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Abstract:- Here we consider lossy transmission lines
terminated by a circuit consisting of linear and
nonlinear RCL-elements. Using the Kirchhoff’s laws we
derive boundary conditions and formulate the mixed
problem for hyperbolic system describing the lossy
transmission line. Then we reduce the mixed problem to
an initial value problem on the boundary. To obtain a
distortionless propagation we change variables and
formulate a mixed problem for the hyperbolic system
with respect to the new variables. The nonlinear
characteristics of the RLC-elements generate
nonlinearity in the equations of neutral type on the
boundary. Since we are not able to eliminate some
transitional currents and voltages we have to consider a
system of 6 equations for 6 unknown functions. Under
Heaviside conditions we show that natural solutions are
distortionless ones. By means of fixed point technique we
prove existence-uniqueness of an oscillatory solution.

Keywords:- fixed point method, Heaviside condition,
hyperbolic system, lossy transmission line, oscillatory
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I.  INTRODUCTION

The main purpose of the present paper is to analyse a
lossy transmission line terminated by a particular circuit
consisting of linear and nonlinear RCL-loads shown in Fig.
1. The case of lossless transmission line is considered in the
recent paper [1] using the methods from [2]. Various
problems concerning transmission lines can be found in [3]-
[19]. Here we obtain conditions for existence-uniqueness of
a generalized oscillatory solution. In Section 2 we formulate
a mixed problem for the lossy transmission line and derive
the boundary conditions using the Kirchhoff’s law. The
nonlinear characteristics of RLC- circuit generate nonlinear
boundary conditions. The main difficulty here is caused by
the fact that some additional currents and voltages cannot be
eliminated and we succeed to reduce the problem to 6
equations for 6 unknown functions. In Section 3 we
transform the hyperbolic transmission line system in a
diagonal form under the Heaviside condition and formulate
the initial and boundary conditions with respect to the new
variables. We show that oscillatory (not periodic) solutions
are specific for such problems. In Section 4 we give an
operator presentation of the oscillatory problem. In Section
5 we prove an existence-uniqueness theorem for the
oscillatory solution by fixed point method. In Section 6
using numerical example we demonstrate how to apply our
method to particular problems.
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DERIVATION OF THE BOUNDARY CONDITIONS
FOR LOSSY TRANSMISSION LINE SYSTEM AND
FORMULATION OF THE MIXED PROBLEM

We proceed from the lossy transmission line system of
equations

Ut | Y | piey =0,
dX ot
6I(X,t) +C 6U(th)

+Gu(x,t)=0

Where L is per unit-length inductance, C — per unit-
length capacitance, R — per unit-length resistance and G -
per unit-length conductance, A is the length of the

transmission line, v=1/+/LC is the speed of propagation
and T=A/(@/+LC) =AYJLC is the time delay. This
system is of hyperbolic type and we formulate the mixed
problem for (1): to find a solution

(u(x,1),i(x,1)) For

(x,) el ={(x,t)eR?:0<x<A, t>0},

Satisfying the initial conditions

u(x,0) = uy(x), i(x,0) =iy(x)for x €[0, A].

where uy(x), ip(x)are prescribed functions. To derive
the boundary conditions we proceed from Fig. 1. The main
difficulty is caused by the circuit configuration shown on
Fig. 1. Using the Kirchhoff’s laws we find relations between
currents and voltages. The problem is to choose the
unknown functions and the number of equations in order to
obtain compatible system. We assume that R, and L;; are

linear loads, that is, Ug )= RliRl(t),

Fig 1:- Lossy transmission line under Heaviside condition
terminated by RLC- circuit
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dLll(iL]_l) _ dLll('Lo]_) diLll(t) —L diLll(t)
dt diy,, dt ' odt

while Cy =Cyo(Ucyg) s Cra(Ucyy) and Lig = Lao(iyy,)

u L1 (t) =

are nonlinear ones which means

dC, (U, ) dug, (t)

e, =4, dt
ClO
i (0)= dCyy(Ucy,)  dCy(ucy,) dugy, (1)
cu dt due,,  dt
dLy(iy,) i, @)
o - 200 80

LIO

We notice that U (t) =u(A,t), i (t)=1i_ (t) and
iClo (t):iL11 (t) . Proceeding as in [1], [2] the Kirchhoff’s
Current Law gives:

duc, (¥

= =i(A)

+i

L10

i Co +Ii Cy =i(At) & le +IC10 +C,

duAD _en .

<y Fig, +C,

Similarly, the Kirchhoff’s Voltage Law gives
Ug +Uy, +Uy, =U(AD),

dL,, di,
_ — 10 10 _
uR1+u'-10 _uclo Rlll—lo di dt T YCio?
Lio

di,
ULll +UC10 = U(A t) = Lll +UC1O = U(A t)

dt

Finding appropriate relationships between the
unknown functions we obtain the system

R A0 i (0~ 0

dlyo(iy,,) di, (1) . .
;(}Ll:m = Cag iy () ~Ruiyy )
di, (t

1 Lgt() =U(A) = Cyg i, (1),

Ug +Uy, +Uy, =U(A).

Having considered ¢, (t)=i,,(t) we obtain the
right-hand side boundary conditions:
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E(t)—u(0,t) — Ryi(0,t) =0, t > 0.

Therefore the boundary conditions are (3) and (4).
Now we are able to formulate the following mixed
problem for (1): to find a solution u(x,t),i(x,t) of (1) in IT,
satisfying the initial conditions (2) and boundary conditions
@3), (4.
I1l. TRANSFORMATION OF THE HYPERBOLIC
SYSTEM IN A DIAGONAL FORM

Let us write down (1) in a matrix form:
6U(x,t) aU(x t)

ot ox TAU=0
ou(x,t) ou(x,t)
_fux) U | et | U | ox
where U_{i(x,t)} ¢ | o) | x| ik |

ot OX
|0 1/C G/C 0
Lo ’Al{ 0 R/L]

To transform A into a diagonal form we form a matrix by its
eigen-vectors

H= {‘/_ ‘/—} (cf. [2]). Its inverse one is

N[
. 1/2Jc —1/2J_

1/2JL 1/2JL

G en |HALC 0
HAH = A { . —1/JE]'

. V(x,t)

New variables Z =
I(x,1)
formulas Z=HU,U=H"Z or

V(x,t) =/C u(x,t)+ /L i(xt)
1(x,t) =—J/Cu(x,t)+ /L i(xt)

and
u(x,t) = (V(x,t) = I1(x1))/2C
i) =(VOu )+ 1(x 1)/ 24L.

} are introduced by the

ou ou

du(A,t) . . . I _ .
H%=|(A,t)—|L10(t)—|ClO(t), Substituting U=H"Z in =t Aa-ﬁ- AU =0
dLlO(iLlo) diLlO (t) Ay . o(H ™z o(H ™z
diLlO dt = C]_O (|C10 (t)) - RllLlo (t) ’ we Obtain ( at )+ A ( ax )+ Al( —lz>
©) dic () Then we multiply the matrix equation
i
Lyy Céot =U(A, 1) = Cg iy, (1) - Ht9Z, an192 AlH‘lz 0 by H from the left:
Similar reasoning leads to boundary conditions for the
left-hand side of the line:
IJISRT180C325 WWW.ijisrt.com 696
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0Z om0

~ +(HAH™)Z =0.

The Heaviside condition G/C =R/L implies

HAlH‘l—l G/C+R/L -G/C+R/L] [R/L 0
~2|-G/C+R/L GI/C+R/L| | 0 RI/L

Then (5) becomes
oV (x,t) N 1 oV(xt)

ot JLC  ox _V(X t=0
ol 1 al(xh R
x Jic o LI(X 1) =0.

A new substitution
V(xt) =e R"W(x,t), I(x,t)=e ™" J(x1)

leads to the system
6W(x,t) 1 oW(x, t)

ot \/LC 0X
A 1 Ay
ot JLC X '

Finally the transformation formulas are
W (x,t) =eJC u(x,t)+e L i(xt)

J(x,H)=—e™Cu(xt)+e ML i(x1)

and
u(xt)=(e W (x,t)—e """ J(x,1))/ (24/C)
i(x,0) =(e "W (x, ) +e I (x, 1))/ (VL) .
Now we are able to formulate a mixed problem in the

new variables: to find a solution of (6) satisfying initial
conditions

W (%,0) =+/C Ug(x) +4/L ig(X) =W, (x), x€[0,A]
3(%,0) =—JC Ug(X) +/L ip(x) = Jo(X), X €[0,A]

and boundary conditions obtained after substituting in (3),
(4) the voltage and current from (7):

E(t)-(e ™"'W(0,)+e ™ 3(01) )/ (2\C)

Ry (e W(0,1) +& (o,t))/(zJE) =0,t>0
8 |

(c11 /2JC )E( e W (A ) -e ™I (A1)

:(e—Rt/LW (A1) +e L] (A,t)) / (2\/E) - i'—lO (t) - iClo (t).

dLyo(iy, ) dip, ()

=CHi~ (V) =Rji, (1),
di,_ pm 10 (ic,, (1) = Rii (1)
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dic,, ()

L
1T g

:(efR”LW(A,t) 7Rt/L‘] At) 2\/_

Cm

Integrating (6) along the characteristics we have
W(O0,t-T)=W(A,t), J(0,t) =J(A,t-T).

We assume that the unknown functions are
W(O,t) =W(t), J(A, ) =J(1), i, (1), i, () and recalling

the denotation Z, =+L/C we have to solve the following

system consisting of differential equations with constant
delays:

W (t) = (2E@®)LO,t +(ZO—RO)J(t—T))/(ZO+RO),
dJ(t):dW(t—T)_£R 1

—+ W(t-T)
dt dt L C,Z,

R 1 ru 24C
+[__ j\](t)+e C (Llo(t)HClo(t))

- L Cllz(il - (6) - 11
dILm (t) _ ClO ('cm (t))_ RllLlo (t) (10)
dt dLy (i, )/diy,
diClO (t) Rt/L W(t_T)_J(t) 1 103
—=e —_— - C. (i 1)).
ot LT L. w0 (i, ()

So we have obtained a particular case of neutral
system of differential equations with retarded arguments.

It is proved in [2] that the above initial value problem
is(®puivalent to the mixed problem for the hyperbolic
transmission line system (6). The needed initial functions
we can obtain by transition of the initial functions along the
characteristics of the hyperbolic system from [0,A] to

[0,T]. This means that T becomes an initial point of the
initial interval [0,T]. The exponential multiplayer in (10)
shows that we cannot look for periodic solutions. So we
have to solve the following problem: to find an oscillatory
solution of (10) on [T,), where W,(t), J,(t) are
prescribed initial oscillatory functions defined on [0,T].

We assume that the nonlinear characteristics are of the
polynomial type:

Lo (i) = Z" dLlO(') =3l i, d’ Lw(') Zm:(n+1)nl "2,

n=1

To divide the expression dLyo(iy, )/di,,~Wwe assume
Assumptions (L): There is a constant i such that

| <10 = dlig @)/ iy, =D, (i) =L,>0.

The nonlinear capacitance is C,,(u)=c, / bfl—(u /D)
where ¢, >0,® >0, he[2,3] are prescribed constants.

(cf. [1GB
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Assumptions (C): |u| < ¢, < ®.
1+h

Since dC,,(u)/ du :co/hd)(hl—(u/d))) >0,

Cyo(U):[~05, 0] — [ ¢/ 4f1+ (0 ©).c0 13T, /qn)]
then there exists

1 Co Co
(u): [~ 401
Co [¢1+(¢0/@) Wi- <¢0/q>)]% 0%l
0 < -
The minimal value of % is

dCyp(u) . dCy(- ¢o) Co _A
{ u |<¢0} d - (h 1+(u/®))1+h =Cp>0

because
dZCm(u) 1+h Co ((wrh)/h)-
1-(u/o -1/®
2 g (Lmu/®) (-1 )
1+h C0 —(L+2h)/h
1-(u/® >0,
dclo (u) <C_0 1_& —(+h)/h _ M
du | ho @ ’

1+2h
d°Cho)| _1+h e, ([ @) P _
du? |~ h? @2 @ o

GCl—Ol(iCm)| 1 _ ho L2 (@+h)/h
By, @ '

= ~

I‘10 CU LlO

» Operator presentation of the oscillatory problem

Let us put t, =T and Wy (t), Jo(t) are prescribed initial
oscillatory functions on the interval [0,T].

Let the set of zeros of the initial functions (Wo(z,)
=J,(r,)=0) be O=7, <7, <..<7, <7}, <..<7, =T.

Let S={t } o be a strictly increasing sequence of real
numbers defined in the following way:
=T+, 4=T+,L=T+7y, . 4, =T+7,=T+T=2T
=T+t =T+, .. L, =T+t,=3T, ...

Obviously
1) lim t, =0

k—>o0

2) Let
A=AUA = {TO,Tl,..., T Tkt T }u {to,tl,..., tseens tn,...}.
Then for every t,eA, there is t; such that
t,—T=t,e AUA,, provided t, - T >7,;
3) 0<min{t,,-t, :k=012,..,n}
<max{t,,, —t, :k=012,..,n}=T, <.
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Denote by C\,CO [0,0) the set of all continuous functions
coinciding with w (t) (Jo(t)) on [0,T] and vanishing at the
points of A=A U A, . Consider the operators
Sw(W):Cy[0,50) > Cyy[0,0) and
S;(3):C0,00)— C1[0,0)
acting by the formulas

o g [WETLEET

w (W) = {Wo(t), te[o7]™"
C(3E-T), =T

S50 = {Jo(t), te[0,T]

Introduce the sets for the wunknown functions
W (t), J(t), iLlo (®), iClO (t):
My, ={W () eCJ[0,00): W (1) <Woe" ) t ety t, .1},
={3()eC0,%): [I()| < I e telt, b, .1},
0 {'uo ) €Clty, »): Llo(t) OeRUL‘LO()‘SquM%k 'te[tk'tkﬂ]}!

(
Cio0 {Icm()EC[tO,OO) Cm(tk):O;eRUL icm(t)‘gJc1e#(titk)'te[tk1tk+1]}

J

Ly

M
M
M

(k=012..)where Wy, Jg,J,,Jc,, ;4 are positive

constants and T, = g, = const > 0.
Introduce the following families of pseudo-metrics
P W W) = e W (8) -W (1))t e[t by )

pi(3.3) = max {3 (1) - TOe ) st et .41,
Pi(inyg i) = Max 1i|_10 () —iy, (t)|e_#(t_tk) telty 1tk+l]},

Pk (icl() ’ i-Clo) = max {iClO (t) - i-Clo (t)|e_#(t_tk) ‘te [tk 1tk+l]}'
The set My xM; xM xMg,, turns out into a

complete uniform space with respect to the countable
saturated family of pseudo-metrics (cf. [1])

Pe(W,3,3,0,36,) W,3,3,,3¢,))
= max{pk(W,VV),pk (‘]rj)rpk(‘] Llo’ij)lpk(‘]Clo"]_Clo)}(k 20,1, 21)

An operator
B:(BW,BJ,BLlO, Clo) My xM; xM

-> My xM;xM_  xM
is called contractive if
pk ((BW ’ BJ ’ BLlo ' BC]_Q )’ (EW ’ EJ 1 EL:|_0 1 EC]_g ))

< IO'DJ'(k) ((\N’ J,J Lio? ch),(\/\_/, 'J_’ ‘]_'-10 ! ‘]_Clo))
where Iy <1 and j:AxMy xM;xM  xMg, —A.
Here the index setis A={0,1,2,...}. Themap j is defined as

xM

L1o C10

C10

follows: if t, — T =t then
ot e 0.} 0.9) ]
j(k) = PPx ILlO"'—lO)‘pk(lclo IClO)} Ps <W'W)

k,if max{p W W)pk(J,J ,pk(,_lo,ll_1 ),pk(lclo,lclo)
—Pk(J ‘J)Vpk(lLlorl Lo Vpk()
Define the operator

Icig i Ci0/*

WWW.ijisrt.com 698


http://www.ijisrt.com/

Volume 3, Issue 10, October — 2018

B\N = B\N(\N"]!‘]Llo"]clo) ' BJ (V\I’J"]L]_()"]Clo) ’
Blyg = BrygW: 3, 3150 3¢0) s

Beyo = Boyg W3 3140, cy)
by the formulas

2EMVL  Z,-R,
BY W, W)= Z, +R, | Zy 1R, O bl
Wo (1), te[0,T]

ng)(VV, ‘]’iLlo ’ icw )(t):=

L‘k TOW, 3, i, )(S)ds

t—t t+l — . .
— [T, 3 i, )S)Ds, telt ty,]

tk+l _tk k
o, te[0,T]
Bl(-i()) (i'-lo ' iclo )(B):= J.ttk I_L10 (i Lo’ iclo )(s)ds
t-t il .
e —ktk L: Ty (g ey (), tety ]
Béﬁ) W, J,icy, )(1):= _Ltk |_c10 W, J,ic,, )(s)ds
t-t thl .
e —ktk 'L: ey W, 3y )()ds, telt ty]
where
0, W, 3) =[ 2EQJLO.0 +(Z, ~R,)S; () |/ (Z, +Ry)
1 i i dST t R C
'kON’J"Lmv'c10>=#{f+c6t]&(vvxt)
R__C w NC
(I_C11\/Ej‘](t)+e / Cy (ILlo (t)+lcm (t))'

i Gl ) R, ®
1 1C - . . 1
L1ok \'L10'"C10 dLlO(lLlo ) / dl'—lo

T H —Rt/L ST (\N)(t)_‘](t) 1 -14:
I l\]! C = —__Clo C
Clka(Vv I 10) € 2L, c L, (i 10 ®)

We assume
(IN): | W (1) < Wpe ) |3, (1)< 3 e t [0, T];
0 0 0 0

Assumptions (U): e“ (W, +J,)/2<g,.
It follows

U] < (W ®] + 3¢t ~T)|)/ 2 < Woe 010 + 36T )2
<e#To0 @Vo +Jge T )/2 < do;

u(A D] < (Wt -T)] +]3O)))/ 2.2 Woe T 4 g et )2
<g#T0 (\Noe"‘T + JO)/ 2<dy.

Now we formulate the main problem: to find an
oscillatory solution (W,J,iy,,ic,,) of the system (10)

coinciding with prescribed oscillatory initial functions
W, (1), Jo(t) on the interval [0,T]

IJISRT180C325

International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165
dw () dw, (t)

W (t) =W, (t), it it te[0,T];
J(t)=J,(), T te[0T];

Wo(T)=0, Jo(T)=0,i,,,(T) =0, ic,,(T)=0.
Lemma 1. If (W,J,i, . ic, ) €My xM; <M xMc o

then

(Br (0. B5 (). By, 0 By, ()& My <My xM g x M

Proof: We first prove that functions defined by the
formulas (11) are continuous ones. Indeed, the continuity of
the first component is obvious. For the second one we have

B W, 3)(th.) = [ T W, 2)(s)ds

boa =t e
- I (W,J)(s)ds =0,
bt e O )6)
B W, 3)(t.a) = [ T W, 3)()ds
(1)

teg —teya ptee2 ¢
EE—— I ,J)(s)ds =0,
bt e W)

B W, 3)t) = T, W, )~ 2= (1,00, 3)5)ds =0,

t
1710

BSO)(\NaJ)(to): Jo(to) =0.

For the another component we proceed in a similar way.

Lemma 1 is thus proved.

Further on we call a generalized solution of the
oscillatory problem (10) the solution of the equations

W =B, W,3) J=B,W.J,i_.ic_).
iLlO = BiLm (iLm’iCm)’ icm = Bicm(\N’J’iCm)’

that is, the fixed point of the operator B. In this manner we
avoid the conformity condition [2].

I.  Existence-uniqueness of an oscillatory solution

Theorem 1. Let the conditions (U), (L), (C) be fulfilled and
also the conditions:

W, ()] <Woe 1 3, (0)] < 3,e“C )t e[r, 7,0
(k=012,...n-1);

2 Zy+Ry

W,e ™™ +2(e" —1)/

[(R \/6 j(WOE_m+JO)+2\/6(JL1+JC1)JSJO;

R
0| Joef,uT SWO :
Zy+R,

_+—
L et

+R,J HTo _ z
2¢0 Al Ly e 1SJ,_1; KWZMEWT <1:
Lo y7, Zy+Ry
) Woe_”T+J0+¢O e”T0—1<J _
Mo*  TYo ., % <Jg;
ZLll\/E Ll]_ 1
Mty _
KJ=e“’T+2e R —\/E (‘”T 1)+—4\/E <1
u L cuL 11
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.
Kleze#E_l( +0ch 2T (g 1@ )2j<1
Hbo

e“lo _1(e 4T 41 _
Ke, =2 ( e +dc] 2(h,/1+(¢0/q>j)zJ<1.

gy
Then there exists a unique oscillatory solution of (10).
Proof: We show that B maps My, xM; xM, x Mg

into itself. Indeed, for t e[t ,t,.,] we have

2|E(t)|J_ |Z,

B, < TR, | Z,+R,

2\/_ et |Zo —

R
—uT o u(t-tg) ut-ty) .
“Z,+R, Woe ZoaR, ot =W
0 0

BPW, i, c10)(t>|

lS +()(®)

k

<[, T3 e, Yo+

J‘:: I(\N’ ’Lm cm)(S)dS‘

k+1 k

SJ’: dW(S_T) ‘ 2\/_“ eRs/L

k ds

10 9+, (9)d

+

e 3 J’]HI W(s-T)ds]+ ]! J(s)dsH
+I:k+1dW(s—T)dS‘+2~/5(JL1+JC1)

Itk +1’3#(Hk)ds‘
t

k ds 1 k
R \/— |: ty +1 ‘ ty +1 H
+| — W (s—T)ds|+ J(s)ds
Lo J’J [, W(s-T)ds+|[*73(s)
2«/_ J, +J wlt=tg) _ wtkr—te) _
<W(t-T)|+ C(% Cl){e 1.8 1}
Cu H H

Il u

et 1{[B+ \/E

T IR

R,
L ¢

u(t-tg) Hlt41-tk) -1
(Wee ™" +J0){e e }

(-t R —aT T
< gt e 4 (Woe ™ +3,)+

2«/6(JL1+JC1)}

Cll

We ™+, )+
(W™ +2,)

[ CyilL

Cll

L

<e/1(Hk) W.e -uT I R
= o

g _1 R, Jc
PR

2«/6(JL1+JC1)]

( '“T+J0)+ c.

<J e#(Hk)-
SV ;

[BE (i1 )O)
t—t,

t— .
< Utk I Lio (ILlo ! IClO )(S)ds‘ +

lk+l
[ To g i )|

J'tk+1 Cl_o1 (icm (5)) - RliLm (5) ds
i dL,, (i, )/di

k+1 k
< J" Cl_ol(lcm (s)- Rlle (5) ds|+
% dL (i, )/ di

Lo Lo Lio L1o
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< @ +RJ L (

J‘tk"l e#(s—tk)ds‘
I:10 b

+R.J ut=tg) _ atge1—te) _

< P Ty (e 1+e lj
Ly H H

< (9”04‘()2((3”TO -D(p, +R,J I_1)/(,u|:10) <J Lle”(Hk);

[BL W, 3,ic, )(O)

t
j e”(s‘tk)ds‘ +
ti

<[ T, 0, J,lclo)(s)ds‘

_t jk+1 Clo(W"]'lcm)(S)ds‘

Yl L-RsiL W(S_T)_J(S)_i g
J, (e L L Coa(ic,, (s))st

wa e W(S=T)=J(s) 1 ...
Pt TR V2P © (i (s)) |ds
: Lk [ 2'-11‘/E L11 . ( Cm( )

W, e —uT +J, (D (e/z(t W) ] eHtkat) _1]
< +
2L, e Iz 7

T
_1(Woe “ 4+, +¢Ojgeﬂ(ttk)JCl

ulyy 2Jc

It remains to show that the operator B is a contractive
one. Indeed

B W, 3)(1) - B W, J)(1)

<[Z, =R | 3t-T)=J(t-T)|/ (Z, +R,)

<e e M|Z —Ry|py s (3,3)/(Z, +Ry)

which implies

P (B W, ), B (W, J))

<e™” |Zo _R0|pk—T (‘]:j)/(zo +Ry) =Ky o 3,9).
It follows

pk(BV(\}()(Vvv‘])! B\}\}()Mr“i))é Kij(k)((v\/l‘]ling'iCm)l(\/\71‘j~ ~I~]_0 rclo))

IA

< eﬂ(Hk)z e’

Further on we have
B W, 3,01 )0~ BIOW, T i,y (D) <

t(dW(s-T) dW(s-T)
S-[tk( ds N ds jds
e S G

R _\C e
’ f+c11x/prk(J’J)fke/( s
+28/1(1T(pk(iL101.~L10) pk(cmvclo)) leﬂ(sitk)ds

k

(5 | o o)
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+(1/C“)[2\/_( P ( Lo’ '—10) P ( C10”’ ClO ) )} J‘ttkkﬂeﬂ(Hk)ds

<W(t-T)-W(-T)|

(R Jc e () _1
+ S

t*cn_ﬁJ(ka(W-W)e’”+Pk<3'5>) .

+(1/C11)|:2\/_( P« ( Lo Y )+pk ( C1o'? IClo ) ):||:<eﬂ(t_tk) —l)/,u:l

J(ka (W, W)e™ +p,(3,3) ghtatd -1

R, C
L cuiL u

(2\/_/C11)( Pk L]_o Lm )+pk ( Cio’ Cm ) )[(ey(‘m_‘k) _1)/"[}

<e!Wp (W W)e
e
(

4T
<ettt) e’”+2e - 5+ - (e +1)+
L 120

7 C
.max{pH (W W) Pk(J j) Pk (ILlo‘-Llo) pk(Cm’ C10 )}

] Pt (W,W)e‘” +p, (J,j))Z e -1
u

1) 1 (1 T ) (T ) [ 2(67 1)1 ]

((t- tk (W )e ut

|—I:U

INA

y . “To _q
2 ] Pr (WW)e ”+pk(J,J))2e p

T s =]
<)

I—I:U

1

It follows
(B W,3),BYW,J))
<K,y (W3, e ) O, 3,7 Tey))
where
K, =e ™" + 26470 _ZKB+ L ](e‘f” +l)+ 4\/6}
H L CnZy Cp

In a similar way we obtain
|BL10 (ILl() C10 )(t) BSI; (i~L10 ! i~C10 )(t)|

< o o G g )8) = T (g Ty )N

t—t th s

o 1 (Tog i 6~ T (g ey, )))
tk+1_tk

g Jt j|c;01 (ic,, (-s)) - Rl-i b ) Cia (i, ()~ Rilly, (s)|
tk| dLy, (i, )/ di, dLy, (i, )/ di, |

tm{cml(icm<s)>—R1iLm (5) Cy(icy, () -Rii, (s)} ‘
+I - - - - ds
t dL,, (i, )/di dL,, (i, )/di

k

Lo Lo Lo

< Py <(W"]’I'-10 ClO) (\N' ~’ '—10 Cio))ey(t v
.[(Ze”TO —2)/ I:loy][Rl +®c) (h 1+ (¢, /d)))z}

= e#(t_tk)KLlpk ((W"]’iL1o'iClo)’(W’j’Lo'Ew))'
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where

KLl _ |:(2eﬂT0 _2)/ Iilolu:|[R1 +(I)Cg_2 (h 1+(g00 /CD))Z:I
It follows

(B'E:c)) (I Lo’ Clo) BSS (i~'—10 ! i~Clo ))

< K'—1le ((\N"]’ Lo’ Clo) (\/\7,j,|~|_10 FClo))'
Finally

[BL W, 3, J©) -BE W, 3,1, (1)

< Itk | ! C10 W, J, iClO )(s) - I C10 (V\~/ ! j“ i~Clo )(S)|ds

" %II‘M( cIO(W"]’ICw )(s) - Clo(W’ ~’i~010 )(S))ds
9 o a WE-T)W(s-T)-3(5) +3(6) | Cur (i () ~Cuo i (5)| i
t 2|_11\/6 L,

| W (s-T)-W(s-T)-3(5)+3(5) , Cun iy, (8))-Cio (i, 6))
+.[zk [e 2L,C ' Ly ]ds

Lo w4 03] ol oot (T To)

2L11\/6 Ly
. (jt e"‘s”“ds+Itk+1e”(5"k)ds)
tx g

<etw) maX{Pm (WM ), 2 (3.3). 2 (i ey )}

2
g 00y (Y (o, 1)
.[Z(e/‘To —l)/,u] :LHJE + L

< ey(t_tk)Kclpj(k) ((W J i'—lO ! iClO)’ w,J, iL1o ! ic10 ))’
where

Kcl :2

el _1(e 4 41
g 2\/6
It follows

(Bgé(\N,J,Icm) Bg;é(vv j ))
_KCl,Dk((W, g cm) (W,j,leo rClo))'

Therefore

pk(B(W: ) LlO cm) B(W' ! L10 ~Clo)>
<ka((W, i), w.J, Y ~Clo))

where K= max{KW,KJ Ky Kg }<1. In view of fixed
point theorem from [2] and a remark in [18], the operator B
has a unique fixed point which is an oscillatory solution of
(10).

Theorem 1 is thus proved.

+®cg‘2(,h/1+i¢0/®i)zJ.
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IV. NUMERICAL EXAMPLE

Here we collect all inequalities guaranteeing an
existence-uniqueness result.
For a transmission line with length A =10m,

L=0454H/m, C=80pF/m,R=0,0875Q2 we have

Z, =L/C =4/0,45.10°/80.10 2 = 47,50 ;
JLC=6.10"°; T = AJLC =6.10sec;
R/L=0,0875/0,45.10"° =1,94.10°. Choose x=10" and
T, =107, then 1Ty = 145 =0,01 and
4T =10"2.6.10° =6.10° =6000. We have also

Cyo(u) =Co/1-(u/®)=cy/1-(u/®), where h=2;
Ry =R =355Q; ¢,=510"F and ®=052V =
¢ =051<052=d; C;;=5010"F; L,;=310°H.

We choose Ly, (i) = 3i—(1/12)i° . Then

dLyg (i, )/ iy, =3-0.25i,°.

L1o Lio

For iy =1 we obtain 3—0,25i, °>3-0,25=275 and

L1o

3
then Z(n+1)nln|i0|”72:0,5;L10:2,75. If we choose
n=2

then the above inequalities become
2,/045.10°° _ L
83 o

44/80.107%? .
50.10 72

e°’°1% <051 = 0,505 <051

0,01
et -1 5 1
2~ ~11,94.10° + +
10*2 [ 50.1071%.47,5

001 _ 001
p1+355 ¢ 12131; 2 L e 1_631;
2,75 10 2\/80.10le 10*°.3.10

Ky _L2 a0 g
83

001 f 12
Ky=28 o105 AL T,
10 50102475 50107

o =251 (5. 0520 038)
Ky, =2~ (355+052(1+098))<1;
1 10122,75

K 2 R | 1
“ 10123107 | 2.106/80

V. CONCLUSION.

+0,52(1+ 0,98))

The solution can be approximated by an iterative
sequence of successive approximations.
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