
Volume 3, Issue 7, July – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18JL354 www.ijisrt.com 756

Logic Programming From the Point of View of Type

Theory and Predicate Linear Logic

Liberios Vokorokos
Department ofComputers

and Informatics

TechnicalUniversityof Košice

Košice, Slovakia

Zuzana Bilanová
Department ofComputers

and Informatics

TechnicalUniversityof Košice

Košice, Slovakia

Zuzana Dankovičová
Department ofComputers

and Informatics

TechnicalUniversityof Košice

Košice, Slovakia

Abstract:- In this article we will deal with the analysis of

several logic programming languages and their

interpreters, including their theoretical origins. Logic

programming is based on the first order predicate logic, as

is the case with Prolog, with which we explain the basic

principles of such an approach. Subsequently, we will

describe non-traditional logical systems in logic

programming - programming with higher-order logic

represented by the λProlog programming language and

source-oriented logic programming represented by the

Vorvan programming language.

Keywords:- linear logic; logical programming; first order

predicate logic; theory of types.

I. INTRODUCTION

The initial ideas that created the area of logic
programming were introduced in 1960, when the logical

programming language Planner was created. The real boom of

this area came after 1965, with J. A. Robinson publications,

which were the basis for the first implementations of today's

most widely used logical programming language - Prolog. For

the paradigm of logic programming [1], the following facts are

characteristic:

 the main idea is to use a program to draw the

consequences, introducing a declarative way of describing

the problem solved,

 as a programming language, the first order predicate logicis
mostly used,

 the basic principle is the procedural interpretation of the

first order predicate logic, where the essence is to interpret

implications as procedural declarations,

 when creating a logic program, a scheme of system axiom

(or set of formulas) is defined. It specifies the class of tasks

that the programmer solves. Also, target orders are

formulated for a specific task which need to be solved,

 in logic programming, the calculation is by proving the

question (target command) as the logical consequence of

the set of axioms that make up the body of the program.

Logical commands and rules are logged in the logical

programming languages in the form of the Horn Clauses[2].

The clause is a disjunction of literals. Literals are atomic

formulas, they may be positive, e.g. 𝑝 resp. negative, e.g.¬𝑝.

The Horn clause may contain at most one positive literal.

Example of the Horn clause:

 ¬𝑝 ∨ ¬𝑞 ∨ … ∨ ¬𝑡 ∨ 𝑢 (1)

 The conjunction of Horn's clauses is called the Horn's

Formula. Horn formulas are usually enrolled as implications:

𝑝 ∧ 𝑞 ∧ … ∧ 𝑡 → 𝑢 (2)

The given hypothesis is demonstrated in the logical

paradigm by the resolution method. Logic programming

languages are most often used as theorem-provers, model-

generators andproblem-solvers. They are used for symbolic

and non-numeric computations, programming of expert

systems, artificial intelligence, etc.

II. PROLOG

Prolog (from fr.PROgramation aLOGic - Logic

Programming) [3]is the universal and most widely used logic
programming language designed to program symbolic

computations. Its basis is first order predicate logic. Prolog's

programs are formulated through Horn's clauses.

A. First order predicate logic

First order predicate logic [4]is richer than propositional

logic, which uses only a small part of the formal language -
symbols with truth value. Predicate logic extends propositional

logicby quantifiers and predicates (properties, relationships of

individuals).

First order predicate logic can be described by following

grammar in BNF:

𝛼, 𝛽 ∶≔ 𝑃(𝑡, … , 𝑡) | ¬𝛼|𝛼 ∧ 𝛽| 𝛼 ∨ 𝛽|

𝛼 → 𝛽|(∀𝑥)𝛼|(𝑥)𝛼
 (3)

 𝑡 ∶≔ 𝑥|𝑐|𝑓(𝑡, … , 𝑡) (4)

The meaning of the symbols of first order predicate logic

is as follows:

 formulas𝛼, 𝛽,

 predicate𝑃(𝑡, … , 𝑡)represents the application of the

predicate symbol to terms𝑡,

 logical connectives ¬ - negation, ∨ - disjunction, ∧ -

conjunction, → - implication,

 quantifiers∀ - universal, - existential,

 𝑥 is a variable, 𝑐 is a constant,

 𝑓(𝑡, … , 𝑡)is an application of a functional symbol on the

terms.

http://www.ijisrt.com/

Volume 3, Issue 7, July – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18JL354 www.ijisrt.com 757

B. Basic Principles

Basic features of Prolog:

 declarative programming language - program logic is

declared using terms and relations, representing facts and

rules that describe properties and relationships between

objects,

 non-procedural programming language - the problem

solving procedure is uninteresting for the programmer, the
procedural part of the calculation is purely in the direction

of Prolog,

 conversational programming language - Prolog answers

user questions.

The Prolog programming language can also be said to be

interpretive, interactive, based on recursion (through a single

node recursively searches a linear calculus tree), even on

variable substitution, its data and program are stored in one file

in the same clauses.

The Prolog program is the ultimate non-empty set of Horn

clauses. The clauses consist of the head and the body, and if

Prolog deduces that the body is true, the head is true.

There are 3 kinds of clauses:

 Facts

 have onlya head, simple clauses, constant assertions,

 e.g. parent(claudius,nero).

 Rules

 have a head and a body, complex clauses, with implications

allow to deduce new facts, contain variables, express the

reality that one fact can depend on other groups of facts

 e.g. siblings(X,Y) :- parent(X,R),

parent(Y,R), X \= Y.

 Commands

 have onlya body, they are done immediately after

consulting the knowledge base, starting with the ":-"

symbol.

The system answers users' questions based on the

information contained in the database of clauses (also known as

the knowledge database) and its internal rules. Depending on

whether the target clause is fulfilled in the Prolog program,

Prolog answers YES or NO. It can also list the values of the

arguments for which the target formula is fulfilled.

C. Use of Prolog

A simple example of the use of Prolog language is a

mathematical game called the Tower of Hanoi (Fig 1).

Fig 1:- Principle of Tower of Hanoi

In The Tower of Hanoi, a player has 3 rods to choose

from,on the first one there are disks sorted from the biggest to

thesmallest one which are supposed to be moved to the
middlerod. In one turn player can move only one upper disk.

Larger disk always has to be on top of the smaller one. In the

Prolog programming language, this task can be solved by the

following program:

move(1,X,Y,_) :-

write('Move top disk from '),

write(X),

write(' to '),

write(Y),

nl.

move(N,X,Y,Z):-

 N>1,

 M is N-1,

move(M,X,Z,Y),

move(1,X,Y,_),

move(M,Z,Y,X).

hanoi (P) :- move(P,left,middle,right).

This source code has been written to the a.pl file, which

represents the Prolog knowledge database. The program itself
was run in BinProlog interpreter. Fig. 2 shows the output of the

Hanoi tower algorithm in BinProlog for the question of hanoi

(3).

Fig 2:- Tower of Hanoi in BinProlog interpreter

http://www.ijisrt.com/

Volume 3, Issue 7, July – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18JL354 www.ijisrt.com 758

III. ΛPROLOG

In the 1980s, Dale Miller and GopalanNadathur[5]created

a new, wider theoretical basis for logic programming

languages.They createdλProlog, which is programming

language based on Prolog. λProlog extended Prolog by high-

order functions, λ-terms, intuitionistic fragment of Church's

simple theory of types, higher-order unification, polymorphic

types, and provides mechanisms for defining modules and

secure abstract data types. It also extends the classical first-

order theory of Horn clauses to the intuitionistic higher-order

theory of hereditary Harrop formulas.

λProlog is an interesting, higher-order logic programming

language that provides effective ways of realizing computations
over formal objects such as mathematical expressions, logical

formulas, or proofs. Thanks to perspective of this language

there was created an abstract machine named Teyjus.

D. Intuitionistic logic

In terms of intuitionism:

 constructivist approach – construction and constructive

proof are key concepts for intuitionism, derived from the

intuitionist understanding of logical symbols,

 the statement is true if it is possible to construct its proof,

 the rejection of the principle of proof by contradiction and

the excluded middle principle,

 intuitionisticsemantics can be given in terms of Kripke

semantics.

Formulas of intuitional logic have the same syntax as in

predicate logic. The only differences are:

 implicationγ→ δcannot be expressed through disjunction

and negation¬ γ∨ δ;

 any logic connective can be expressed by the other, all four:

∧, ∨, →, ¬are necessary.

E. λ-calculus

Until the end of the 19th century, mathematics was based

on naive theory of sets. Russell's paradox, formulated at the

beginning of the 20th century, proves that set theory is not
consistent but contains contradictions. This was the reason for

creating the λ -calculus, which in 1928 formulated the Alozo

Church. The previous principle "everything is a set" has been

replaced by a principle that we can paraphrase as "everythingis

a function".

Simply typed λ-calculus[6] is the simplest typed

functional programming language.Itssyntax can be described

by following grammar in BNF:

 𝑡 ∶≔ 𝑥|𝜆𝑥: 𝑇. 𝑡|𝑓𝑡 (5)

 𝑇 ∶≔ 𝑎| 𝑇 → 𝑇 (6)

The meaning of the symbols of λ-calculus is as follows:

 metavariable𝑡indicates λ-term,

 variable 𝑥 binds the occurrences of 𝑥 in 𝑡,

 term 𝑡𝑡 is an application, which applies the function 𝑓 to a

term 𝑡,

 𝜆𝑥: 𝑇. 𝑡 je λ-abstraction that defines a function with a

parameter𝑥type𝑇and body of function𝑡,

 set of terms T,

 base type 𝑎 - a set of values, e.g., integers, strings,

 function type T → T where arrow → is a type constructor.

F. Higher-order hereditary Harrop formulas

The Harropformulas were introduced in 1956 and named
after Ronald Harrop. The concept of these formulas is used in

various fields of mathematics and logic programming.The

language of higher-order hereditary Harrop formulas is

determined by:

 G-formulas - function as goals or queries in a logic

programming setting,

 D-formulas - function as program clauses or definition

clauses in this context.

Higher-order hereditary Harrop formulas can be

described by following grammar in BNF:

𝐺 ∶≔ 𝐴|𝐺 ∧ 𝐺|𝐺 ∨ 𝐺|(∀𝑥)𝐺|

(𝑥)𝐺|𝐷 ⊃ 𝐺
(7)

 𝐷 ∶≔ 𝐴𝑟|𝐺 ⊃ 𝐴𝑟|𝐷 ∧ 𝐷|(∀𝑥)𝐷 (8)

The meaning of the symbols of higher-order hereditary

Harrop formulas is as follows:

 𝐴denote atomic formulas, 𝐴𝑟denote rigid atomic formulas,

 D-formulas are called program clauses and G-formulas are

called goal formulas.

G. Use of λProlog

To use the λProlog language in practice, we will use an

abstract machine named Teyjus. Teyjus uses four subsystems:

tjcc compiler, loader tjlink, abstract machine emulator tjsim

and user interface. The system also allows the use of a compiler

on the one hand and an emulator on the other hand as separate

components.

Programming in λProlog is structured trough the modules.

In Teyjus, there are four files associated with a module. If the

name of the module is <name> then these files are essential:

 <name>.mod - the source code,

 <name>.sig - the signature which identifies names of sorts,

type constructors, constants and operators.,

 <name>.lpo - the bytecode file generated by the compiler

for the module,

 <name>.lp - linked and executable version of the bytecode

file produced by the linker.

In the λProlog programming language, the Tower of

Hanoi can be solved by the following program, which consists

of signature and module part:

sighanoi.

type hanint -> string -> string ->string -> o.

module hanoi.

http://www.ijisrt.com/

Volume 3, Issue 7, July – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18JL354 www.ijisrt.com 759

han 1 A B _ :- print "Move disk from " , print A , print " to " ,
print B , print "\n".

han I A B C :- J is I - 1 , han J A C B , han 1 A B C , han J C B

A.

Fig. 3 shows the output of the Hanoi tower algorithm in

Teyjus for the question of han 3 “left” “middle” “right”.

Fig 3:- TowerofHanoi in Teyjusabstract machine

IV. VORVAN

Vorvan programming language was developed on the

Department of Computers and Informatics, Technical

University of Košice, Slovakia by KostiantynBilan in

2016.Vorvan hasa modern graphic interpreter of resource-

oriented nature based on predicate linear logic.

H. Predicate linear logic

Predicate linear logic [7] was introduced in 1987 by J.Y.

Girard. This logic can be seen as anextension of first order

predicate logic and intuitionistic logic. Predicate linear logic

can be applied to processesin the real world, placing emphasis

on resource consumption.

Predicate linear logic has the following characteristics:

 works with resources,

 the formula of this logic is an action or source,

 describes real processes in the world, use in

functionalprogramming,

 introduces new linear logic connectives,

 does not contain the rule of weakness and contraction.

Predicate linear logiccan be described by following

grammar in BNF[8]:

𝜑 ∷= 𝑎𝑛| 1 | 0|𝖳| ⊥ |𝑃(𝑡, … , 𝑡)|𝜑 ⊗ 𝜓|𝜑&𝜓|

𝜑 ⊕ 𝜓| 𝜑𝜓|𝜑𝜓|𝜑⊥| ! 𝜑| ? 𝜑|(∀𝑥)φ|

(𝑥)φ

(9)

 𝑡 ∶≔ 𝑥|𝑐|𝑓(𝑡, … , 𝑡) (10)

The meaning of the symbols of predicate linear logicis as

follows:

 𝜑, 𝜓 are resource-orientedformulas,

 𝑎𝑛 are elementary formulas,

 1, 0 arelogical constants,

 ⊗, &,⊕, are logical connections,

 is linear implication

 (.)⊥ is unary logicnegation,

 !, ? are modal operators,

 as in first order predicate logic, 𝑥 is a variable, 𝑐 is

a constant and 𝑓(𝑡, … , 𝑡) is an application of a functional

symbol on the terms.

I. Use of Vorvan

To demonstrate the use of the Vorvan programming

language [9] in practice, we will utilize interpreter Vorvan,
which is called the same as his programming language.Vorvan

uses three subsystems as shown in Fig. 4:

 compiler (Vorvan Compiler - VC) able to locate syntactic

and semantic errors,

 text editor (User Interface-UI),Vorvandevelopment

environment,

 interpreter (VorvanCoMmanD - VCMD), an interactive

tool inwhich the user can try out his source codes.

Fig 4:- The communication process of the interpreter Vorvan

Each of these components works separately. From the

user interface can be directly compiled and interpreted the
sourcecode stored in a *.vlpls files. The compiler creates from

filesof type *.vlpls another files which type is *.vlpli. Next

*.vlplifiles are processed in the interpreter VCMD.

In the λProlog programming language, the Tower of

Hanoi can be solved by the following program:

han(1,A,B,C) <-

print("Move disk from " + !A + " to " + !B + "\n").

han(A,B,C,D) <-

http://www.ijisrt.com/

Volume 3, Issue 7, July – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18JL354 www.ijisrt.com 760

(!A - 1 -> E) * ((han(A - 1, B, D, C) * han(1, B, C, D)) *

han(E,D, C, B)).

Vorvan (unlike Teyjus and BinProlog) is a simple and

modern development environment that is intuitive for the

programmer and speeds up his work. Fig. 5 depicts its text

editor.

Fig 5:- User interface of Vorvan

Fig. 6 shows the output of the Hanoi tower algorithm in

Teyjus for the question of han(3, left, middle, right).

Fig 6:- TowerofHanoi in Vorvanabstract machine

The Vorvan programming language and its

implementation are currently being developed under the

guidance of the authors of this article.

V. CONCLUSION

On traditional example of the Tower of Hanoi we have

demonstrated the differences between interpreters of the first

order predicate logic,the intuitionistic logic and the predicate

linear logic. Each of the described interpreters - BinProlog,

Teyjus, Vorvan is suitable for solving other types of problems.

At the same time, there is a common theoretical ground

between BinProlog and Teyjus, as well as between
BinPrologandVorvan. However, there is no link between

higher-order logic programming language and resource-

oriented logic programming.

Our research deals with the development of new logical

programming languageVorvan, which is designed to solve

problems with the ultimate number of resources. From the

point of view of future research, we find it interesting to

extend its functionality so it can work with λ-terms like

λProlog. Linking the functionality of these interpreters would

give us a tool with extraordinary expressive power able to

solve a wide range of problems.

VI. ACKNOWLEDGMENT

This work was supported by Faculty of Electrical

Engineering and Informatics, Technical University of Košice

under contract No. FEI-2017-43 „Handwriting analysis

focused on disgraphy“ and Faculty of Electrical Engineering

and Informatics, Technical University of Košice under

contract No. FEI-2017-47 „Design and development of

verifiable BDI architecture for IDS using component and

virtual reality systems“. This support is very gratefully

acknowledged.

REFERENCES

[1] John W. Lloyd,“Foundations of logic programming,”

Springer Science & Business Media, 2012, pp. 212.

[2] S. Ceri, G. Gottlob, L. Tanca, “Logic programming and

databases,”Springer-Verlag Berlin Heidelberg, 1990, pp.

284.

[3] I. Bratko, “Prolog programming for artificial intelligence

(4th edition) (International Computer Science Series), ”

Pearson Education Canada, 2011, pp. 696.

[4] A. Pettorossi, M. Proietti, “First order predicate calculus

and logic programming, ”Aracne, 2016, pp. 152.

[5] D. Miller, G. Nadathur, “Programming with higher-order

logic,” Cambridge University Press, 2012.

[6] G. E. Revesz, “Lambda-calculus, combinators and

functional programming,” Cambridge University Press,

2009.

[7] E. Demeterová, “Logical programming in informatics,”

in: Electrical Engineeringand Informatics 4 : Proceedings

of the Faculty of Electrical Engineering and Informatics

of the Technical University of Košice, 2013, pp. 867-872.

[8] L. Vokorokos, Z. Bilanová, D. Mihályi, “Linear logic

operators in transparent intensional logic, ” In:

Informatics 2017. - Danvers : IEEE, 2017 S. 420-424.

[9] K. Bilan, D. Mihályi, “Logic programming paradigm

language interpreter based on resource-oriented logical

system principles,“ in: Electrical Engineering and

Informatics 7 : Proceedings of the Faculty of Electrical

Engineering and Informatics of the Technical University

of Košice, 2016, pp. 291-296.

http://www.ijisrt.com/

	A. First order predicate logic
	B. Basic Principles
	C. Use of Prolog
	D. Intuitionistic logic
	E. λ-calculus
	F. Higher-order hereditary Harrop formulas
	G. Use of λProlog
	H. Predicate linear logic
	I. Use of Vorvan

