
Volume 3, Issue 11, November – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18NV357 www.ijisrt.com 801

A Review Paper: Embedded Security

R. Binusha Rachel
PG Scholar, ME Applied Electronics

PSG College of Technology

Abstract:- Embedded devices has its hands over all

fields, however they are easily vulnerable for external

attacks, any third party can easily cause its system to fail

by modifying any one of the component that they

depend. Further the codes that these devices execute are

more vulnerable to the attacks as a single change in its

execution can change its behaviour. Therefore it is

necessary that these devices are highly secured. Security

can be increased at the design level to be more hard to

external attacks, further continuous monitoring of the

codes provide means of checking if any harmful codes

are executed. This paper provides a review of the

existing methods to detect if the code being executed is

malicious or not thereby deciding whether to allow or

stop the execution also few design strategy which could

increase the security of the embedded devices.

I. INTRODUCTION

Embedded security is a major part to be careful, as
they span over a vast area. Mistakes could lead to many

hazardous like property damage, security breaches, personal

injury and even death. Increasing the security of the system

will cause an increase in the cost. To have a advantage over

the market by cutting the security corners will be dangerous,

as many of them are with real time deadlines even a small

extra delay will make it vulnerable. Being energy operated

systems draining the battery of the system can cause the

system failure. Embedded systems are available in many

forms which can be easily programmed to waste the

resources and even cause destruction. Privacy can also be
easily exploited by attackers, this serves as a major problem

when it comes with military details. Thus security of

embedded systems stays as a major threat in spite of the

developments.

The need for the secure embedded devices stands as a

major factor with its development. The codes executed

could be easily altered; therefore it is necessary to provide

some means of checking to check if the code being executed

is completely normal. If there is any presence of malicious

code running then the system should be stopped and

prevented from further execution.

II. METHODOLOGIES

All embedded systems consist of inbuilt code running

within it, for the proper functioning of the embedded system

it is necessary that these codes are executed completely

without any change in its flow of execution. The attackers

can easily make the system to fail by changing its flow in its

execution; thereby it is necessary to maintain some methods

to check if there is any malicious code running behind i.e

checking if there is any eviation from its normal flow.

A. IC Metric Detection

IC metrices are unique identifiers which are generated

with the specific program. The program counter value and

the number of cycles per instruction are selected as the IC

metric features from which the unique characteristics of the

system could be determined. The PC value can be captured

at any time during the execution of the program; however a
large number of data has to be processed for the feature

extraction which degrades the system performance. In CPI

more instructions could be analysed in less interval of time.

p, q are the program running on hardware f and f (p)

is the set of characteristics extracted from p, Then f (p) is

the IC metrics of p, only if the following two conditions

are satisfied:

1) f (p) is obtained from p running on f .

2) Program q is a copy of p => f (p) = f (q).

The Average CPI is calculated based from (1):

 CPI=C/I (1)

Where i is the total number of executed instructions, c

is the number of cycles for executing i instructions.

In [1] CPI value is taken for 10000 instructions per

interval, choosing a interval of lesser instructions per cycle

yields more features about the program. The information

derived from the CPI at specific window interval is treated

as the base and other malicious code running with not
predicting the same level of CPI there by further execution

of the code is prevented.

In [2] a self-organising maps (SOM)-based approach

is used to increase the security level of embedded system by

detecting abnormal program behaviour. Cycle per

Instruction (CPI) is used to extract corresponding Program

Counter (PC) values, and use it as IC Metrics features for

correct program identification, allowable to execute on the

embedded architecture, and an unsupervised Self-

Organising Map (SOM) is used to classify the behaviour of

http://www.ijisrt.com/

Volume 3, Issue 11, November – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18NV357 www.ijisrt.com 802

the embedded system by giving the PC and the CPI values

as the input during the training session. The analyser based
designed is capable of classifying and recognising between

known and unknown programs while the programs are

running. Here each phase and peak is measured to

ascertain the originality of the program in execution.

Any significant difference shows that the numbers of

function calls, characteristic of function call and PC

signature are different to the original program, and an

abnormal behaviour notification is signified.

B. Dynamic Tracking Tags

In [3] the dynamic tracking system tags the untrusted

information as trained ones and tracks its propagation in the

security system. It focuses on tracking the flow of the

external data into the processor which can help prevent

the illegal operations caused by these external data or

program, such as stealing user’s private information
stored in the system. It decides which data taint needs to

propagate, and decides which data needs to be checked.

Although the mechanism of information flow monitoring

can detect some common attacks, it may result in the high

false positive rate for other safety program in the system as

a single program behave differently in different

environment.

C. Memory Monitoring

Paper [4] achieves the purpose of detecting malicious

attacks by protecting data space of the memory

management, when the program runs and prevents

malicious code from unauthorized modification of data

space of a program. Memory monitoring needs to make a

detailed analysis about the security of a program itself,

including the type of instructions executed and the

boundary information of the program’s data space,
which determine whether the instructions executed have

threats on the program’s data space, here a single

monitoring strategy cannot prevent all the malicious attacks

as the machine instruction compiled by different compiler

there by producing different false negative results.

D. Integrating Information Flow and Memory Management

Instead of considering as separate dimension both the

information flow tracking and the memory management are

integrated together at the operation level with a new multi

strategy in [5]. Every word is appended with 4 tag bits to

track the information flow, Because of the added tag bits,

several modifications are applied in the hardware

architecture, such as 4 bits extension in all registers, caches,

memories and data bus for the taint propagation.

A typical program data space includes stack section,

heap section, global data section and text section. In stack

segment protection, the range protected is reduced and only

return address and stack pointers which have relatively

fixed position in stack are protected. As the buffer
overflow can cause loss of needed information thereby

dynamic functions like malloc are used prior which defines

the needed size thereby preventing the overflow. Global
data section contains the storage of the pointer of the

address of the control data which has to be protected.

Similarly in each of the segment only the needed

information and the one which are frequently exposed to

attacks are protected. Finally, the design is mapped to an

FPGA development board and prototype system is

developed. Experimental results show that compared with a

single strategy of information flow tracking and single

strategy of memory monitoring, the multi-strategy

combining the both can effectively detect more kinds of

attacks at run time.

E. Hardware Trojan Threats Detectability Metric (HDM)

A novel metric for hardware Trojan detection

coined as Hardware Trojan Threats (HTT) detectability

metric (HDM) is introduced in [6], that uses a weighted
combination of normalized physical parameters. HTTs

are identified by comparing the HDM with an optimal

detection threshold, if the monitored HDM exceeds the

estimated optimal detection threshold, then it is tagged as

malicious.

Using existing Trojan implementations, seven HTTs

were designed and implemented on a FPGA testbed, 86% of

the implemented Trojans were detected with HDM. As a

single parameter lacks the ability to capture HTTs with

distinct features, a combination of parameters capturing

different characteristics of the Trojan is designed. Therefore

the metric is constructed that uses a combination of different

physical parameters such as power consumption, timing

variation, utilization and leakage current to detect various

sorts of HTTs. HTT detectability metric (HDM) uses a

weighted combination of normalized physical parameters
which are more important in the detection.

F. Detection of Malicious Software

The short sequences of the system calls which are
made are consistent during normal execution. These

sequences are not the same for abnormal system calls that is

they may differ from the normal flow. A closer monitoring

of these could help differentiating the abnormal software

[14=6].

Arora et al. [7] formulated a hierarchical runtime

monitoring framework to check program behavior at basic

block level and verify instruction stream integrity using

cryptographic hash tables for secure embedded processing.

A similar work to this was done by [IMPRES] where

instead of hash tables check sum were used, however any

mismatch of them from the original value predicted the

presence of abnormal software.

The information captured from various instruction are

used to determine if the operation are valid or not [].

However they don’t act immediately once the error is

http://www.ijisrt.com/

Volume 3, Issue 11, November – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18NV357 www.ijisrt.com 803

detected instead they find the error only at the end of the

sequence.

A secure execution of program can be implemented by

identifying the non-instruction memory pages by the NX

(No eXecute) or XD(eXecute Disable) bit, this avoids the

change of the data flow to a particular piece of code that’s
belong to data memory []. However the buffer flow overlow

attack cannot be rectified. By using bounded checks and

protecting the function pointers with XORing those with a

secret key the buffer overflow attack could be prevented [].

Attacks to be detected in real-time, while they are

occurring by means of a hardware supported HIDS (Host

based intrusion detection system) is implemented in [7]. The

System Call Detector block receives the information from

the running programs which it uses to detect the execution

of system calls. The System Call Detector has two outputs:

SyscallP, which indicates the execution of a system call, and

Syscall-Num, which is the number of the system call being

executed. Each executing process is associated with a

Syscall Sequence Recognizer, a finite state machine (FSM)

that recognizes the sequences of system calls that can be
generated by the correct program. If the system call

sequence deviates from a known correct sequence, the state

machine enters its detection state and asserts as the Attack

Detected output. Since the system has multiple programs

running, multiple FSMs has to be implemented, one FSM

per program thereby a technique called Concurrent FSMs is

implemented, using a demultiplexer to switch between the

calls.

G. Choosing Secure Components

With the functional and the non-functional

characteristics of the security system, the limitations of the

embedded devices, their various interconnections the

devices are designed with a increased security level in [8].

With the known intruder model, the analysis is done which

defines the functional system requirements and the non-
functional constraints needed for the security. For each of

the security component define an alternative implementing

the same function. On the basis of the relationship between

them, the rules are defined for selecting the security

components. The non-functional metrices of the components

are calculated. The alternative components are ordered

based on declining the values of the established non-

functional components, thereby ensuring optimal selection

of security component. This method when verified proved

that best components could be selected following the

procedure.

H. Boot System Modification

The embedded system architecture described in [9]

currently focuses on confidentiality and integrity by

protecting the boot process, code and data, and

communications from unauthorized access and
alternation. The boot time security is defined with A major

commercial security technology is the Trusted Platform

Module (TPM), which is the standard to enable trust in
computing platforms. It also includes capabilities such as

remote attestation, encryption, decryption, and sealed

storage, hence software application can use a TPM

chip to authenticate hardware devices. Further each

TPM chip is provisioned with a unique and secret key

making it further secure. The manufactured parts had to be

inexpensive and cause as little disruption as possible to the

current processing architecture, additionally many other

reasons bought down the TPM.

I. Encryption with Boot System

This paper [10] combines the encryption process to a

boot verification technique. Encryption is the foundation of

information security but simply using standard

cryptographic primitives do not guarantee the adequate

implementation of security functions. The manner that the
cryptographic primitives are assembled and coordinated

into the desired application-specific security functions

is critical to their effectiveness.

Based on LOCKMA, a security coprocessor (S-
COP) that implements cryptographic primitives in hardware

is developed. The added benefits of hardware

implementation include hardware separation of sensitive

keys from non- sensitive data and code, much faster

computation time, and lower power use, the S-COP is

responsible to secure the boot process, load only

trusted software, and ensure that the unique identity is

intact, before, during, and after boot process. The S-

COP also uses key management to support secure

communications between subsystems to protect

information-in-transit. An optical PUF is developed When

the system is provisioned for deployment, the PUF is
applied which finalize the software code encrypted with

the loaded PUF derived key. The system will not start if its

PUF value is incorrect, causing a failed software decryption.

In an unsecured architecture, the CPU directly reads in

the BIOS. Without authentication, the CPU is

vulnerable to maliciously modified BIOS. The S-COP

secured architecture addresses this vulnerability by

authenticating the BIOS and applications. When the

system powers up, the S- COP halts the CPU while it

performs authentication. It first reads the PUF and derives

a key. The key is used to decrypt the BIOS. If successful,
the CPU is released to execute the BIOS.

J. Hardware Assisted Method

A hardware based mechanism to process sensitive

information in complete isolation without requiring any
software process is proposed in [11], by placing critical

processing units in a secure region, to process the sensitive

information securely a secure region is designed. The

modules placed inside this secure region can only be

accessed by the outside modules through a secure interface,

the access control signals are verified before passing data to

http://www.ijisrt.com/

Volume 3, Issue 11, November – 2018 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT18NV357 www.ijisrt.com 804

the modules present in the secure region. The ”secure

mode” module will extract the secure access rights whereas
the ”PLB mode” module will extract the application access

rights from the input signal. The ”access rule check” will

perform access rights verification. In case of any mismatch,

as it would be in the event of security breach, the alert

signal is generated by the secure interface, stopping

further flow of data to the secure region modules.

The proposed solution was evaluated by integrating it

within an image processing based authentication system

and implementing the final design on a Spartan-3A

DSP FPGA Video Starter Kit(VSK). A delay of one clock

cycle only to perform the access verification was introduced.

On analysing the output of the system using different

synthetic, when a attack is launched using buffer overflow

technique, the access control signal is overwritten but the

secure controller output is not changed. When control flow

reached at the ”access rule check” module, the

verification step failed and attack alert signal is

generated by the secure interface module.

K. Hardware Assisted Run Time Monitoring

External monitor are used to detect wheather the

program runs in the correct flow, else prevent the execution

of the program. During run time by the static program

analysis the static characteristics are obtained. The program
counter, the instruction register, pipeline status are generally

treated as the parameters. An invalid signal is transferred

when there is a violation from the normal execution by the

monitor, which in turn enable the user to take the necessary

actions. With FSM they are implemented in [11]

L. Security System Base on TCM and FPGA and AEGIS

System security can be integrated using Aegis, which

integrates security kernel, encryption and integrity to a

single processor. The integrity is verifies first, the PUF

creates a secret password for the encryption module, After

two checks the data is accepted. In spite of this rule being

secure it is considered as waste of time and resources by

[12]. By checking the intergrity of instructions and data in

flash chip the security in the embedded system is provided

based on TCM and FPGA before the execution. It has an
FPGA controller separating the processor and BOOTROM

which is the major region to provide the trust. When

powered on the controller fully reads the bootRom which is

send to the TPM module after performing encryption, which

then decides if to give service or not for the application [13].

M. Trustzone Based

In Morden ARM devices trustzone is increasingly

used as a security component. It provide completely two

different environment for execution namely the secure mode

and the non secure mode. A addition bit indicates which

mode is being executed. They become increasingly useful

when operated as a Dual-OS approach where each one

operates in different world, Further various other features

like memory segementations make them very useful towards
virtualisation [16].

III. CONCLUSION

Embedded system security does not only deal with

these detection of malicious software and design security

but it also includes various other features like its

compatibility with the other devices, its reliability in its

changing environment etc. However in design perceptive

increasing the security by incorporating the encryption with
the booting system is a simple and effective means. The

mentioned methods of detecting the abnormal code can be

easily implemented and they are effective means of stopping

the system from executing the malicious code thereby

saving the device.

REFERENCES

[1]. X.Zhai, K. Appiah, S.Ehsan, G. Howells “Application
of IC metrices for embedded system security” f0urth

international conference on emerging security

technologies, 2013.

[2]. X. Zhai, K. Appiah, G. Howells, “ A method of

detecting abnormal program behaviour on embedded

devices” IEEE Transaction on information forensics

and security, 2015.

[3]. Z.Liu, X.S.Zhang and X.D.Li “Proactive vulnerability

finding via information flow tracking”, International

conference on multimedia information networking and

security, 2010.

[4]. M.Dalton, H. Kannan and C. Kozyrakis “Real world
buffer overflow protection for user and kernel space “

International conference on dependable systems and

networks, 2008.

[5]. L.Dongfang, Z.Xin and T. Qiaoling “The design and

implementation of embedded security CPU based on

Multi-stratergy” Chinese journal of electronics, 2016.

[6]. D.M.Shila and V.Venugopal “Design, Implementation

and security analysis of Hardware Torjan Threats in

FPGA” Communication and information systems

security symposium, 2014.

[7]. S.Lukacs, A.V.Lutas “Hardware Virtualization Based
Security for Embedded Systems” IEEE 2014.

[8]. V.Desnitsky, A.Chechulin, I. Kotengo and D. Levshun

“ Application of a technique for secure embedded

device design based combining security components

for the creation of a perimeter protection system” 24th

Euromicre international conference on parallel,

distributed and network based processing” 2016.

[9]. M.Vai, B.Nahill, J.Kramer “Secure architecture for

embedded systems “ IEEE 2015.

[10]. A.Saeed, A.Ahmadinia and M.Just “Hardware assisted

secure communication fpr FPGA based embedded

system” IEEE 2015.

http://www.ijisrt.com/

