ISSN No:-2456-2165

Generalized SOR Method for solving Non-Square Linear Systems

 ¹V.B. Kumar Vatti, ¹M.Santosh Kumar , ²V.V.Kartheek
 ¹Dept. of Engineering Mathematics,
 ²Dept. of Computer Science & Systems Eng. Andhra University, Visakhapatnam, India

Abstract:- In this paper, we propose SOR method for the solution of non-square linear systems which can be called as generalized SOR method. A numerical example is considered to exhibit the superiority of this method over the generalized Jacobi and generalized Gauss-Seidel methods. AMS Subject Classification:-15A06,65F15,65F20,65F50

Keywords:- Iterative method, Jacobi, Gauss-Seidel, SOR, Convergence.

I. INTRODUCTION

Without loss of generality, we consider a linear system of 'm' equations in 'n' unknowns (m < n) of the form

 $x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = b_{1}$ $a_{21}x_{1} + x_{2} + a_{23}x_{3} + \dots + a_{2n}x_{n} = b_{2}$ \vdots $a_{m1}x_{1} + a_{m2}x_{2} + a_{m3}x_{3} + \dots + a_{mn}x_{n} = b_{m}$ (1.1)

These equations can be expressed as a matrix system AX = b ...(1.2)

where $A \in \mathbb{R}^{m \times n}$ and X and b are unknown and known m and n dimensional vectors respectively.

Partitioning the rectangular matrix A as

$$\mathbf{A} = \begin{bmatrix} \mathbf{B} \ \widetilde{\mathbf{B}} \end{bmatrix} \qquad \dots (1.3)$$

where $B \in \mathbb{R}^{m \times n}$ and $\widetilde{B} \in \mathbb{R}^{m,n-m}$, then the equation (1.2) can be put in the form

$$\begin{bmatrix} B \ \widetilde{B} \end{bmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = b \qquad ..(1.4)$$

where X_1 and X_2 are m and n - m dimensional vectors respectively.

Solving (1.2) is same as solving $BX_1 + \tilde{B}X_2 = b$

For m = n in (1.1), the system (1.2) it can be expressed as (I - L - U)X = b ...(1.6)

where -L and -U are strictly lower and upper triangular parts of the coefficient matrix A respectively. The SOR method for solving (1.6) is defined by

$$X^{(n+1)} = (I - \omega L)^{-1} \{ [(1 - \omega)I + \omega U] X^{(n)} + \omega b \} \qquad ..(1.7)$$

(n = 0, 1, 2, ...) with the choice of relaxation parameter ω *as*

$\omega = \frac{2}{1 + \sqrt{1 + \bar{\mu}^2}} \qquad ..(1.8)$

where $\bar{\mu} = max|\mu_i|$ and μ_i are the eigenvalues of the Jacobi matrix J = L + U.

Using the iterative method developed by Wheaton and Samuel[1], Saha[2] proposed the generalized Jacobi method for solving non-square linear systems, and he also proposed generalized Guass-Seidal method which looks somewhat hollow as the inverse of a strictly lower triangular matrix doesn't exist.

In this paper, we describe the generalized SOR method in section 2 and in section 3 its convergence criteria is discussed. A numerical example is presented in the concluding section to show the superiority of the proposed method.

II. GENERALIZED SUCCESSIVE OVER RELAXATION (GSOR)

➤ Method

Let $X^{(k)}$ be the k^{th} approximate solution to the system(1.2). Then as mentioned in [1], the (k+1) approximate is obtained as

$$X^{(k+1)} = X^{(k)} + S(A)d^{(k)} \qquad ..(2.1)$$

where S(A) is the $n \times m$ matrix having 0, -1 and 1 as its elements indicating the signs of the transpose matrix of A and

$$d^{(k)} = \left[\frac{b_1 - A_1 X^{(k)}}{m \|A_1\|}, \frac{b_2 - A_2 X^{(k)}}{m \|A_2\|}, \dots \dots \frac{b_m - A_m X^{(k)}}{m \|A_m\|}\right]^1$$
..(2.2)

Here $||A_i||$, (i = 1,2,,,,m) are l_1 -norms of ith row vector of A. Do the following steps by considering the equation

(1.4) with an initial approximation $X^{(0)} = \begin{pmatrix} X_1^{(0)} \\ X_2^{(0)} \end{pmatrix}$.

Step 1: Assign $k \leftarrow 0$

Step 2: Calculate for a positive definite matrix B,

$$\tilde{\mathbf{b}}^{(k)} = \mathbf{b} - \mathbf{B} \mathbf{X}_1^{(k)}$$
 ...(2.3)

IJISRT18NV256

www.ijisrt.com

..(1.5)

ISSN No:-2456-2165

Applying the procedure given in [1] to the system $\widetilde{B}Y = \widetilde{b}^{(k)}$ with the initial guess $X_2^{(k)}$ to obtain $X_2^{(k+1)}$ *i.e.*,

$$X_2^{(k+1)} = X_2^{(k)} + S(\tilde{B}) d^{(k)}$$
 ...(2.4)

where $S(\tilde{B})$ is a matrix of order $(n - m) \times m$ whose elements are the signs of the elements of \tilde{B}^T and $d^{(k)}$ is m-dimensional vector whose ith entry is

Step 3: Calculate

$$\hat{\mathbf{b}}^{(k)} = \mathbf{b} - \tilde{\mathbf{B}} X_2^{(k+1)}$$
 ...(2.6)

Applying the SOR method (1.7) with (1.8) to the square linear system $Bz = \hat{b}^{(k)}$ with the initial guess $X_1^{(k)}$ to obtain $X_1^{(k+1)}$ i. e;

$$\begin{aligned} X_{1}^{(k+1)} &= (I - \omega L)^{-1} [\{(1 - \omega L)I + \omega U\} X_{1}^{(k)} + \\ \omega \hat{b}^{(k)}] & ... (2.7) \end{aligned}$$

(or)
$$X_1^{(k+1)} = L_{\omega} X_1^{(k)} + (I - \omega L)^{-1} . \omega \hat{b}^{(k)}$$
 ...(2.8)

where $L_{\omega} = (I - \omega L)^{-1} \{ (1 - \omega)I + \omega U \}$ is the SOR iteration matrix and ' ω ' is as given in (1.8).

Step 4: Obtain $X^{(k+1)} = \begin{pmatrix} X_1^{(k+1)} \\ X_2^{(k+1)} \end{pmatrix}$ where $X_2^{(k+1)}$ and $X_1^{(k+1)}$ are obtained in steps 2 and 3 respectively.

Step 5: If $||AX^{(k+1)} - b|| < \epsilon$ where ϵ is the fixed threshold, take $X^{(k+1)}$ as the solution of (1.2). If not assign $k \leftarrow k + 1$ and go to step 2.

Remark

For $\omega = 1$ in (2.7), the generalized SOR method realizes generalized Gauss-seidal method and for the generalized Jacobi method, replace the equation (2.7) by

$$X_1^{(k+1)} = (L+U)X_1^{(k)} + \hat{b}^{(k)} \dots (2.9)$$

III. CONVERGENCE CRITERIA

Let $X^{(k)} = \begin{pmatrix} X_1^{(k)} \\ X_2^{(k)} \end{pmatrix}$ where $X_1^{(k)} \in \mathbb{R}^m$ and $X_2^{(k)} \in \mathbb{R}^{n-m}$, be the kth appropriate solution of the system (1.4) As

$$\begin{aligned} d_{i}^{(k)} &= \frac{\tilde{b}_{i}^{(k)} - \tilde{B}_{i}X_{2}^{(k)}}{m.\|\tilde{B}_{i}\|} \\ &= \frac{b_{i} - B_{i}X_{1}^{(k)} - \tilde{B}_{i}X_{2}^{(k)}}{m.\|\tilde{B}_{i}\|} \\ &= \frac{b_{i} - (B_{i}X_{1}^{(k)} + \tilde{B}_{i}X_{2}^{(k)})}{m.\|\tilde{B}_{i}\|} \\ &= \frac{b_{i} - A_{i}X_{1}^{(k)}}{m.\|\tilde{B}_{i}\|} \qquad ..(3.1) \end{aligned}$$

If we denote the non-singular matrix $\operatorname{diag}(\|\widetilde{B}_1\|, \|\widetilde{B}_2\|, \dots, \|\widetilde{B}_m\|)$ by N(\widetilde{B}), then (3.1) can be put in the form

$$d^{(k)} = \frac{1}{m} N(\widetilde{B})^{-1} (b - AX^{(k)}) \qquad \dots (3.2)$$

By the equation (2.4) of step2 of the algorithm, we have

$$X_2^{(k+1)} = X_2^{(k)} + \frac{1}{m} S(\tilde{B}) \cdot N(\tilde{B})^{-1} (b - AX^{(k)}) \dots (3.3)$$

With this the equation (2.6) of step3 further reduces to $\hat{b}^{(k)} = b - \tilde{B}X_2^{(k)} + \frac{1}{m} S(\tilde{B}) \cdot N(\tilde{B})^{-1} (AX^{(k)} - b) \quad ..(3.4)$

The SOR method now for obtaining $X_1^{(k+1)}$ is derived from (2.7) can be rewritten as

$$\begin{aligned} X_{1}^{(k+1)} &= (I - \omega L)^{-1} \big[(I - \omega L + \omega I + \omega L + \omega U) X_{1}^{(k)} \\ &+ \omega \hat{b}^{(k)} \big] \\ &= (I - \omega L)^{-1} \big[(I - \omega L) X_{1}^{(k)} \\ &- \omega \big\{ (I - L - U) X_{1}^{(k)} - \hat{b}^{(k)} \big\} \big] \\ &= X_{1}^{(k)} - \omega (I - \omega L)^{-1} \big\{ B X_{1}^{(k)} - \hat{b}^{(k)} \big\} \qquad ... (3.5) \end{aligned}$$

0.0

Since
$$AX^{(k+1)} = BX_1^{(k+1)} + \widetilde{B}X_2^{(k+1)}$$
, from (3.3),
(3.4) and (3.5) we can have
 $AX^{(k+1)} = BX_1^{(k+1)} + \widetilde{B}X_2^{(k+1)}$
 $= BX_1^{(k)} - \omega B(I - \omega L)^{-1} \{BX_1^{(k)} - b + \widetilde{B}X_2^{(k)} - \frac{1}{m} S(\widetilde{B}).\widetilde{B}.N(\widetilde{B})^{-1}(AX^{(k)} - b)\}$
 $+ \widetilde{B}X_2^{(k)} + \frac{1}{m} S(\widetilde{B}).\widetilde{B}.N(\widetilde{B})^{-1}(b - AX^{(k)})$
 $= AX^{(k)} - \omega B(I - \omega L)^{-1} \{(AX^{(k)} - b) - P(AX^{(k)} - b)\}$

ISSN No:-2456-2165

where

$$P = \frac{1}{m} \cdot \tilde{B} \cdot S(\tilde{B}) N(\tilde{B})^{-1} \qquad ..(3.6)$$
Now, $AX^{(k+1)} - b = (AX^{(k)} - b) - \omega B(I - \omega L)^{-1}$
 $(I - P)(AX^{(k)} - b) - P(AX^{(k)} - b)$

$$= (AX^{(k)} - b)[I - \omega B(I - \omega L)^{-1}(I - P) - P]$$

$$= (AX^{(k)} - b)[\{I - \omega B(I - \omega L)^{-1}\}, (I - P)] \qquad ..(3.7)$$
From (3.8), we have $X = \lim_{k} X^{(k)}$ is a solution of the system (1.4) provided

 $\|I - \omega B(I - \omega L)^{-1}\| < 1$ and $\|(I - P)\| < 1$ 1 ...(3.9)

where P is the matrix as given in (3.6). For the existence of x, we consider

..(3.8)

$$\begin{split} \|X^{(k+1)} - X^{(k)}\| &= \|X_1^{(k+1)} - X_1^{(k)}\| + \|X_2^{(k+1)} - X_2^{(k)}\| \\ &\cdot \|\omega(I - \omega L)^{-1}(I - P)(b - AX^{(k)})\| \\ &+ \left\|\frac{1}{m} S(\tilde{B})N(\tilde{B})^{-1}(b - AX^{(k)})\right\| \\ &\leq \|\omega(I - \omega L)^{-1}(I - P)\| \\ &+ \frac{1}{m} \|S(\tilde{B})N(\tilde{B})^{-1}\| \|AX^{(k)} - b\| \\ &\dots (3.10) \end{split}$$

With this we can conclude that $X = \lim_{k} X^{(k)}$ exists as $X^{(k)}$ is a Cauchy-sequence.

Hence, the generalized SOR method converges under the conditions (3.8) and (3.9) for any matrix norm.

Remark

It can be shown that the Generalized Guass-seidal and Generalized Jacobi methods converge under the conditions.

 $\|I - B(I - L)^{-1}\| < 1$ and $\|I - B\| < 1$...(3.11)

respectively along with the condition (3.9), as done above.

IV. NUMERICAL EXAMPLE

In this section, we consider the following non-square linear system i.e;

$$\begin{bmatrix} 1 & -2/5 & 0 & -1/5 & 3/5 & 1/5 & 2/5 \\ -14/35 & 1 & -2/7 & 0 & 4/10 & 4/10 & -3/10 \\ 0 & -14/35 & 1 & -1/5 & 3/5 & -3/5 & 1/5 \\ -1/5 & 0 & -1/5 & 1 & -2/5 & 3/5 & 1/5 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \\ p \\ q \\ r \\ s \end{pmatrix}$$
$$= \begin{pmatrix} 530/105 \\ 11/210 \\ 134/35 \\ -289/105 \end{pmatrix}$$

This system can be expressed as in (1.5), as

۲ I	-2/5	0	-1/5]	x_{λ}
-14/35	1	-2/5	Ó	(y \
0	-14/35	1	-1/5	(z)
1/5	0	-1/5	1]	\p/

IJISRT18NV256

$$+ \begin{bmatrix} 3/5 & 1/5 & 2/5\\ 4/10 & 4/10 & -3/10\\ 3/5 & -3/5 & 1/5\\ -2/5 & 3/5 & 1/5 \end{bmatrix} \begin{pmatrix} q\\ r\\ s \end{pmatrix} = \begin{pmatrix} 530/105\\ 11/210\\ 134/35\\ -289/105 \end{pmatrix}$$

It is to note that the conditions for convergence criteria i.e; (3.8), (3.9) and (3.11) are satisfied for the above system. Now applying the procedure given in section 2, we obtained the following data and the non-basic solutions upto an accuracy of 0.5×10^{-10} starting with a null vector as a initial guess.

n	Values of $ b - AX _1$ in successive iterations and obtained final solution upto an error less than 0.5E-10			
	Generalised JACOBI	Generalised GAUSS-SEIDAL	Generalised SOR	
1	4.09352609	1.83483632	1.08856249	
2	1.87329034	0.51129288	0.29789633	
3	0.72835033	0.16122001	0.08271513	
•	•	•		
16	10.3774186E -6	4.25251637E-8	10.3810175E-9	
17	3.9486858E- 6	1.93810483E-8	10.3810175E-9	
		•	(x,y,z,p,q,r,s)	
•			=(5.01262429,	
•		•	2.96595439,	
			2.06287791	
			0.87928128,	
			2.42931515,	
			-2.42951515, 1.06376678)	
22		77626535E 0	1.00370078)	
22		7.7020555E-9		
23		(x y z p a r s) - (1 9921)		
		4357 2 93471021		
		1 99688395		
		0.91817848.		
		2.48270963.		
		-2.48270963,		
		1.04977851)		
30	11.09537E-9			
31	11.09537E-9			
	(x,y,z,p,q,r,s)			
	=			
	(3.19440836,			
	1.12036248,			
	2.59066879,			
	-			
	1.05011/82,			
	2.02982539,			
	0.51512802, 1.02402821)			
1	1.02402021)	1		

Table 1

V. CONCLUSION

It is evident from the above table-1 that the GSOR method converged more rapidly than the Generalised Jacobi and Generalised Gauss-seidal methods for solving nonsquare linear systems as in the case of SOR method with respect to Jacobi and Gauss-seidal methods for the solution of square linear systems.

REFERENCES

- [1]. I. Wheaton and S. Awoniyi. A new iterative method for solving non-square systems of linear equations. Journal of Computational and Applied Mathematics, 322:1-6, 2017.
- [2]. Manideepa Saha. Generalized Jacobi and Gauss-Seidal method for solving non-square NIT Megalaya, Shillong, India arXiv:1706.07640vl [math.NA] 23 Jun 2017.
- [3]. R.S. Varga Matrix iterative analysis. Springer, 2000.
- [4]. M.T.Micheal Scientific Computing: An introductory survey. McGraw Hill, 2002.
- [5]. C.T.Kelley Iterative methods for linear and non-linear equations. SIAM, Philadelphia 1995.
- [6]. W.Hackbusch Iterative solution of large Sparse systems of equations. Springer-Verlag, 1994.
- [7]. D.M.YOUNG, Iterative Solution of Large Linear Systems, Academic Press, New York and London, 1971.