
Volume 3, Issue 8, August – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18AG333 www.ijisrt.com 583

Dataflow Computer Architecture Generator using

Field Programmable Gate Array

Katarína Perželová, Branislav Madoš

Department of Computers and Informatics,

Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Košice, Slovak Republic

Abstract:- The paper deals with the effort to design

dataflow computer architecture generator that is capable

to generate dataflow computer architectures in the form of

the hardware description in VHDL source code that can be

implemented in Xilinx FPGA chip. In this work textual

form of the dataflow graph is designed along with the

generator which translates this dataflow graph into the

description of the computer hardware in VHDL language.

Keywords:- Dataflow architecture, dataflow graph, VHDL,

FPGA, Xilinx.

I. INTRODUCTION

The most common computing model (i.e., a description

of how a program is to be evaluated) is the von Neumann

control flow computing model. This model assumes that a

program is a series of addressable instructions, each of which

either specifies an operation along with memory locations of

the operands or it specifies (un) conditional transfer of control

to some other instruction.

A control flow computing model essentially specifies the

next instruction to be executed depending on what happened

during the execution of the current instruction. The next

instruction to be executed is pointed to and triggered by the

use of the program counter. This instruction is executed even

if some of its operands are not available yet (e.g.,

uninitialized) [1][2][3].

The dataflow model represents a radical alternative to the

von Neumann computing model since the execution is driven

only by the availability of operands. It has no program counter

and global updatable store, i.e., the two features of the von

Neumann model that became bottlenecks in exploiting

parallelism. The serialization of the von Neumann computing

model has a serious limitation for exploiting more parallelism

in nowadays microprocessors. In data flow computing

parallelism is limited only by the actual data dependencies

between instructions in the program.

Computer architectures with data flow computation

control are very important alternative to the mainstream

computer architectures in which control of program execution

is represented by the flood of instructions. Although in recent

years data flow principles of computing were in the

background, today, when further increase of the performance

of computers is achieved mainly by parallelization, dataflow

architectures are again becoming important and it is leveraged

again how to use them [4].

Computational models based on dataflow principles are

providing possibility of using natural parallelism of program

and it can significantly reduce the time that is necessary for

execution of calculation. Advantage of this kind of computer

architectures is in allowing detection of parallelism just on the

machine instructions level [5]. A prototype of the dataflow

computer was developed at the Department of Computers and

Informatics. This prototype was verified and tested with the

support of Xilinx WebPackISE software and Xilinx Spartan

3AN Development board [6][7][8][9][10].

The aim of this work is to design dataflow computer

architecture generator which is capable to generate hardware

description in VHDL language of the architecture of the

dataflow computer. As the input of this generator the source

code of the dataflow graph is used. It means that generator

analyses program source code and translates it into computer

hardware, described in VHDL language, which performs

desired program.

A dataflow computer executes a program by receiving,

processing and sending out data packages, called tokens. Each

of them consists only of a value and a destination address.

Processing starts when a set of matched tokens arrives and can

be processed by the execution unit. In a dataflow computer, a

program is not represented by a linear instructions sequence,

but by a dataflow graph which is a directed graph consisting of

named nodes that are representing instructions, and arcs that

are representing data dependencies among instructions. During

the execution of the program, data propagates along the arcs in

tokens. This flow of tokens enables some of nodes to be fired

and instructions that are in nodes to be executed [11]. The fig.

1 shows example of a dataflow graph.

II. DATA FLOW COMPUTING PARADIGM

Dataflow paradigm of computation was popularized in

60’ and 70’ and describes non Von Neumann architectures

with the ability of fine grain parallelism in computation

process. In dataflow architecture the flow of computation is

not instructions flood driven.

There is no concept of program counter implemented in

this architecture. Control of computation is realized by data

flood. Instruction is executed immediately in condition there

are all operands of this instruction present. When executed,

instruction produces output operands, which are input

operands for other instructions.

Dataflow paradigm of computing is using directed graph

G = (V, E)

http://www.ijisrt.com/

Volume 3, Issue 8, August – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18AG333 www.ijisrt.com 584

called DataFlow Graph (DFG). DFG is used for the

description of behavior of data driven computer. Vertex v form

the set V is an actor, a directed edge e from the set E describes

precedence relationships of source actor to target actor and is

guarantee of proper execution of the dataflow program. This

assures proper order of instructions execution with

contemporaneous parallel execution of instructions without the

need of program counter.

Tokens are used to indicate presence of data in DFG.

Actor in dataflow program can be executed only in case there

is a presence of a requisite number of data values (tokens) on

input edges of an actor. When firing an actor execution, the

defined number of tokens from input edges is consumed and

defined number of tokens is produced to the output edges. An

important characteristic of dataflow program is its ability to

detect parallelism of computation. This detection is allowed on

the lowermost basis – on the machine instructions level.

There are static, dynamic and also hybrid dataflow

computing models. In static model, there is possibility to place

only one token on the edge at the same time. When firing an

actor, no token is allowed on the output edge of an actor.

Disadvantage of the static model is impossibility to use

dynamic forms of parallelism, such a loops and recursive

parallelism. Computer with static dataflow architecture was

designed by Denis and Misunas.

Dynamic model of dataflow computer architecture

allows placing of more than one token on the edge at the same

time. To allow implementation of this feature of the

architecture, the tagging of tokens was established. Each token

is tagged and the tag identifies conceptual position of token in

the token flood. For firing an actor execution, a condition must

be fulfilled that on each input edge of an actor the token with

the same tag must be identified. After firing of an actor, those

tokens are consumed and predefined amount of tokens is

produced to the output edges of an actor. There is no condition

for firing an actor that no tokens must be placed on output

edge of an actor. The architecture of dynamic dataflow

computer was first introduced at Massachusetts Institute of

technology (MIT) as a Tagged Token Dataflow Architecture.

Hybrid dataflow architectures are the combination of

control flow and data flow computation control mechanisms.

Dataflow computing is predominantly domain of the

research laboratories and scientific institutions, and has limited

impact on commercial computing nowadays because of

difficulties which are connected to the cost of communication,

organization of computation, manipulation with structured

data and the cost of matching [12] [13]. Paradigm of tile

computing in combination with the dataflow computing brings

new possibilities to overcome some of deficiencies of dataflow

architectures.

Fig 1:- Example of the dataflow graph which uses six inputs

and one output and represents program for the computer with

data driven computation model.

 Design of Computer Architecture Generator

The design of the computer architecture generator, which

has been designed as the part of this research, consists of the

generator of ad-hoc architecture that is implementing

architecture on the basis of program source code. Structure of

the source code is also defined in this work. Architecture

designed in the work is unique by the reason of not using

concept of operating memory. It is writing program directly to

the computers structure and it is representing hardware

realization of the particular dataflow program.

Individual instructions of program are realized by

implementation of appropriate modules represented in VHDL

code and those modules are used in the architecture as many

times as the instructions in the program. For the proof of the

concept the size of operands is limited to 8 bits and number of

data types, on which individual operations can be executed, is

limited to signed and unsigned integer types. This choice does

not bound possibility of testing designed concept and in next

phase of the development it is possible to increase the size of

operands to 16, 32 or 64 bits and also to increase the number

of operand types.

Design of architecture allows to define 8 input and 8

output ports, which are capable to make input or output of

operands to resp. from the computer. Incoming and outgoing

operands are in the size of 8 bits and each port has one other

bit used as the indicator of validity of operand. This bit, along

with the value of operand, represents the token.

A. Syntax of the source code

The source code contains dataflow graph written in

textual form, which represents program executed by designed

architecture. Its form is also designed as the part of this work

and example of the dataflow program source code is shown on

the Fig. 2.

http://www.ijisrt.com/

Volume 3, Issue 8, August – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18AG333 www.ijisrt.com 585

Fig 2:- Example of the dataflow program source code

Content of the source code is not case sensitive. It

consists of lower or upper case letters and lines, where each

line represents one instruction and contains one of the

following parameters, divided with blank space:

1. Number of line - each line has to be numbered and there is

not allowed to use twice the same number, although

numbering of lines is not necessarily ordered.

2. Mnemonic shortcut of instruction - the shortcut is a string

and belongs to defined list of instructions.

3. Operand A - left input operand can have one of the

following forms:

 Can be filled by generator while source code is analyzed and

it is created as the result of some instruction execution. That

is why it can stay blank in time of preparing the source code

of the program.

 Defined by string ’A:’ after which directly follows decimal

number, which represents immediate operand used for

execution of instruction.

 Defined by string ’A:’ after which directly follows one of

strings INA, INB, ..., INH that is representing one of the

input port.

4. Operand B - right input operand can have one of the

following forms:

 Can be filled by generator while source code is analyzed

and it is created as the result of some instruction execution.

That is why it can stay blank in time of preparing the

source code of the program.

 Defined by string ’B:’ after which directly follows decimal

number, which represents immediate operand used for

execution of instruction.

 Defined by string ’B:’ after which directly follows one of

strings INA, INB, INH that is representing one of the input

port.

5. Destination address - address where the result of

instruction is sent. It can have one of the following forms:

 Defined by string ’D:’ after which directly follows one of

the string A, B that represents address of the operand and it

is followed by decimal number representing the number of

instruction line.

 Defined by string ’D:’ after which directly follows one of

the string OUTA, OUTB, ..., OUTH that is representing

one of the output ports.

B. Generator of the hardware descriprion in VHDL

The generator of the hardware description in VHDL

language is designed as a console application which starting

parameter is the name of the dataflow program source code

file. This source code file is used by the generator as the input

that contains dataflow graph in the necessary form. Generator

determines which instructions are necessary to include into

instructions package of generated ad-hoc architecture of

dataflow computer.

The source codes representing modules that realize those

instructions, are consequently connected to main module,

which is representing source code of a computer’s top module.

Top module is in VHDL language and it is possible to use it as

the source code for Xilinx software and to generate designed

architecture that is implementable into the Xilinx FPGA chip.

The designed generator executes syntax and semantic

analysis on the dataflow graph for the error detection. Also it

is performing simple optimization of the source code with the

aim to lower hardware demands in the final realization of

computers hardware. The following figure 3 represents

designed architecture of dataflow computer that is performing

computation

OUTA = (INA + INB) * (INC - IND).

Fig 3:- RTL schema of the designed architecture representing

particular program source code.

C. Main principles of the design of ad-hoc architecture

 Among the main characteristics of designed computer

architectures belongs that a computer memory is not used for

saving instructions code of dataflow program and also there

are no registers used for temporary storage of results of

executed operations when they are transmitting data from the

source to the destination instruction.

 Designed architecture represents network, through which

data flows via signal routes between the areas, where the

dataflow program instructions are implemented. In order to

monitor data flow over the network except the values of data,

there are created signs (tokens) that indicate presence of

operands in individual parts of network, which represents the

dataflow graph.

 Next important feature of the design is that only source

code of those instructions, which are really used within

http://www.ijisrt.com/

Volume 3, Issue 8, August – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18AG333 www.ijisrt.com 586

particular dataflow graph are included into description of the

hardware. Because of this, instructions architecture of ad-hoc

dataflow computer is always the subset of the overall

instructions architecture designed in the work. This is very

important because it can save hardware resources, when

implementing designed computer hardware into FPGA.

For testing purpose, when hardware description in

VHDL language was used and implemented into FPGA chip,

the Xilinx Spartan 3AN Development Board was used along

with the WebPackISE software.

Fig 4:- Xilinx Spartan 3-AN Development Board using FPGA

technology

III. CONCLUSION

The paper introduces dataflow computing paradigm,

which is driving the computation process with the flow of

data, not with the flow of instructions, as control flow

computers are doing. Static, dynamic and hybrid data flow

computer architectures were introduced. In the next part of the

paper syntax of the textual form of data flow graph, designed

as the part of this work was briefly described and then the

generator which function is to translate data flow graph (the

source program code for data flow computer) into description

of hardware in VHDL language. Generator literally translates

program source code into equivalent hardware representation,

which can be then implemented into Field Programmable Gate

Array (FPGA) chip.

In the future research we will leverage the instructions

set architecture from which instructions for ad-hoc hardware

architectures are chosen. The architecture will be parametrized

to allow from 8-bit to 64-bit operands and also the number of

different operand types will be extended. Another important

direction of the research will be focused on the optimization of

generated architectures to allow translation of more complex

source codes into their hardware counterparts with the aim to

preserve architecture which is not using operating memory,

registers and program counter concept and can optimally use

the possibility of parallelization with accurate use of the

hardware resources of particular FPGA chip.

IV. ACKNOWLEDGMENT

This work was supported by KEGA Agency of the

Ministry of Education, Science, Research and Sport of the

Slovak Republic under Grant No. 003TUKE-4/2017

”Implementation of Modern Methods and Education Forms in

the Area of Security of Information and Communication

Technologies towards Requirements of Labour Market” and

under Grant No. 077TUKE-4/2015 „Promoting the

interconnection of Computer and Software Engineering using

the KPIkit“ and by the Slovak Research. This support is very

gratefully acknowledged.

REFERENCES

[1] M. Flynn, "Some computer organizations and their

effectiveness", IEEE Trans. Computers, C-21 (1972), pp.

948 - 960.

[2] T. Agerwala and Arvind, "Dataflow systems", IEEE

Computer, 15 (Feb. 1982), pp. 10 - 13.

[3] Arvind and D.E. Culler, "Dataflow architectures", Ann.

Review in Comput. Sci., 1 (1986), pp. 225 - 253.

[4] L. Vokorokos, "Princípy architektúr počítačoov riadených

tokom udajov", Copycenter Košice, 2002, 147s., ISBN

80-7099-824-5.

[5] N. Ádám, "Single Input Operators of the DF KPI System.

Acta Polytechnica Hungarica" [online]. 2010, vol. 7, no.

1.

[6] L. Vokorokos, B. Madoš, A. Baláž and N. Ádám,

"Architecture of multi-core computer with data driven

computation model", Acta Electrotechnica et Informatica,

december 2010, Košice, Slovakia, pp. 20-23, ISSN 1335-

8243.

[7] B. Madoš and A. Baláž, "Data FLow Graph Mapping

Techniques of Computer Architecture with Data Driven

Computation Model", SAMI 2011 Proceedings of 9th

IEEE International Symposium on Applied Machine

Intelligence and Informatics, Smolenice, Slovakia, 27. -

29. january 2011, pp. 355 - 359, IEEE Catalog Number:

CFP1108E-CDR, ISBN 978-1-4244-7428-8.

[8] L. Vokrokos, B. Madoš, N. Ádám and A. Baláž, "Priority

of Instructions Execution and DFG Mapping Techniques

of Computer Architecture with Data Driven Computation

Model", SISY 2011: 9th IEEE International Symposium

on Inteligent Systems and Informatics: 8. - 10.9.2011:

Subotica, Serbia P. 483-488 Budapest : Obuda University,

2011.

[9] L. Vokorokos, B. Madoš, N. Ádám and A. Baláž,

"Innovative Operating Memory Architecture for

Computers using the Data Driven Computation Model",

In: Acta Polytechnica Hungarica: Special Issue on

Celebration of 60th Anniversary of the Foundation of

Technical University of Koˇsice. Vol. 10, no. 5 (2013), p.

63-79. - ISSN 1785-8860.

[10] B. Madoš, "Architecture of Multi-Core System-on-the-

Chip with Data Flow Computation Control", In:

http://www.ijisrt.com/

Volume 3, Issue 8, August – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18AG333 www.ijisrt.com 587

International Journal of Computer and Information

Technology (IJCIT). Vol. 3, no. 5 (2014), p. 958-965. -

ISSN 2279-0764.

[11] J. Silc, B. Robic, T. Ungerer, "Processor architecture:

from dataflow to seperscalar and beyond", Springer-

Verlag, Berlin, New York, 1999.

[12] L. Vokorokos, N. Ádám, "Operators Matching in

Dynamic Data Flow Architectures", Conference on

Computation Cybernetics, Vienna, Austria, August 30 –

September 1, Vienna, 2004, pp. 77–81, ISBN 3-902463-

02-3.

[13] L. Vokorokos, N. Ádám, A. Baláž, "Flexible Platform for

Neural Network Based on Data Flow Principles", HUCI,

Budapest, November 18–19, Budapest Tech, 2005.

http://www.ijisrt.com/

	A. Syntax of the source code
	B. Generator of the hardware descriprion in VHDL
	C. Main principles of the design of ad-hoc architecture

