SFP connector, ethernet 

connector, HDMI connector, I2C bus or GTX receiver and 

transmitter. The full description of all components of this 

board is presented in documents [21] [22]. 

 
Fig 3:- The Kintex 7 KC705 board 

 

 

CLB  

Flip 

Flops 

Logic 

Cells 

DSP48 

Slices 

7K325T chip  407 600 326 080 840 

 

 
Slices LUT 

BRAM_3

6k 

7K325T chip  50 950 
203 

800 
445 

Table 1. Ammout units present in tested board Part 1. and 2. 

 

http://www.ijisrt.com/


Volume 3, Issue 7, July – 2018                         International Journal of Innovative Science and Research Technology                                                                   

                      ISSN No:-2456-2165 

 

IJISRT18JL173                                     www.ijisrt.com                                     523 

The following chapters deal with our implementation of 

two mentioned cryptography algorithm.  
 

V. IMPLEMENTATION OF DES ALGORITHM 

 

The implementation of DES algorithm takes input of 

message M that has 64 bits, and the key K with the same size. 
The output from the process is the cipher C. The inverse 

process of encryption is decryption where the input is cipher C 

and the key K. The output is the original message M. 

The Tab. 2 shows input and output ports of the circuit. 

Name Direction 

 

Purpose 

clk IN Clock signal for 

synchronization of components 

reset IN Reset signal for reset of 

memory component 

Key IN 64 bit key 

dIN IN Message input  

(n-bit wide input) 

dOUT OUT Message output  

(n-bit wide output) 

encryptFlag IN Flag for setup circuit for 

encryption 

decryptFlag IN Flag for setup circuit for 

decryption 

Table 2. FPGA tested device features 
 

The two main steps in the process of 

encryption/decryption are: 

 Create 16 sub keys, each of which is 48-bits long.  

 Encode each 64-bit block of data.  

 

These steps in our design of the DES module are based 

on the implementation of these sub-modules: 

Key sub-module. This sub-module contains two logic 

circuits PC1 and PC2. These circuits are responsible for 

permutation of bits of the encryption/decryption key. This sub-

module produces 16 sub keys. 

Initializing sub-module. This sub-module is responsible 

for applying the initial permutation to the block of data. 

Shift sub-module. This sub-module is responsible for 

performing 16 iterations. The first stage of this sub-module 

generates a data block of 48 bits from 32 bits of data. The next 

stage produces new data by using the eight S-box functions 

that are actually implemented as look-up-tables.  

Reverse sub-module. The last sub-module is responsible 

for transfer the block of data to the original order by using 

XOR function. 

The DES module was created in Vivado Design Suite - 
HLx of Editions 2016.3 development software by using C and 

VHDL languages. 

 

 

 

 

VI. EVALUATION OF DES MODULE 

 
For the purpose of DES module evaluation, we used 

DES modules with different configuration based on the 

message length. The table 3. shows dependency between the 

size of the message and the module computation time 

(response time). This dependency is also shown in Fig. 4. 

Observation showed that the computation time is increasing by 

using a bigger message. However, using a module for 1024-bit 

length message the encryption takes only approx. 0.22 seconds 

opposite to approx. 14 seconds achieved by chaining 128 

modules configured for encryption of 8-bit length messages 

(128 x 0.106583 + delay).  

Size of message Computation time 

8 bit 0.106583 s 

64 bit 0.152119 s 

128 bit 0.163629 s 

256 bit 0.206162 s 

512 bit 0.216516 s 

1024 bit 0.224175 s 

Table 3. Measured Times 

 

 

 
Fig 4:- Time dependency 

 

VII. IMPLEMENTATION OF RSA ALGORITHM 

 

Two version of RSA modules were designed. The first 

version of the proposed RSA module uses spatial parallelism 

[19], multiple copies of the same hardware components 

(implementing RSA steps) implemented in the look-up-table 

(LUT) form (RSA_LUT). The second solution uses pipelining 
(RSA_mul16s) [18]. The steps of the RSA algorithm were 

implemented as pipeline stages. The stages are connected one 

to the next to form a pipe – the message data block enter at one 

end, progress through the stages, and exit at the other end. The 

computations in stages are overlapped in execution. Although 

each message (message blocks) must pass through all stages, a 

different message (message block) will be in each stage [20]. 

The RSA modules were designed in Vivado Design Suite 

- HLx of Editions 2016.3 development software by using C 

and VHDL languages. The proposed RSA Cryptographic 

Accelerator is presented on Fig. 5 and consists of following 

base components. 

http://www.ijisrt.com/


Volume 3, Issue 7, July – 2018                         International Journal of Innovative Science and Research Technology                                                                   

                      ISSN No:-2456-2165 

 

IJISRT18JL173                                     www.ijisrt.com                                     524 

 

Fig 5:- RSA Cryptographic Accelerator 

 

Microblaze – soft-processor that control the communication 

between the user and the designed modules. 

RSA_LUT – look-up-table (LUT) based RSA module. 

RSA_mul16s – RSA module based on pipelining. 

Axi Interconnect – module that interconnect another modules 

with the soft-processor. 

Axi Timer – this module is responsible for measure and record 

the RSA modules performance. It returns the modules 

response times. 

Clocking Wizard – it is responsible for generating synchronous 

clock signal for the architecture. 

Processor System Reset – it provides the reset of components 

in the proposed architecture. 

 

VIII. EVALUATION OF RSA MODULES 

 

During the testing we had an experience with memory 

limitation and the final solution is limited to 1024 bits of the 

key and the message size per one computation cycle using the 

http://www.ijisrt.com/


Volume 3, Issue 7, July – 2018                         International Journal of Innovative Science and Research Technology                                                                   

                      ISSN No:-2456-2165 

 

IJISRT18JL173                                     www.ijisrt.com                                     525 

selected FPGA device on our designed architectural solution. 

Time dependency is shown in Tab. 4. We determined 
that the bigger the message and key length is, the longer it 

takes to get cipher. This results is also present in Fig. 6. 

Message 

length/Key 

length 

128 bit  256 bit  512 bit  1024 bit  

32 bit 48 527 ms 
501 394 

ms 

500 

202 ms 

1000404 

ms 

64 bit 49 710 ms 
501 654 

ms 

500 

441 ms 

999689 

ms 

128 bit 
501 156 

ms 

501 156 

ms 

498 

533 ms 

1 512 

527 ms 

265 bit 
499 725 

ms 

1 000 

643 ms 

2 002 

239 ms 

3 502 

131 ms 

512 bit 
2 002 001 

ms 

2 401 

582 ms 

2 502 

441 ms 

4 003 

048 ms 

1024 bit 
3 001 928 

ms 

5 025 

854 ms 

8 005 

381 ms 

8 006 

811 ms 

Table 4. Measured Times – In a row is representation of key 

 

Fig 6:- Time dependency 

 

The highest operation clock frequency that we achieved 

was 254.46 MHz at RSA_LUT module and 152.77 MHz at 

RSA_mul16s module.  

The maximal usage of CLB units was at our tested 
FPGA device at maximum rate of three percentages that 

represents really low number. Our tested architecture is the 

demonstration of the higher performance then other compared 

solutions [5-10]. 

 

IX. CONCLUSION 

 

The final RSA algorithm has implementation in C and 

VHDL language. The software development tool we used was 

the Vivado HLS 2016.3. We applied two approaches to build 

RSA computing unit. LUT was set as first approach, and 
RSA_LUT synthesis unit was created. Pipeline processing was 

second approach to synthetize RSA_mul16 unit. We gave its 

name based on 16bit logical-arithmetic unit that was used for 

calculation of the numbers in a field of unsigned numbers. As 

comparison speed of encryption was created FPGA chip to 

with rate of management comparing to usage of CPU 
algorithm. Measured data showed that assumption was 

fulfilled, and multiple acceleration was present. Also, both 

RSA modules were compared. The solution of RSA looks up 

table showed higher working frequency not with higher 

consumption of CLB. However, this consumption was less 

than 3%. 

This document also shows the possibility of acceleration 

of another encryption algorithm, DES. This solution was 

implemented also in C and VHDL. The results shown in Tab 

III and Fig. 4.  

 

X. ACKNOWLEDGMENT 
 

This work was supported by KEGA Agency of the 

Ministry of Education, Science, Research and Sport of the 

Slovak Republic under Grant No. 077TUKE-4/2015 

„Promoting the interconnection of Computer and Software 

Engineering using the KPIkit“, Grant No. 003TUKE-4/2017 

„Implementation of Modern Methods and Education Forms in 

the Area of Security of Information and Communication 

Technologies towards Requirements of Labour Market“. This 

support is very gratefully acknowledged.  

 

REFERENCES 

 

[1] Anthes, Gary H. "Standard Encryption Vulnerable to 

Attack.” Computerworld 12 February 1996. 25 June 2001. 

http://www.computerworld.com/cwi/story/0,1199,NAV47

_STO13904,00.html. 

[2] P. Vishwanath, R. C. Joshi, A. K. Saxena, “FPGA 

IMPLEMENTATION OF DES USING PIPELINING 

CONCEPT WITH SKEW CORE KEY-SCHEDULING”. 

Journal of Theoretical and Applied Information 

Technology, 2009. 

[3] Máire McLooneJohn V. McCannyDes.: DES Algorithm 

Architectures and Implementations. Springer 

Science+Business Media New York 2003. 

[4] G. Rouvroy, F. X. Standaert, J. J. Quisquater, J. D. Legat, 

“Efficient Uses of FPGAs for Implementations of DES 

and Its Experimental Linear Cryptanalysis,“ IEEE 

TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 4, 

APRIL 2003. 

[5] E. Pietriková, S. Chodarev, “Towards Programmer 

Knowledge Profile Generation“ Acta Electrotechnica et 

Informatica. Roč. 16, č. 1 (2016), s. 15-19. - ISSN 1335-

8243. 

[6] A. H. Ansari, A. R. Landge, “RSA algorithm realization 
on FPGA”, International Journal of Advanced Research in 

Computer Engineering & Technology (IJARCET) 

Volume 2, Issue 7, July 2013. 

[7] Menezes, Alfred; van Oorschot, Paul C.; Vanstone, Scott 

A. (October 1996). Handbook of Applied Cryptography. 

CRC Press. ISBN 0-8493-8523-7. 

[8] M. Prerna, A. Sachdeva, “A Study of Encryption 

Algorithms AES, DES and RSA for Security”. Volume 13 

Issue 15 Version 1.0 Year 2013. Double Blind Peer 
Reviewed International Research Journal. : Global 

http://www.ijisrt.com/


Volume 3, Issue 7, July – 2018                         International Journal of Innovative Science and Research Technology                                                                   

                      ISSN No:-2456-2165 

 

IJISRT18JL173                                     www.ijisrt.com                                     526 

Journals Inc. (USA) Online ISSN: 0975-4172 & Print 

ISSN: 0975-4350. 

[9] S. Khaled, H. Hussien, S. Yehia, “FPGA Implementation 

of RSA Encryption Algorithm for E-Passport 

Application,” World Academy of Science, Engineering 

and Technology International Journal of Computer, 

Electrical, Automation, Control and Information 

Engineering Vol:8, No:1, 2014. 

[10] A. C. Shantilal, “A Faster Hardware Implementation of 

RSA Algorithm” Department of Electrical & Computer 

Engineering, Oregon State University, Corvallis, Oregon 

97331 USA. 

[11] A. H. Ansari, A. R. Landge, “RSA algorithm realization 

on FPGA”, International Journal of Advanced Research in 

Computer Engineering & Technology (IJARCET) 

Volume 2, Issue 7, July 2013. 

[12] A. Shashank, “FPGA Implementation of RSA Encryption 

and CRT based Decryption using Parallel Architecture,” 

Journal of Innovation in Electronics and Communication 

[13] L. Vokorokos, E. Chovancová, “Viacjadrová architektúra 

zameraná na akceleráciu výpočtov, “ Acta Informatica 

Pragensia. Vol. 2, no. 1 (2013), p. 79-90. - ISSN 1805-

4951. 

[14] Calderbank, Michael "The RSA Cryptosystem: History, 

Algorithm, Primes". 2007. 

[15] E. Chovancová, N. Ádám, A. Baláž, E. Pietríková, P. 

Feciľak, S. Šimoňák, M. Chovanec, “Securing distributed 

computer systems using an advanced sophisticated hybrid 

honeypot technology,“ Computing and Informatics. Roč. 

36, č. 1 (2017), s. 113-139. - ISSN 1335-9150. 

[16] Biham, Eli and Shamir, Adi  "Differential Cryptanalysis 

of DES-like Cryptosystems". Journal of Cryptology. 

(1991). 4 (1): 3–72. doi:10.1007/BF00630563. 

[17] W. Stallings, “Cryptography and Network Security 
Principles and Practices,” Prentice Hall. 2005 0-17-

187316-4. 

[18] L. Vokorokos, A. Baláž, B. Madoš, “Anomaly and Misuse 

Intrusions Variability Detection,” Acta Electrotechnica et 
Informatica. Roč. 2010, Č. 4 (2010), S. 5-9. - ISSN 1335-

8243. 

[19] Xilinx Inc. KC705 Evaluation Board for the Kintex-7 

FPGA. 2016 Available web source: 

https://www.xilinx.com/support/documentation/boards_an

d_kits/kc705/ug810_KC705_Eval_Bd.pdf  

[20] Xilinx. User Guide UG474 (v1.8) September 27, 2016. “7 

Series FPGAs Configurable Logic Block,” Available web 

source: 

https://www.xilinx.com/support/documentation/user_guid

es/ug474_7Series_CLB.pdf. 

 

http://www.ijisrt.com/

